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Abstract
Peptidic Natural Products (PNPs) are highly sought after bioactive compounds that include many
antibiotic, antiviral and antitumor agents, immunosuppressors and toxins. Even though recent
advancements in mass-spectrometry have led to the development of accurate sequencing methods
for nonlinear (cyclic and branch-cyclic) peptides, requiring only picograms of input material, the
identification of PNPs via a database search of mass spectra remains problematic. This holds
particularly true when trying to evaluate the statistical significance of Peptide Spectrum Matches
(PSM) especially when working with non-linear peptides that often contain non-standard amino
acids, modifications and have an overall complex structure.

In this paper we describe a new way of estimating the statistical significance of a PSM,
defined by any peptide (including linear and non-linear), by using state-of-the-art Markov Chain
Monte Carlo methods. In addition to the estimate itself our method also provides an uncertainty
estimate in the form of confidence bounds, as well as an automatic simulation stopping rule that
ensures that the sample size is sufficient to achieve the desired level of result accuracy.
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1 Introduction

Tandem mass-spectrometry (MS/MS) is an attractive alternative to nuclear magnetic reso-
nance (NMR) spectroscopy that can be used to sequence non-linear (cyclic and branch-cyclic)
peptides. Usually MS/MS is coupled with a database search algorithm capable of locating
candidate peptides within the database of protein sequences, computing the peptide-spectrum
match scores and estimating the statistical significance of the PSMs found.

A number of recent studies have been focusing on trying to compute the statistical
significance of the PSMs. Since this particular problem is very similar to the thoroughly
researched issue of having to compute the statistical significance of sequence match scores,
many different approaches were proposed. For example, in [2] it was proposed to approximate
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the statistical significance of PSMs by first modeling the distribution of the PSM scores (e.g.,
by Gumbel distribution) and further using this distribution to calculate the probability of
interest. Unfortunately, while useful in many other applications, this approximation approach,
often fails when one has to estimate extremely small PSM probabilities typical for mass
spectrometry (e.g., values as small as 10−10 are often required to achieve 1% FDR [12]).

Linear peptides and additive scoring functions use a polynomial-time algorithm [11] to
compute the PSM p-values. It would seem, however, that the same approach cannot be
applied to non-linear peptides. A groundbreaking breakthrough [15] gave rise to MS-DPR,
an algorithm capable of computing the p-values of the PSM using the Markov Chain Direct
Probability Redistribution approach. Unfortunately, while the algorithm has great appeal
and appears to be quite universal, MS-DPR does not give any indication as to the accuracy
of the calculated estimates and its overall performance greatly depends on the size of the
sample, i.e. the number of simulations used to compute the p-value. The algorithm, however,
does not provide any guidelines as to how one should go about selecting the correct size for
the initial sample so as to assure quality end results.

Fortunately, the rare probability estimation problem itself is not new and has been very
well studied within the framework of such fields as particle physics, stochastic simulation,
financial mathematics, chemistry and telecommunication theory among the others.

We are using several state-of-art methods of the Monte Carlo sampling theory, including
the Markov Chain Monte Carlo, importance sampling, the Wang-Landau algorithm and the
efficient variance estimates for Markov Chains to derive a novel method, capable not only
of estimating the statistical significance of the PSMs, but also of constructing confidence
bounds for the p-value of interest and provide a way to predict the size of the sample that
would be required to achieve the desired level of result accuracy.

2 Methods

2.1 Probabilistic model of a spectrum of an arbitrary peptide
We use the same probabilistic model to compute the statistical significance of PSM as
presented in [15, 14]. For the sake of completeness we will describe it below.

A PNP graph G of a peptide P is defined as a graph with nodes V (G) corresponding to
amino acids in P and edges E(G) corresponding to generalized peptide bonds [14]1. The mass
Mass(G) of a PNP graph is defined as the total mass of its amino acids, i.e. Mass(G) =∑
v∈V (G) m(v).
A peptide bond is called a bridge if its removal disconnects the graph. A pair of bonds

is called a 2-cut if neither of them are bridges but removing both of them simultaneously
disconnects the graph. Let Cb be the set of bridges of G and C2 be the set of pairs of 2-cut
edges and we define the set of cuts of G as C(G) = Cb(G) ∪ C2(G).

Any cut C ′ ∈ C induces two masses (theoretical peaks) mb(C ′) and my(C ′) of the
connected components of G resulting from the cut C ′. Note that these two peaks are
complementary with a total mass equal to the molecular mass of the compound, Mass(G).
This means that for the PNP graph G and its set of cuts C there exist two vectors of masses
~mb = (m(1)

b , . . . ,m
(|C|)
b ) and ~my = (m(1)

y , . . . ,m
(|C|)
y ). The vector ~mb is called the theoretical

spectrum of P and further be referred as TheoreticalSpectrum(P ).

1 Generalized peptide bonds include N-C-O linkage amide bonds as well as C-C-O linkage bonds between
thiazoles/oxazoles and dehydroalanines/dehydrobutyrines and other amino-acids. The notion of gener-
alized peptide bonds is useful as illustrated by identification of the thiazole/oxazole containing PNP
plantazolicin from B. amyloliquefaciens, lanthipeptide SapB from S. coelicolor, and complex PNPs such
as two-rings containing actinomycin from Streptomyces sp. CNS654 [14].
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The TheoreticalSpectrum(P ) can also be represented via a fragmentation matrix H =
{hij} of size |C|× |V (G)| with the elements hij = 1 if j ∈ V (G1(C(i))) and 0 otherwise. Here
C(i) ∈ C and G \ C(i) = G1(C(i)) ∪G2(C(i)). Rows of the fragmentation matrix correspond
to different, potentially observable fragmentations. Each row specifies which amino acids are
to be found on one of the connected component of graph G after the removal of some nodes.
This means that TheoreticalSpectrum(P ) = H~µ, where ~µ is a vector of the masses of the
amino acids.

SPCScore(P, Spectrum) is defined as the Shared Peak Count, the number of peaks shared
between TheoreticalSpectrum(P ) and the filtered MS/MS spectrum Spectrum [5]. Two
peaks are considered as shared if their masses are within a pre-defined threshold (typically
0.02 Da for high-resolution spectra). From here on we will consider Spectrum to be fixed
and we will denote Score(~µ) = SPCScore(Spectrum,H~µ).

We will useM to denote a set of vectors that satisfy the following condition:

M = {~µ = (µ1, . . . , µ|V (G)|), | µi > 0,
|V (G)|∑
i=1

µi = Mass(G)}. (1)

This set represents a variety of amino acid mass-vectors (with possible non-standard amino-
acids that are typical for non-ribosomal peptides, modifications, etc. mixed in). Our goal is
to calculate the probability

p = IP(SPCScore(Spectrum,H~µ) ≥ S∗) = IP(Score(~µ) ≥ S∗), (2)

where ~µ is a random variable uniformly distributed on setM and S∗ is a fixed threshold
(usually S∗ = SPCScore(Spectrum,P )). Note that the probability (2) defined above
depends on the particular choice of the setM. We could obtain different models of PSM
significance via changing the scoring function SPCScore and/or the setM. For example, if
we consider an integer simplexM′ (so all the µi would be integers), additive scoring functions
and linear peptides, then we will end with the PSM statistical significance model as used by
MS-GF+ [11]. The estimates presented below could easily be adopted to a different model.

2.2 Monte Carlo and the Importance Sampling Approach
The probability (2) could be estimated by using the Monte Carlo sampling approach. Consider
the set

S = {~µ ∈M : Score(~µ) ≥ S∗} .

Denote by 1lS an indicator function of the set S, i.e. 1lS(~µ) equals 1 if ~µ ∈ S (equivalently,
Score(~µ) ≥ S∗) and 0 otherwise. Let ~µ1, . . . , ~µN be N iid random variables with a uniform
distribution on the setM. Then

p̂MC = 1
N

N∑
i=1

1lS(~µi)

is an unbiased and consistent estimate of p.
Variance D(p̂MC) of p̂MC equals to p(1−p)

N and tends to 0 as N → ∞. However, its
relative error

RE(p̂MC) = D(p̂MC)
p2 = p(1− p)

Np2 = 1
Np
− 1
N
−→∞, p→ 0, (3)

is unbounded indicating that the performance deteriorates when the event is rare. For
example, if a relative error at 1% is desired and the probability is of order 10−6 then we
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need to take N such that
√

(106 − 1)/N ≤ 0.01. This implies that N ≈ 1010 which is an
unfeasible task for most computer systems. Therefore we need to look for an estimate that
would have its variance smaller than D(p̂MC), ideally having the relative error bounded (or
at least growing much slower).

Importance sampling is a general Monte-Carlo approach to reduce the variance in the
estimation of quantities that can be written as an expectations. Importance sampling
generates the “interesting” events more often by sampling from a different distribution and
correcting for this bias afterward, which results in a more accurate estimate with a reasonable
number of samples.

Formally, let P be the distribution of ~µi and f the corresponding density. Consider
another distribution Q with density q. Let ~ν1, . . . , ~νN be a sequence of iid random variables
having the distribution Q. Then importance sampling estimator of p is defined as

p̂IS = 1
N

N∑
i=1

f(~νi)
q(~νi)

1lS(~νi). (4)

Note that this estimator is also consistent and unbiased.
Suppose that the density q has the following form:

q(x) = cw(x)f(x), (5)

where c > 0 is a normalizing constant and w(x) is some biasing factor. Then p̂IS would not
depend on f and could be written as

p̂IS =

N∑
i=1

1lS(~νi)/w(~νi)

N∑
i=1

1/w(~νi)
, (6)

where ~ν1, . . . , ~νN is a sequence of iid random variables with density function q.

2.3 Metropolis-Hastings Algorithm with Wang-Landau weighting
In order to calculate p̂IS we need to sample from the distribution Q with density (5). This
might be a non-trivial task, since the normalizing constant c of q(x) is unknown and weights
w(x) could be arbitrary.

Usually this task is approached by using the Metropolis-Hastings [7] algorithm that allows
for the usage of unnormalized densities. Our goal is to construct a Markov Chain having Q
as an equilibrium distribution and obtain the desired sequence {~νn} of random variables via
sampling from this distribution. Then the ergodicity of the Markov chain will ensure that as
N →∞ still p̂IS will converge to the target probability p almost surely [18, 17].
Algorithm 1: Metropolis-Hastings algorithm
Input :Transition kernel γ(x|y), current state of Markov Chain ~νi
Output :Next state of Markov-Chain ~νi+1

1 Sample random variable ~ν from conditional probability distribution γ(·|~νi)
2 Sample uniform random variable r on the interval [0; 1]
3 Calculate the acceptance ratio α = min

(
q(~νi)γ(~ν|~νi)
q(~ν)γ(~νi|~ν) , 1

)
4 if r < α then
5 ~νi+1 ← ~ν

6 else
7 ~νi+1 ← ~νi
8 end
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The density q here is defined by (5) and sampling from proposal density γ(·|~νi) is performed
as follows:

Algorithm 2: Simulation from conditional density γ(·|~νi)
Input :Current state of Markov Chain ~ν = (ν1, . . . , ν|V (G)|) ∈M
Output :Proposed state ν̃

1 Sample index i uniformly on {1, . . . , |E(G)|}
2 Consider ei ∈ E(G). Denote by v1 a starting vertex of ei and by v2 an ending vertex
3 Sample δ uniformly on [−m(v1);m(v2)]
4 Set ν̃v1 ← νv1 + δ, ν̃v2 ← νv2 − δ, and ν̃j ← νj for the rest j

The density f in our case is a uniform density on the setM and it is natural to assume that
the weights w(~ν) should be score-invariant. Therefore to calculate p̂IS we will consider a
proposal distribution Q with the density q(~ν) = cw(Score(~ν))f(~ν). In order to decrease the
relative error RE(p̂IS) we aim to choose w(S) ≈ 1/IP(Score(~ν) = S). This way sampling
from Q will yield a flat score distribution reducing the variance of p̂IS .

For this purpose we adapt a variant of Wang-Landau algorithm [13, 19]. This algorithm
is an adaptive modification of the Metropolis-Hastings algorithm, which can simultaneously
construct the Markov Chain and estimates weights. We use this algorithm, however, only to
estimate weights because the resulting random walk is not even Markovian and therefore one
could not guarantee the consistency of the estimates and lack of bias.

Algorithm 3: Wang-Landau algorithm
Input :Minimum and maximum values of log-weight increments Cmin, Cmax
Output : Set of weights w(S)

1 Set w[i]← 0 for i ∈ Smin, . . . , Smax, where Smin and Smax are minimum and
maximum scores correspondingly

2 C ← Cmax
3 while C > Cmin do
4 Set Hist[i]← 0 for i ∈ Smin, . . . , Smax
5 Simulate ~ν uniformly onM
6 while Hist is not sufficiently flat do
7 Run a step of Metropolis-Hastings algorithm with density

q(~ν) = cw(Score(~ν))f(~ν). Denote obtained new state by ν̃
8 w[Score(ν̃)]← w[Score(ν̃)]/C
9 Hist[Score(ν̃)]← Hist[Score(ν̃)] + 1

10 end
11 C ←

√
C

12 end
13 return w(S)

Typically we use Cmin = exp(0.6), Cmax = exp(0.0000367). The criterion for a “sufficiently
flat” histogram is that counts in every bin of the histogram are larger than 70% and smaller
than 130% of the value expected in a perfectly flat histogram.

Use of Metropolis-Hastings algorithm coupled with Wang-Landau sampling is a common
technique used recently for rare event sampling (see [9] for an extensible review). In [21] it
was used to calculate the probabilities of sequence local alignment scores (however, neither
accuracy estimates in the form of variance nor the sample sizes required to achieve the desired
accuracy of estimates were given).

WABI 2017
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2.4 Variance Estimation
The estimate alone is useless without knowing how accurate it is. Regardless of the length of
the simulation, there will be an unknown Monte Carlo error, p̂IS − p. While it is impossible
to assess this error directly, we can obtain its approximate sampling distribution through a
Markov Chain central limit theorem (CLT) [18]. That is, if
√
N (p̂IS − p)→ N(0, σ2

p),

as N →∞ with some σ2
p > 0. Denote by λ2

p the posterior variance associated with p. Then
it is important to note that due to the correlation present in a Markov chain σ2

p 6= λ2
p.

For now, suppose we have an estimator σ̂2
N such that σ̂2

N → σ2
p almost surely as N →∞.

This allows construction of a (1− δ)100% confidence interval CN for p by

CN = (p̂IS − zδ/2σ̂N/
√
N ; p̂IS + zδ/2σ̂N/

√
N), (7)

where zδ/2 is a quantile of a standard Normal distribution. The width wδ of CN is given by

wδ = 2zδ/2σ̂N/
√
N

and allows reporting the uncertainty of estimate p̂IS .
There are many strongly consistent variance estimation techniques applicable for p̂IS

including batch means [4, 10], spectral variance estimators[4] and regenerative simulation [8,
16].

Unfortunately, all these methods require storing the entire trajectory of the Markov chain
to allow for the recalculations as the batch size increases with N . This might quickly become
a problem if the fixed accuracy criterion is used as a stopping rule for the simulation process.
Indeed, while storage capabilities overall are gradually becoming less and less of an issue, still,
in order to obtain proper estimates in this case one would need to recalculate them over the
length of the entire chain over and over again, which would make the process prohibitively
computationally expensive.

Most likely the first recursive approach to update a σ2
p estimate when new observations

come with O(1) memory and computational complexity was proposed in [22]. The challenge
here is to figure out a way to determine the batch sizes recursively to preserve consistency
of the estimates and have a small mean square error, while simultaneously keeping the
computational and computer memory requirements low. We are using a novel recursive
estimator for σ2

p proposed in [23] that in the most situations works better than the estimator
from [22] while preserving the O(1) storage requirements.

2.5 Stopping Rule
In order to be able to process big MS/MS databases we need to carry out PSM significance
estimation en masse in a fully automated manner. It follows that in this case performing
chain diagnostics by hand or using a fixed time Markov chain stopping rule is out of the
question. Recently in [3] an automated sequential stopping procedure was proposed that
terminates the simulation when the computation uncertainty is small relative to the posterior
uncertainty. In [6] it was shown that this stopping rule is equivalent to stopping when the
effective sample size is sufficiently large.

Let λ̂N be an estimator of λp and consider a relative standard deviation fixed-width
stopping rule, i.e.

Nε = inf
{
N > 0 : 2zδ/2σ̂N/

√
N ≤ ελ̂N

}
. (8)
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From [3] it follows that if λ̂N → λp a.s. and σ̂N → σp a.s. as N → ∞, then as ε → 0 the
simulations will terminate with probability 1 and IP(p ∈ CNε)→ 1− δ. In practice we are
using ε = 0.02 and the σ̂N estimate from [23].

A useful modification of this stopping criterion comes from the specific MS/MS database
search problem statement. In certain situations the aim is not to estimate the probability
of interest (2), but to decide whether p satisfies p < p0 with p0 being some fixed threshold.
Usually p0 is much larger compared to p (e.g. p0 = 10−7 and p < 10−10). Therefore in
addition to checking a condition (8) for a particular N we could also check if p0 6∈ CN . If
this is indeed so, then it automatically implies that either p < p0 or p > p0 with probability
1− δ as N →∞. This addition to the stopping rule might result in a significant reduction
of the amount of simulations required, since it would depend on a much larger p0 and not p.

2.6 Outline of the Algorithm

Gathering all the parts of the proposed method together we end with the following algorithm
to compute p̂IS .

Algorithm 4: Importance Sampling estimator for p
Input :A peptide P and spectrum Spectrum

Output :An estimate p̂IS of statistical significance p and confidence interval CN
1 Construct PNP graph G of a peptide P and determine the set of cuts C
2 Construct fragmentation matrix H and let Score(µ) = SPCScore(Spectrum,Hµ)
3 Determine the set of weights w(S) using Wang-Landau algorithm (see algorithm 3)
4 while Stopping criterion (8) is not satisfied do
5 Simulate next state ~νN using Metropolis-Hastings algorithm (see algorithm 1)
6 Update estimates σ̂N and λ̂N
7 end
8 Calculate p̂IS using (6) and confidence interval CN via (7).

3 Results

To confirm the validity of our approach, we have made a point to verify the accuracy of
our calculations in a number of different ways. First, we have chosen a number of linear,
cyclic and branch-cyclic peptides and selected several PSMs that had not extremely small
probability of interest (say, within the 10−8 − 10−6 range). This allowed us to calculate
them via direct Monte Carlo sampling, construct confidence intervals and compare the
variances. For cyclic peptides we have chosen five examples from [15, Table 1], namely
cyclic peptides (10, 20, 40), (10, 20, 40, 80), (10, 20, 40, 80, 160), (10, 20, 40, 80, 160, 320), and
(10, 20, 40, 80, 160, 320, 640). The branch-cyclic example is Surfactin test dataset for the
Dereplicator algorithm described in [14].

We denote p̂MC as the probability estimate calculated via Monte Carlo sampling, p̂IS as
the probability estimate calculated via the proposed algorithm (importance sampling via
MCMC), and p̂DPR as the probability calculated by the MS-DPR algorithm from [14]. Note
that the latter does not provide any accuracy estimate and therefore we were unable to
construct confidence interval for p̂DPR. p̂MC were calculated via N = 50 · 106 simulations,
p̂IS were calculated using the stopping rule (8) with ε = 0.02, and p̂DPR were calculated by
Dereplicator, using default settings.

WABI 2017
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Table 1 Comparison of Monte Carlo, MCMC and MS-DPR approaches: estimates.

Peptide p̂IS p̂MC p̂DP R

PPAEDSQK 4.87 · 10−7 4.20 · 10−7 6.6 · 10−7

GQGDPGSNPNK 4.70 · 10−7 6.40 · 10−7 1.5 · 10−8

HSNAAQTQTGEANR 2.39 · 10−6 2.22 · 10−6 4.9 · 10−8

GEEEPSQGQK 1.03 · 10−6 1.04 · 10−6 3.6 · 10−7

(10, 20, 40) 0.00184 0.00184 0.00197
(10, 20, 40, 80) 7.35 · 10−6 7.34 · 10−6 9.36 · 10−6

(10, 20, 40, 80, 160) 6.76 · 10−9 N/A 4.49 · 10−9

(10, 20, 40, 80, 160, 320) 1.74 · 10−12 N/A 1.56 · 10−12

(10, 20, 40, 80, 160, 320, 640) 4.08 · 10−16 N/A N/A
Surfactin 1.18 · 10−5 1.13 · 10−5 1.01 · 10−5

Table 2 Comparison of Monte Carlo, MCMC and MS-DPR approaches: 95% confidence intervals.

Peptide Conf. interval, p̂IS Conf. interval, p̂MC

PPAEDSQK 4.74 · 10−7 4.99 · 10−7 2.40 · 10−7 6.00 · 10−7

GQGDPGSNPNK 4.53 · 10−7 4.87 · 10−7 4.18 · 10−7 8.62 · 10−7

HSNAAQTQTGEANR 2.30 · 10−6 2.48 · 10−6 1.81 · 10−6 2.63 · 10−6

GEEEPSQGQK 9.96 · 10−7 1.07 · 10−6 7.57 · 10−7 1.32 · 10−6

(10, 20, 40) 1.80 · 10−3 1.88 · 10−3 1.82 · 10−3 1.85 · 10−3

(10, 20, 40, 80) 7.12 · 10−6 7.58 · 10−6 6.60 · 10−6 8.10 · 10−6

(10, 20, 40, 80, 160) 6.4 · 10−9 7.10 · 10−9 N/A N/A
(10, 20, 40, 80, 160, 320) 1.51 · 10−12 1.97 · 10−12 N/A N/A
(10, 20, 40, 80, 160, 320, 640) 3.60 · 10−16 4.55 · 10−16 N/A N/A
Surfactin 1.14 · 10−5 1.22 · 10−5 1.03 · 10−5 1.23 · 10−5

Tables 1 and 2 summarize these results. As can be seen from these tables, the confidence
intervals constructed from p̂IS lie within the confidence intervals for p̂MC and often have
significantly smaller lengths. p̂DPR falls outside the confidence intervals and often is biased
downwards. We must note that this property of p̂DPR could easily lead to false discoveries and
certainly inflates the number of significant PSMs in the applications. Also, the sample size N
of 50 · 106 was not enough to estimate p̂MC for (10, 20, 40, 80, 160), (10, 20, 40, 80, 160, 320),
and (10, 20, 40, 80, 160, 320, 640) and MS-DPR failed to calculate p̂DPR for the last peptide.

In the next series of experiments we study the variance of p̂IS and compare it to that
of p̂MC . In order to do so, we calculate p̂MC using the same number of simulations N as it
was used to calculate p̂IS2. Table 3 shows the reduction of variance of p̂IS compared to the
p̂MC . Overall, it could be observed that the smaller the probability is, the larger does the
difference between the variances of MCMC and Monte Carlo estimators end up being.

Finally, in order to verify the scalability and applicability of the proposed method, the
run of the Dereplicator algorithm was performed on the entirety of the Global Natural
Products Social (GNPS) molecular network [20] database. This allowed us to compare the

2 We have to increase the sample size to obtain observations with desired target score 13 to allow σ̂2
MC

estimation for GQGDPGSNPNK.
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Table 3 Comparison of Monte Carlo and MCMC approaches: variances.

Peptide σ̂2
IS σ̂2

MC σ̂2
MC/σ̂

2
IS Sample Size

PPAEDSQK 2.09 · 10−10 4.94 · 10−7 2358.98 5000000
GQGDPGSNPNK 2.33 · 10−10 1.49 · 10−7 639.49 200000002

HSNAAQTQTGEANR 5.56 · 10−9 2.24 · 10−6 403.23 2800000
GEEEPSQGQK 1.23 · 10−9 7.89 · 10−7 642.19 3800000
(10, 20, 40) 5.47 · 10−4 1.88 · 10−3 3.43 1500000
(10, 20, 40, 80) 9.93 · 10−8 7.60 · 10−6 76.53 7500000
Surfactin 1.15 · 10−7 1.00 · 10−5 86.96 2000000

Table 4 Comparison of p̂IS and p̂DP R on GNPS data. The number of target and decoy database
matches and FDR estimates at different significance levels are shown.

MSDPR MCMC
− log10 p target decoy F̂DR % target decoy F̂DR %
7 762 188 19.78 744 179 19.39
8 619 110 15.08 610 104 14.56
9 505 52 9.33 473 51 9.73
10 443 33 6.93 415 30 6.74
11 393 21 5.07 354 20 5.34
12 354 15 4.06 312 12 3.70
13 322 11 3.30 271 7 2.51
14 293 11 3.61 238 2 0.83
15 264 7 2.58 201 1 0.49
16 238 5 2.05 169 0 0.0
17 211 2 0.93 138 0 0.0
18 188 0 0.0 104 0 0.0
19 157 0 0.0 87 0 0.0
20 139 0 0.0 76 0 0.0

devised algorithm with the MS-DPR estimate used by Dereplicator by default. Table 4
shows an overview of the obtained results. The False Discovery Rate estimate is calculated
in Dereplicator via the target-decoy approach [1]. Table 4 shows that p̂IS yields a smaller
number of significant decoy matches compared to p̂DPR and therefore less FDR. This could
easily be explained by the fact that p̂DPR are biased downwards.

4 Summary

We presented the importance sampling-based estimator that is capable of accurately and
quickly assess the significance of peptide spectrum matches. Given its generic nature, it could
be easily modified to be used with a great number of different score functions, fragmentation
models and amino acid mass distributions. The proposed estimation algorithm has been
integrated into Dereplicator3 and VarQuest4 tools and publicly available as a part of
these packages.

3 http://cab.spbu.ru/software/dereplicator/
4 http://cab.spbu.ru/software/varquest/
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