
Generating Practical Random Hyperbolic Graphs
in Near-Linear Time and with Sub-Linear Memory∗

Manuel Penschuck

Goethe University, Frankfurt, Germany
mpenschuck@ae.cs.uni-frankfurt.de

Abstract
Random graph models, originally conceived to study the structure of networks and the emergence
of their properties [8], have become an indispensable tool for experimental algorithmics. Amongst
them, hyperbolic random graphs form a well-accepted family, yielding realistic complex networks
while being both mathematically and algorithmically tractable. We introduce two generators
MemGen and HyperGen for the Gα,C(n)-model, which distributes n random points within
a hyperbolic plane and produces m = nd̄/2 undirected edges for all point pairs close by; the
expected average degree d̄ and exponent 2α+1 of the power-law degree distribution are controlled
by α>1/2 and C. Both algorithms emit a stream of edges which they do not have to store.
MemGen keeps O(n) items in internal memory and has a time complexity of O(n log logn+m),
which is optimal for networks with an average degree of d̄ = Ω(log logn). For realistic values of
d̄ = o(n/ log1/α(n)), HyperGen reduces the memory footprint to O([n1−αd̄α + logn] logn).

In an experimental evaluation, we compare HyperGen with four generators among which
it is consistently the fastest. For small d̄ = 10 we measure a speed-up of 4.0 compared to the
fastest publicly available generator increasing to 29.6 for d̄ = 1000. On commodity hardware,
HyperGen produces 3.7·108 edges per second for graphs with 106 ≤ m ≤ 1012 and α=1, utilising
less than 600 MB of RAM. We demonstrate nearly linear scalability on an Intel Xeon Phi.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Random hyperbolic graph generator, streaming algorithm

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.26

1 Introduction

Even though most practical algorithms aim for a good performance on real-world data,
artificial benchmarks are crucial for their development. Suited real-world datasets are
typically scarce, do not scale, may exhibit noise or have uncontrollable properties. Tunable
synthetic instances based on random models alleviate these issues. They are indispensable
for systematic experiments allowing to quantify an algorithm’s performance as a function of
controllable parameters. Selecting the right model depends on the use case:

Many real-world networks (e.g., communication or social networks) exhibit basic features,
such as a small diameter, a power-law degree distribution, and a non-vanishing local cluster
coefficient [2, 3, 21, 23]. Amongst suited models, geometric random networks seem most
natural. They explain the high local clustering of social networks1 by embedding the nodes
into a geometric space. Then the distance between any two nodes determines the probability
of an edge between them. While Euclidean space is appropriate for spatial networks (e.g., [13]),

∗ Partially supported by the DFG grant ME 2088/3-2.
1 I.e., a high triangle count expressing the intuition that two friends of a person are likely to acquaint too.

© Manuel Penschuck;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 26; pp. 26:1–26:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Generating Hyperbolic Random Graphs

it distorts complex networks, such as the internet graph, for which hyperbolic embedding
(cf. Section 1.3) performs well [7, 24].

The task of actually generating instances of hyperbolic random graphs has been approached
recently yielding generators that are either fast in practice [27] or optimal in theory [9]. We
target the generation of large instances whose set of nodes2 does not fit into memory. Space
requirements are crucial especially in the context of co-processors with small dedicated memory.
Another application of such a generator is the experimental evaluation of streaming [11, 20]
or external memory algorithms [1, 22]. Since our algorithm is typically faster than the time
it takes to write data to disk, one can connect it to the algorithm under testing without a
round-trip to secondary storage. In such a case, the generator should leave the majority of
memory to the main application in order to allow fast context switches.

1.1 Our contribution
We introduce two related generators MemGen (Section 2) and HyperGen (Section 3) for the
Gα,C(n)-model (Section 1.3) for large instances with n nodes and m = d̄n/2 edges where d̄ is
the expected average degree. Both generators target a streaming setting and are compatible
with the external memory model for practical instances. MemGen requires O(n) internal
memory and has a time complexity of O(n log logn+m), which is optimal for networks with
an average degree of d̄=Ω(log logn). For realistic values of d̄=o(n/ log1/α(n)), HyperGen
reduces the memory footprint to O([n1−αd̄α+logn] logn), where α>1/2 controls the exponent
2α+1 of the result’s power-law degree distribution. In an experimental evaluation (Section 5),
HyperGen consistently the previously fastest generators we are aware of.

In the quest for a smaller memory footprint, we increase the data locality leading to an
easily parallelisable algorithm. While we only explore shared memory parallelism, HyperGen
works in a distributed setting with constant communication.

1.2 Notation
Define [k] := {1, . . . , k} for k ∈ N>0. A graph G = (V,E) has n = |V | sequentially numbered
nodes V = {vi}i∈[n] and m = |E| edges. Unless stated differently, graphs are undirected,
unweighted, and have an average degree of d̄ = 2m/n. Let NG(v) ⊆ V be the neighbourhood
of node v in graph G, i.e. the set of adjacent nodes.

We mainly consider points (r, θ) in polar coordinates where r is the radius (i.e. distance
from the origin) and θ is the polar angle or azimuth. A point with radius r1 is said to be
above a point with radius r2 if r1 > r2 and below if r1 < r2. Let By(z) the ball of radius y
and centre at radius z, i.e. the set of all points with distance at most y from point3 z [12].
We apply standard set operations to balls where \, ∪, and ∩ denote set differences, union
and intersection accordingly.

Let µ(X) denote the probability mass of X. We denote a Binomial distribution over n
items with probability p as B(n, p). Also refer to Appendix A for a summary of definitions.

1.3 The hyperbolic random graph model Gα,C(n)
We consider the well-accepted Gα,C(n) model [12]. It follows the initial zero-temperature
model of Krioukov et al. [16], but removes a redundant curvature parameter by setting ζ=1.

2 Implementations typically use at least 80 byte/node (cf. Section 5.2).
3 We omit the azimuth of z as it is irrelevant in our analysis due to polar symmetry.

M. Penschuck 26:3

R
R/2

Neighbours

Candidates

∆θ(r, r)

Figure 1 Left: The Gα,C(n) model with n=150, α=1, C=−2. The area enclosed by each coloured
lobe corresponds to all points in distance at most R around its highlighted centre. Right: Band
model introduced by NkGen (not to scale). The partial blue lobe indicates the area in which
candidates can be found. The step-wise overestimation for candidate selection is shown in yellow.

I Definition 1 (Gugelmann et al. [12]). Let α > 1/2, n ∈ N>0, and C > −2 logn. The
random graph Gα,C(n) = (V,E) has the following properties (cf. Figure 1):

Each node vi ∈ V = {v1, . . . , vn} is modelled by a random point pi = (ri, θi) in the
hyperbolic plane.4 Its angular coordinate θi is drawn uniformly from [0, 2π] while its
radius 0 ≤ ri < R with R := 2 logn+C is governed by the density function

ρ(r) = α sinh(αr)
cosh(αR)− 1 . (1)

The distance d(pi, pj) between the two points pi and pj is given by

cosh(d(pi, pj)) = cosh(ri) cosh(rj)− sinh(ri) sinh(rj) cos(θi − θj). (2)

Two nodes vi, vj ∈ V are adjacent iff they have a small distance d(pi, pj) < R and i6=j.

Intuitively, the smaller α the more likely are points with small radial components, which are
expected to have a high number of neighbours. The parameter hence controls the skewness
of the resulting power-law degree distribution with an exponent of γ = 2α+1 > 2 [16]. We
assume α = O(1) since real networks typically exhibit 2 ≤ γ ≤ 4 (e.g., [10, 17]). Further,
while with high probability there exists a giant component of linear size for α < 1, networks
with α > 1 have components of sub-linear size [6]. The parameter C controls the average
degree d̄ of the graph which is governed as follows: [12]

E
[
d̄
]

= 2
π

(
α

α− 1/2

)2
e−C/2(1 + o(1)) (3)

1.4 Hyperbolic graph generators
A naïve generator for hyperbolic graphs checks all

(
n
2
)
pairwise distances and emits an edge

for each pair of points close enough. On the one hand, such an approach can be implemented
with constant memory overhead based on a pseudo-random hash function mapping node
ids to coordinates. On the other, it incurs a sequential runtime of Θ(n2) and is hence
prohibitively expensive for large n. Similarly, while it can be fully parallelised yielding a

4 We treat a node vi and its corresponding point pi as equivalent and use the terms interchangeably.
Similarly, the symbols ri and θi always refer to the radius and azimuth of point pi.

SEA 2017

26:4 Generating Hyperbolic Random Graphs

O(1) time computation on a Erew-Pram [14] with p = Θ(n2) processors, such a solution
requires Θ(n2) work and is infeasibly inefficient.

All sub-quadratic algorithms we are aware of rather rely on a two-step approach: For each
node v ∈ V , the generators firstly identify a set of candidates C(v) ⊆ V by some geometric
means (see below). Edges are then generated by computing only the distances between v
and C(v). In order to avoid false negatives, all neighbours N(v) have to be a subset of C(v).
Techniques include:

Looz et al. [26] project all points into the Poincaré disk model which allows neighbourhood
queries based on Euclidean disks. Candidates are selected using a polar quad-tree. The
authors bound the generator’s runtime to O((n3/2 +m) logn) with high probability.
Later, Looz et al. improve the runtime significantly by dropping the angular separation of
the quad-tree [27]. As sketched in Figure 1, their generator (which is the basis of our work
and to which we refer as NkGen5) decomposes the hyperbolic plane into k=Θ(logn)
bands, each covering the radial range [bj , bj+1) where bj = (1 − βj−1)R/(1 − βk) for
j ∈ [k+1] and a tuning parameter β≈0.9. In a preprocessing step, the points are randomly
scattered over the plane by inserting each point (r, θ) into the appropriate band j, where
bj ≤ r < bj+1. The points are then sorted by their angular coordinates independently for
each band.
In order to query the neighbour candidates of a point p=(r, θ) stored in band i, the
algorithm iterates over all bands i ≤ j ≤ k. For each band j, it computes the angular
range Aj = [θ −∆θ(r, bj), θ + ∆θ(r, bj)] where the maximal angular distance ∆θ(r, bj)
between p and any hypothetical point in band j is given by

∆θ(r, b) :=
{
π if r + b < R

acos
[
(cosh(r) cosh(b)− cosh(R))/(sinh(r) sinh(b))

]
otherwise

. (4)

The points within Aj constitute all candidates from band j. Since points are sorted by
their angular coordinates, the bounds of Aj can be identified using two binary searches
in time O(logn). The authors experimentally find a runtime of O(n logn+m).
Bringmann et al. [9] propose the Geometric Inhomogeneous Random Graph model (GIRG)
and show that Gα,C(n) is a special case of GIRG which can be generated with their
sampling algorithm in expected time O(n+m). Their sampling method for hyperbolic
graphs is similar to the quad-tree approach in the sense that it partitions the space
uniformly along the angular axis and exponentially in the radial direction. The resulting
cells roughly correspond to leaves in a quad-tree. However, the algorithm does not execute
fine-grained neighbourhood queries for each node; it rather tests all point pairs of two
related cells in a pessimistic and data-oblivious fashion. Despite its expected linear
runtime, the algorithm seems to suffer from high constants (cf. Section 5). Bläsius et
al. provide an implementation6 to which we refer as GirgGen [5].
Very recently and independently from this work S. Lamm proposed a communication-
agnostic distributed generator RHGen with a partitioning scheme similar to [9], although
with different radial limits [18]. Each band is split into disjoint buckets of equal angular
size. Their number is chosen such that each cell is expected to contain k points, where
k ≈ 4 is a tuning parameter. RHGen allows all processing units to compute the points
within any bucket independently, eliminating the need of communication. The author

5 A reference implementation is included in NetworKit [25], https://networkit.iti.kit.edu/.
6 https://bitbucket.org/HaiZhung/hyperbolic-embedder/overview

https://networkit.iti.kit.edu/
https://bitbucket.org/HaiZhung/hyperbolic-embedder/overview

M. Penschuck 26:5

Algorithm 1: MemGen
Input :Number of nodes n, Radius of bounding circle R, Density α, Spacing β

1 ∆θ(a, b) := π if a+b < R else acos
[
(cosh(a) cosh(b)− cosh(R))/(sinh(a) sinh(b))

]
;

2 noBands← max(2, dβRe);
3 limits← [0, R/2, c+R/2, 2c+R/2, . . . , R−c,R] with c = R/2/(noBands− 1);
4 for i ∈ [1, . . . , n] do
5 r ← random radius from [0, R) with density ρ(r) = α sinh(αr)/(cosh(αR)− 1);
6 b← search band s.t. limits[b] ≤ r < limits[b+ 1];
7 θ ← next non-decreasing uniformly random polar angle;

// In case θ + 2∆θ(r, r) > 2π special treatment is necessary –
cf. text

8 bands [b].addPoint(Point(i, (r, (θ+∆θ(r, r)) mod 2π)));
9 b← max(2, b);

10 bands[b].addRequest(Request(i, [r, r+2∆θ(r,max(r, limits[b+1]))], (r, θ+∆θ(r, r))))
// Main Phase: Generation of Edges

11 foreach u, v ∈ bands[1].points with u < v do
12 emit edge {u.id, v.id};
13 reqsToAbove← [];
14 for b ∈ [2, . . . , noBands] do
15 sort bands [b].points by angle;
16 reqsFromBelow← sorted(reqsToAbove);
17 initialise empty reqsToAbove, candidates;
18 foreach pt ∈ bands[b].points do
19 remove all requests from candidates ending before pt.θ;
20 foreach req ∈ (bands[b].reqs ∪ reqsFromBelow) with req.rangeBegin ≥ pt.θ do
21 insert req into candidates if not existing;
22 insert req into reqsToAbove with updated range;
23 foreach req ∈ candidates do
24 if (req.r, req.id)≤lexico(pt.r, pt.id) ∧ dist(pt, req)≤R then
25 emit edge {pt.id, req.id};

shows an expected sequential runtime of O(n+m), bounds the generation time of the
distributed grid structure to O(P logn+ n/P), where P is the number of processors, and
empirically finds a time-complexity of O(n+m

P + P logn) for the parallel algorithm.

2 MemGen: a fast algorithm with linear memory usage

To simplify the description of HyperGen and present its main design, we start with a
sequential version MemGen (cf. Alg. 1) requiring O(n) memory. Most arguments regard-
ing the runtime of this algorithm will later translate into the space complexity bound of
HyperGen.

Geometrically, MemGen employs a band partitioning similar to the one introduced by
NkGen and illustrated in Figure 1. However, we alter their contents and access patterns,
and use different radial band limits: all bands except the lowest one have a constant
height x = R/2k, where k+1 is the number of bands and x = Θ(1) a tuning parameter

SEA 2017

26:6 Generating Hyperbolic Random Graphs

(typically x ∈ [1, 2]). Band 1 ≤ i ≤ k+1 covers a radial range of [li, li+1) with l1 = 0 and
li = [1 + (i−2)/k] ·R/2 for some k=Θ(R). It is not necessary to further divide the lowest
band since all points with radius r ≤ R/2 are forming a clique (cf. Figure 1) and can be
handled without vicinity tests.

Band b stores all points contained. For each point p within b or below it, the band
additionally maintains a so-called request reqb(p), storing the coordinates of p itself as well as
the angular range in which neighbours of p can lie in band b. Such requests effectively reduce
random accesses during the candidate selection and carry pre-computed values repeatedly
required for the distance calculations (cf. Section 4).

In fact, the algorithm chooses a request-centric view and randomly draws the beginnings
of each request range, computes its radius-dependent length, and then places a point at its
centre.7 We draw the polar components as sorted random numbers using the online technique
detailed in [4] requiring constant time per element. The generation process may yield requests
with a range [a, b] with b > 2π. To take the azimuthal 2π-period of the hyperbolic disk into
account, we split such queries into two separate ranges [0, b−2π] and [a, 2π] respectively and
mark the latter as a copy. Analogously, points with θ > 2π are remapped to θ − 2π. After
the generation phase, the points are sorted by their polar coordinate.

In the main phase, we iterate over the bands starting from the centre for which we simply
emit the clique of all nodes contained. For all higher bands, we scan through the points and
requests in lock-step and keep a separate list of candidates C(·). Since both streams are
sorted, we can efficiently update C(v) when moving from one point to the next.

Each time we reach a new unmarked request reqj(p), we propagate it to the next higher
band j+1 by adding reqj+1(p) to the appropriate insertion buffer. Here, it may be again
necessary to split a request due to the 2π-periodicity. Further observe that the range of
a request may shrink during the propagation. As a consequence, the insertion buffer has
to be sorted when switching to band j+1 (cf. Section 2.2) before it can be merged with
the requests generated in the preprocessing phase. In a last step, we compute the distance
between a point and all candidates in order to emit the edges.

The linear time generators we are aware of use discrete buckets along the angular axis
to avoid sorting [9, 18]. However, preliminary experiments with MemGen suggested that
a more involved candidate selection process is faster in practice (especially in the context
of vectorisation) and does incur only small theoretical penalties (cf. Theorem 7). Thus, we
maintain a data structure which keeps active candidates in a continuous array to facilitate
vectorisation efficiently (cf. Section 4). The array has an arbitrary order allowing to implement
deletions as moves of the array’s back. The data structure is further augmented with a search
tree to find the position of a candidate using its point id as key. We also keep a priority
queue with range-ends to quickly find and remove obsolete candidates.

2.1 Candidate selection is at worst a constant approximation
In this section, we establish all necessary facts to show that the candidate selection incurs a
non-substantial overhead. In Lemma 2, we will see that most points issue only a constant
number of requests.

Subsequently, we derive a high-probability bound on the number of candidates processed
for any node in two steps: Observe that a node has to process all requests from nodes below.
Lemma 3 bounds their number in terms of n and average degree d̄. Further, Lemma 4 states

7 While this is an arbitrary choice for MemGen, it will become a crucial ingredient for HyperGen.

M. Penschuck 26:7

that MemGen overestimates the probability mass during candidate selection by at most a
constant factor. Therefore, the bound on the number of neighbours from below carries over
to the number of candidates processed.

I Lemma 2. The expected number of bands E [Bi] a random node vi sends requests to is
E [Bi] = 1 + 1−e−αR/2

eα/2k−1 = O(1) where k+1 = Θ(R) is the number of bands used by MemGen.

Proof. Each point with radius r sends requests to its own band j with bj≤r<bj+1 as well as
to all above. Consequently, the probability of a random point pi contributing to band j is
governed by the mass function µ(Bbj+1(0)) as given by Eq. (21). Using indicator variables
for the reception of a request by band j, we obtain the claimed expectation value:

E [Bi] =
k∑
j=0

µ(Bbj+1(0)) =
k∑
j=0

eα[R2 (1+j/k)−R] = e−αR/2
k∑
j=0

(
eα

R
2k

)j
= 1 + 1− e−αR/2

eα/2k − 1
.J

I Lemma 3. Let Nj be the number of neighbours the point pj=(rj , θj) has from be-
low, i.e. neighbours with smaller radius. With high probability, there exist O(n/ log2 n)
points with Nj = O(n1−αd̄α log(n)) while the remainder of points with rj > R/2 has
Nj = O(n1−2α log2α(n)d̄2α) neighbours.

Proof. Let X1, . . . , Xn be indicator variables with Xi=1 if p and pi are adjacent. Due to
radial symmetry we directly obtain the expectation value of Xi conditioned on the radius pi:

E [Xi | ri= x] = P [Xi=1 | ri= x] =
{

1 if x < R− r
∆θ(x, r)/π otherwise

(5)

We remove the conditional using the Law of Total Expectation and equations (20) and (21):

E [Xi] =
R−r∫
0

ρ(x)dx + 1
π

r∫
R−r

ρ(x)∆θ(x,R)dx (6)

=
[
e−αr−e−αR

]
(1+o(1)) + 1

π

α

α− 1
2
e−αr

[
e(α− 1

2)(2r−R) − 1
]

(1±O(e−r)) (7)

Fix the radius rT = R− 2
α log logn with R/2 < rT (wlog) and consider three cases for r:

We ignore all points r ≤ R/2 as they belong to the central clique and are irrelevant here.
Observe that with high probability there exist O(n/ log2(n)) points below rT . Exploiting
the monotonicity of Eq. 7 in r, we maximise it by setting r = R/2, which cancels out
the second term. Linearity of the expectation value, substitution of R = 2 log(n) + C,
and Eq. (3) yield E [

∑
iXi] = O

[
n
(
d̄/n

)α]. Then, Chernoff’s bound gives
∑
iXi =

O(n1−αd̄α log(n)) with high probability.
For all points above rT , set r = rT yielding

∑
iXi = O(n1−2α log2α(n)d̄2α) with high

probability analogously. J

I Lemma 4. Consider a query point with radius r and a band with boundaries [a, b).
MemGen’s candidate selection overestimates the probability mass of the actual query range
by a factor of OE(b−a, α) where OE(x, α) := α−1/2

α
1−eαx

1−e(α−1/2)x .

Proof. If r < R−b, the requesting point covers the band completely which renders the
candidate selection process optimal. We now consider r ≥ R−a and omit the fringe case of
R−b < r < R−a which follows analogously (and by continuity between the two other cases).

SEA 2017

26:8 Generating Hyperbolic Random Graphs

Then, the probability mass µQ of the intersection of the actual query circle BR(r) with the
band Bb(0) \Ba(0) is given by

µQ := µ [(Bb(0)\Ba(0)) ∩BR(r)] (8)

= µ
[(
BR(0) ∩BR(r)

)
\Ba(0)

]
− µ

[(
BR(0) ∩BR(r)

)
\Bb(0)

]
(9)

(22)= 2αe− r2
π(α− 1

2)

[(
1+

α− 1
2

α+ 1
2
e−2αb

)
e(α− 1

2)(b−R)+
(

1+
α− 1

2
α+ 1

2
e−2αa

)
e(α− 1

2)(a−R)
]

(1+ε) (10)

= 2
π
e−

r
2−(α− 1

2)R
[

α

α− 1
2

(
e(α− 1

2)b − e(α− 1
2)a
)

+O
(
e−(α− 1

2)a
)]
, (11)

where ε substitutes the error term expanded in the last line (cf. Figure 1, blue cover of a
band).

MemGen overestimates the actual query range at the border and covers the mass µH
(see Figure 1, yellow cover of a band):

µH := 1
π

∆θ(r, a)
b∫
a

ρ(y)dy = 1
π
· 2e

R−a−r
2 (1 +O(eR−a−r)) · cosh(αb)− cosh(αa)

cosh(αR)− 1 (12)

= 2
π
e
R−a−r

2 (1 +O(eR−a−r)) ·
[
eα(b−R) − eα(a−R)

]
(1± o(1)) (13)

= 2
π
e−

r
2−(α− 1

2)R
[
eαb−a/2 − e(α− 1

2)a
]
·
(

1±O
(
e(1−α)(R−a)−r

))
(14)

The claim follows by the division of both mass functions µH/µQ. J

I Corollary 5. Given a constant band height, i.e. b−a = O(1), Lemma 4 implies a constant
overestimation for any α>1/2. In case of b−a = 1, we have OE(1, α) ≤

√
e ≈ 1.64 ∀α>1/2.

2.2 Nearly sorted points/request allow for faster sorting
MemGen’s scheme to update the candidate list requires the input streams of requests and
points to be increasing in their angular coordinate. Since we are not aware of a technique
that directly yields both in an ordered fashion, we have to sort them. Using naïve methods
this would amount to O(n log(n)) time (cf. Lemma 2). Since the number m = nd̄/2 of edges
generated constitutes a lower bound on the time complexity of any generator, this approach
is optimal for d̄ = Ω(logn).

Observe, however, that the points are calculated based on ordered requests and are
therefore already nearly sorted. Similarly, requests have to be sorted after being propagated
from ordered streams. In both cases, and with high probability, the change of rank of each
item is bounded to some ∆ = o(n).8 Such a ∆-ordered sequence can be sorted in time
O(n log ∆), e.g. using a sliding window coupled with a priority queue of size ∆.

The following Lemma gives a rough bound on the time complexity which suffices to show
that MemGen is optimal for d̄ = Ω(log log(n)) with high probability:

I Lemma 6. Sorting all points initially and requests after their propagation requires
O
(
nmin[log(d̄ logn), logn]

)
time.

8 Split requests and remapped points are sorted separately and merged in linear time.

M. Penschuck 26:9

Proof. It suffices to bound the claim for requests since every point contributes at least one
request and has a shorter lifetime. As stated in the introduction of the Lemma, we can rely
on classical sorting in time O(n logn) for the case of d̄ = Ω(logn). Thus assume d̄ = o(logn).

The proof consists then of two steps: We pick a radius rT , s.t. with high probability there
are only O(n/ log2(n)) points below rT . Since each point issues at most O(logn) requests,
we can classically sort their O(n/ log(n)) tokens in time O(n). For the remaining points, we
bound the number of overlapping requests from above and thereby also the maximal change
in rank that can occur during sorting.

The number nT of points below radius rT is governed by the Binomial distribution
B(n,BrT (0)) with BrT (0) = 1/ log2(n). Solving for rT yields rT = R− 2

α log logn and hence
nT = O[nBrT (0)] with high probability.

We now tend to the requests above rT and exploit the two following facts:
The number of bands above rT is constant since rT /R→ 1 as n→∞.
During sorting only those requests that overlap can change their relative position. There-
fore, we fix θ ∈ [0, 2π) and let nθ be the number of requests that include θ.

To maximise nθ, assume without loss of generality that all remaining requests lie at
radius rT . Then, nθ is binomially distributed around its mean nµ with9

nµ = n
∆θ(rT , rT)

π
= 2ne−R2 + 2

α log logn = O
(
d̄ log

2
α (n)

)
. (15)

With high probability only O
(
d̄ log

2
α (n)

)
requests overlap due to Chernoff’s inequality.

We thus can sort them in time O(n log(d̄ logn)). J

I Theorem 7. MemGen requires O(n) memory and has a runtime of O(n log logn + m)
with high probability.

Proof. The space complexity directly follows from Alg. 1: each of the n points is stored in
exactly one band, yields at most two requests, and requires O(1) space in the candidate list.
During the main phase, there further exists only one insertions buffer at a time to which a
point may contribute O(1) items. M

We bound MemGen’s time complexity by considering each component individually:
The preprocessing (until line 10) requires O(1) time per point making it non-substantial.
Handling of cliques is trivially bounded by O(m) since every iteration emits an edge.
The sorting steps (lines 15 and 16) require O(n log(d̄ logn)) = O(n log d̄ + n log logn)
time in total with high probability according to Lemma 6.10
By applying Lemma 3 and Cor. 5, the candidate selection requires O(n log d̄) time with
high probability.
All distance calculations require in total O(m) time since Cor. 5 bounds the fraction of
computations that do not yield an edge to O(1). J

3 HyperGen: reducing MemGen’s memory footprint

In the analysis of MemGen, we repeatedly exploited the facts that requests are generated
in increasing angular order and the majority affects only a small fraction of the hyperbolic

9 It can be improved to O(d̄ log logn) by replacing the assumption that all requests lay at rT with an
appropriate integral; we omit this non-substantial calculation in favour of simplicity.

10We consider only the first min-term: In case the second term becomes smaller, the theorem’s claim is
dominated by the O(m) where m = nd̄/2.

SEA 2017

26:10 Generating Hyperbolic Random Graphs

1
2

3
4

5
6

7
8

9

10

11

0
3

π

1
3

π
2
3

π

3
3

π

4
3

π
5
3

π

Clique

Global

Stream

main phase of
of segment

endgame of
segment 1

Figure 2 Left: HyperGen streams through each band consuming batches whose size is limited
by two factors: either due to a polar limit imposed by the underlying band (solid blue line) or
due to the limited number of requests a batch is allowed to have (dotted blue line). We traverse
the indicated tree in depth-first order. Right: The hyperbolic plane is partitioned along the polar
axis into p segments of equal size. Radially, there are two groups: the lower global bands which
are preprocessed and kept in memory, and the upper streaming bands. In the main phase, each
execution thread streams through its segment towards increasing polar angles (red arrow). Requests
overlapping into the next segment are then completed in the endgame.

plane. This is also the foundation of HyperGen, which strives to additionally reduce the
memory requirements of the generator. In order to do so, we do not draw all points globally
and insert them into their bands, but rather reverse the scheme.

HyperGen first computes how many points go into each band. It is then able to draw
points for each band independently. Due to the radial distribution function ρ(r), band i with
boundaries [li, li+1) carries a probability mass of µi = µ[Bli+1(0) \Bli(0)]. Consequently, the
numbers N = (n1, . . . , nk) of points per band with n =

∑
i ni are governed by a multinomial

distribution with µi as event probabilities. We sample N and build for each band i a stream
Si(ni, si) that outputs exactly ni requests with monotonously increasing angles as detailed in
Section 2. Storing the seed value si used to initialise the underlying pseudo-random number
generator enables HyperGen to replay the stream from the beginning.

Analogous to MemGen, each band maintains such a request stream Si, the current
candidates, and a small list of recently produced points. The generator starts with the
innermost band i = 1 (cf. optimisation in Section 3.1) and draws a batch of at most c requests
from its stream Si, computes the positions of their corresponding points, and finally sorts
the latter by their angle. Let θL be the beginning of the last request generated (θL=2π if
the batch is empty). We merge the newly generated points with those remaining from the
band’s last batch, update the set of candidates, and match points against them as described
for MemGen. Edges produced are pushed into the output stream.

Before we continue in the current band i, we first process all higher bands, hence limiting
the amount of requests in memory. HyperGen propagates the recently generated requests
to the band i+1. Observe that the request of a point (r, θ) is always centred around θ but
its range shrinks as it is moved to higher bands. As a direct consequence, the higher range is
completely enclosed by the lower one and no future request produced for band i will ever
start before θL. Therefore, we recurse to band i+1 but limit processing there to points with
θ < θL. In effect, HyperGen performs a depth-first traversal of the recursion tree illustrated
in Figure 2 in which every node corresponds to a batch.

Due to the processing limit imposed on higher bands, we make sure they have the same
information they would receive in MemGen. One subtle difference, however, concerns the
fact that MemGen splits requests and remaps points overlapping the 2π threshold to take
their angular periodicity into account. This is not possible in HyperGen since overlaps in
outer bands are only detectable quite late in a run.

M. Penschuck 26:11

We resolve this issue by ignoring it at first, i.e. we perform the main computation phase
exactly as described above. If there are still pending candidates or points after its completion,
we restart the request streams to handle the so-called endgame. During endgame, HyperGen
executes the same algorithm as before but only emits edges for pairs in which either the
point or the request originate from the main phase. Therefore, it can be stopped as soon as
all such old points and candidates have been processed. A single rewind suffices and thus
does not affect the asymptotic runtime since a request has a length of at most 2π rad and a
point can only be moved π rad in forward direction.

I Theorem 8. For c=O(1) HyperGen requires O([n1−αd̄α+ logn] logn) memory with high
probability, where d̄ is the expected average degree and n the number of nodes.

Proof. Each of the k = Θ(logn) bands requires auxiliary data structures of constant size.
Regarding the data contained, it again suffices to show the result for requests (cf. proof of
Lemma 6). The number of points NC with radius below R/2 is governed by a binomial
distribution B(n, µ(BR/2(0))). Thus, with high probability NC = O(n1−αd̄α + logn) where
the second term ensures concentration for small (d̄/n)α. Each such point contributes requests
to k = O(logn) bands; multiplication yields the claim.

According to Lemma 3 and Cor. 5 and for any fixed θ, there are with high probability
O(n1−αd̄α logn) points with radius r ≥ R/2 that have at least one request including θ. By
Lemma 2, they contribute to O(1) bands on average and thus are covered by the claim. J

I Corollary 9. In the external memory model with M = Ω([1 + n1−αd̄α] logn), HyperGen
only triggers I/Os to write out the resulting m edges in O(scan(m)) I/Os.

3.1 Accelerating the Endgame
A runtime/memory trade-off can be implemented to improve the runtime (especially in the
context of the parallel variant). Rather than starting the streaming approach introduced
above, we compute all bands with radii at most rG and store them as in MemGen in the
so-called global phase. This allows us to propagate split requests to the streaming bands
which in turn allows us to stop the endgame earlier.

Observe that a request of a point (rG, θ) has a length of at most 2∆θ(rG, rG). To restrict
the endgame to a fraction 1/f of the hyperbolic plane, we solve 2∆θ(rG, rG) = 2π/f for rG.
The number nG(f) of points generated in the global phase, which have to be kept in internal
memory, is thus binomially distributed around the mean of

E [nG(f)] = nµ(BrG(0)) = n

(
d̄f

2n

)α(
α− 1

2
α

)2α

= O
(
n1−αd̄αfα

)
. (16)

3.2 Parallelism
Similarly to NkGen, HyperGen can easily be parallelised by decomposing the hyperbolic
plane into p segments of equal size along the polar axis. As shown in Figure 2, we use a
global phase with f ≥ p to handle the nG requests spanning more than one segment. We
enqueue a copy of each such request into all segments it affects. For realistic settings, it
suffices to execute this phase sequentially; however, parallelism can be applied as in NkGen’s
implementation. The number of points in each segment (ν1, . . . , νp) with n− nG =

∑
i νi is

then sampled from a multinomial distribution in which each event is equally likely. Based on
this distribution, each band continues independently as described in the original formulation

SEA 2017

26:12 Generating Hyperbolic Random Graphs

of HyperGen. In the endgame, each segment retrieves the seed values of its successor’s
pseudo-random number generators and replays its streams.

In a distributed scenario the seed values can be computed using a pseudo-random hash
function mapping the segment id to a pseudo-random seed value. Further, the initial
distribution as well as the fast global phase can be computed repeatedly by each compute
node, yielding constant communication.

4 Implementation

The prototypical implementation is available at https://github.com/manpen/hypergen/.

4.1 Adjacency tests without trigonometric functions
In a preliminary study we found that NkGen’s runtime is dominated by trigonometric
computations during the calculation of distances between points and their neighbour candid-
ates. We approach this issue by introducing a new pre-computing scheme inspired by the
usage of the Poincaré disk model in [26]. We project the random points into the unit disk
causing additional work per point but simplifying all further distance computation. Thus,
the speed-up increases with the average degree.

Our implementation applies the transform only to the distance calculations and does
not change the candidate selection process. Let p=(rp, θp) and q=(rq, θq) be two points in
the hyperbolic space and p′ = (cdm(rp), θp) and q′ = (cdm(rq), θq) their counterparts in the
Poincaré disk model, where cdm(r) := [(1− r2)/(1 + r2)]1/2. Then p and q are adjacent if

R > d(p′, q′) = acosh
(

1 + 2 ||q − p||2

(1− ||p||2)(1− ||q||2)

)
(17)

⇔ cosh(R)− 1
2 >

||q − p||2

(1− ||p||2)(1− ||q||2) = (xp′ − xq′)2 + (yp′ − yq′)2

(1− r2
q′)(1− r2

q′)
(18)

=
(
(xp′ − xq′)2 + (yp′ − yq′)2) · γ(rp′) · γ(rq′), (19)

where xp′=rp′ sin(θp) and yp′=rp′ cos(θp) are the Cartesian coordinates of point p′ (analog-
ously for q′). We reduce a distance computation to three additions and four multiplications by
pre-computing xp′ , yp′ and γ(rp′) := 1/(1− r2

p′) for each point. The resulting expression can
be vectorised effectively and even allows to partially fuse operations (cf. FMA instructions).

Our implementation uses explicit vectorisation11 only during the distance computation.
For graphs with small average degree, a speed-up may be possible by vectorising per-point
computations such as the random number generation and geometric transformations.

4.2 Optimising NkGen for streaming
In addition to the default implementation of NkGen, we study a variant NkGenOpt to
which we apply the following optimisations:12

11Based on libVC – SIMD Vector Classes for C++ [15], https://github.com/VcDevel/Vc.
12 NkGen originally generates an adjacency-list-like internal-memory data-structure using the NetworKIT’s

GraphBuilder module. This limits the graph sizes and explains NkGen optimisation for smaller graphs.
Further, the removal of the GraphBuilder in this work shifts the implementation’s balance and leads to
the large optimisation potential demonstrated. Porting the optimisations back to NetworKIT showed
insignificant changes for typical instances which could be likely solved with an optimised GraphBuilder.

https://github.com/manpen/hypergen/
https://github.com/VcDevel/Vc

M. Penschuck 26:13

It avoids recalculations similar to Section 4.1, but does not rely on the Poincaré transform.
In NkGen’s case all additional data has to be kept in memory amounting to roughly
32 bytes per points. We expect that this increase is only significant for very sparse graphs
as NetworKit keeps the whole adjacency list in RAM.
The number of binary searches as well as their range13 is reduced. Further, the amount of
data copied is significantly decreased also resulting in less (de-)allocation operations. This
optimisation roughly compensates the increased footprint due to the pre-computations.
We removed several checks which are not required for the restricted case of GC,α(n).

HyperGen and NkGenOpt are verified against NkGen over a wide range of parameters.
Here, we observed only acceptable numerical discrepancies for large graphs affecting less than
one edge out of 105, caused by the different implementations of the distance computation.

5 Experimental evaluation

In this section, we compare six configurations: HyperGen on CPU / Xeon Phi (cf. Section 3),
NkGen [27], NkGenOpt (cf. Section 4.2), RHGen [18], and GirgGen [5]. They are
implemented in C++ and built as release versions using the same compiler. As an exception,
HyperGen has to use a hardware-specific compiler, links against Intel’s TBB malloc_proxy,
but otherwise has the same code basis as the CPU version.

To fully exploit HyperGen’s on-the-fly edge generation, none of the implementations
writes the edge list into memory. We rather simulate a very simplistic streaming algorithm
which consumes the edge stream and computes a fingerprint by summing all node indices
contained.14 This choice enforces that the generators have to compute and forward every edge
but does not impose memory restrictions. With the exception of GirgGen, all generators
support parallelism and are configured to use all available hardware threads. RHGen
employs a multi-process design using MPI allowing several compute nodes, while HyperGen,
NkGen and NkGenOpt use lightweight threads based on OpenMP.

The runtime benchmarks were conducted on one of the following systems:
Indicated by (Phi): Intel Xeon Phi 5120D (60 cores, 240 threads, 1.05GHz), 8 GB GDDR5
RAM Linux 2.6.38, ICC 17.0.0, Intel TBB malloc_proxy
Otherwise: Intel Xeon CPU E5-2630 v3 (8 cores, 16 threads, 2.40GHz) with AVX2/SSE4.2
support for 4-way double-precision vectorisation, 64 GB 2133 MHz RAM, Linux 4.8.1,
GCC 6.2.1, VC (8. Dec. 2016), MPICH 3.2-7

The number of repetitions per data point (with different random seeds) is denoted by S.
All plots show the median of repeated measurements and errorbars corresponding to the
unbiased estimation of the standard deviation. Due to its large runtime GirgGen typically
only includes one measurement per data point.

5.1 Runtime
We study the generators’ runtimes for a wide range of graph sizes. For each run, we fix
the number of nodes 105 ≤ n ≤ 109 as well as the average target degree d̄ ∈ {10, 1000},
which we consider as lower and upper limits of realistic inputs [3, 19, 21, 23]. In order

13By replacing ∆θ(r, bi) by ∆θ(r, r) when searching candidates for point (r, θ) in band i with bi ≤ r < bi+1.
14We removed the appropriate memory allocations and accesses from NkGen, RHGen, and GirgGen,

and added the streaming simulation. The patches are included in our repository.

SEA 2017

26:14 Generating Hyperbolic Random Graphs

108 109 1010 1011 1012

Number m of edges

100

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen
HyperGen(Phi)

101 102 103

Average degree d̄

100

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Nodes: 224, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

Figure 3 Runtime/edge generated for α=1 (power-law exp. γ=3) as a function of n and d̄. S=5.

to achieve compatible results, all implementations use values of R derived with NkGen’s
getTargetRadius-method. In case of HyperGen, we use two segments per thread to
balance load for large average degrees. For RHGen we chose an expected bucket size of four
which resulted in the best performance in preliminary tests.

As shown in Figures 3 and 6 (Appendix) and Table 1 (Appendix), HyperGen is
consistently the fastest generator, followed by NkGenOpt which outperforms NkGen.
GirgGen is always the slowest. If we assume perfect parallelisability and divide GirgGen’s
walltime by the number of cores, it is on par with NkGen for small degrees but remains up
to one order of magnitude slower for d̄ = 1000. For d̄ = 10 NkGen outperforms RHGen,
while for d̄ = 1000 and α = 1 the opposite is true.

All generators but HyperGen (Phi) exhibit an almost constant computation time per
edge for large n. The improvements of HyperGen (Phi) towards larger n can be attributed
to the very high number of threads (p = 240) which incur more overhead compared to runs
performed on a CPU. This overhead is amortised only for high values of n.

Based on Figure 6 (Appendix), we measure a speed-up of 4.0 for d̄=10 and 29.6 for
d̄=1000 when comparing HyperGen to NkGen for n ≥ 108 and α = 1. Similar results for
smaller n are included in Table 1 (Appendix). On (Phi), HyperGen is 2.3 times faster
(d̄=10) compared to the execution on the more modern CPU-based reference system. The
speed-up reduces to 1.2 for d̄=1000 which seems to be caused by a smaller cache per thread.

When using HyperGen to test a multi-pass streaming algorithm, it is virtually always
faster to repeatedly regenerate the graph than to buffer it in external memory.

5.2 Memory consumption

The memory consumption is measured for the same parameter settings as above. We consider
the maximal resident set size (i.e. the peak allocation of the generator) as reported by the
operating system. While all implementations seem to have potential for further savings,
Figures 4 and 7 (Appendix) show a clear trend: With the exception of HyperGen, all
generators seem to converge to a linear growth for large n requiring ≈ 80 byte per node.
RHGen exhibits higher constants which may be partially caused by overheads due to its MPI
architecture spawning independent processes rather than lightweight threads and preventing
cheap shared-memory utilisation.

Consistent with our analysis, HyperGen exhibits a sub-linear footprint rendering it
orders of magnitude cheaper for large n. As the number n of nodes increases (and hence R

M. Penschuck 26:15

105 106 107 108 109

Number n of nodes

101

102

103

104

105

M
ax

.
R
es
id
en
t
Se
t
Si
ze

[M
iB
]

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−1

100

101

102

103

M
ax

.
R
es
.
Se
t
Si
ze

[B
]p

er
no

de

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

Figure 4 Maximal memory allocated during execution as measured by time for α = 1.

0 50 100 150 200 250
Number p of threads

0

10

20

30

40

50

60

70

80

Sp
ee
d-
up

ov
er

se
qu

en
tia

le
xe
cu
tio

n

HyperGen(Phi)

Figure 5 Strong scaling of HyperGen on (Phi) for a graph with n=108 and d̄ = 10. S = 8.
Each vertical division marks a new level of HyperThreading.

for fixed d̄), more points lie in the outer bands. Thus, a smaller fraction of points has to be
handled (and stored) during the global phase. For the same reason, the memory footprint
decreases with increasing α. To support Theorem 8 and the analysis in Section 3.1, we
carried out additional runs up to n=1011 whose memory footprint is well within the noise
observed for n=108. We do not include measurements for (Phi) since the memory allocation
scheme adopted for the high number of threads does not yield meaningful set sizes.

5.3 Scalability
We measure HyperGen’s scalability using strong scaling experiments on (Phi). This
processor features 60 physical cores each offering four virtual threads (HyperThreading).
While fixing the graph instance to n=108 and d̄ = 10, we record the runtime for an increasing
number p of threads. As illustrated in Figure 5, the implementation exhibits a nearly linear
speed-up of 43.0±1.5 when utilising p = 58 threads. Surpassing this point, the computational
power provided by the hardware does not scale linearly any more. Thus, the additional
speed-up is less pronounced peaking at 71.4± 6 for p = 240.

Acknowledgments. The author thanks Ulrich Meyer, Kamil René König, Moritz von Looz
and Alexander Schickedanz for valuable discussions and suggestions, Sebastian Lamm for
providing the code and support for RHGen, Ivan Kisel and Egor Ovcharenko for their help

SEA 2017

26:16 Generating Hyperbolic Random Graphs

with the Xeon Phi, as well as the anonymous reviewers for their insightful comments and
recommendations.

References
1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9), pages 1116–1127, 1988.
2 Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. CoRR,

cond-mat/0106096, 2001. doi:10.1103/RevModPhys.74.47.
3 Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. Four

degrees of separation. In Web Science 2012, WebSci’12, Evanston, IL, USA – June 22-24,
2012, pages 33–42, 2012. doi:10.1145/2380718.2380723.

4 Jon Louis Bentley and James B. Saxe. Generating sorted lists of random numbers. ACM
Trans. Math. Softw., 6(3):359–364, 1980. doi:10.1145/355900.355907.

5 Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient embedding
of scale-free graphs in the hyperbolic plane. In 24th Annual European Symposium on
Algorithms, ESA 2016, Aarhus, Denmark, 2016. doi:10.4230/LIPIcs.ESA.2016.16.

6 Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. On the giant component of random
hyperbolic graphs, pages 425–429. Scuola Normale Superiore, Pisa, 2013. doi:10.1007/
978-88-7642-475-5_68.

7 Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet
with hyperbolic mapping. Nature Communications, Sep 2010. doi:10.1038/ncomms1063.

8 Béla Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 2 edition, 2001. doi:10.1017/CBO9780511814068.

9 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random
graphs. CoRR, abs/1511.00576, 2015. URL: http://arxiv.org/abs/1511.00576.

10 Sergei N Dorogovtsev and José FF Mendes. Evolution of networks: From biological nets to
the Internet and WWW. OUP Oxford, 2013.

11 Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi, editors. Data Stream Man-
agement – Processing High-Speed Data Streams. Data-Centric Systems and Applications.
Springer, 2016. doi:10.1007/978-3-540-28608-0.

12 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs:
Degree sequence and clustering – (extended abstract). In Automata, Languages, and Pro-
gramming – 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012,
Proceedings, Part II, pages 573–585, 2012. doi:10.1007/978-3-642-31585-5_51.

13 Piyush Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Trans. Inform-
ation Theory, 46(2):388–404, 2000. doi:10.1109/18.825799.

14 Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
15 Matthias Kretz. Extending C++ for explicit data-parallel programming via SIMD vector

types. PhD thesis, Goethe University Frankfurt am Main, 2015.
16 Dmitri V. Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián

Boguñá. Hyperbolic geometry of complex networks. Phys. Rev. E, 82:036106, Sep 2010.
doi:10.1103/PhysRevE.82.036106.

17 Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution of online
social networks. In Proceedings of the Twelfth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23, 2006, pages
611–617, 2006. doi:10.1145/1150402.1150476.

18 Sebastian Lamm. Communication efficient algorithms for generating massive networks.
Master’s thesis, Karlsruhe Institute of Technology, 2017. doi:10.5445/IR/1000068617.

19 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1145/2380718.2380723
http://dx.doi.org/10.1145/355900.355907
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.16
http://dx.doi.org/10.1007/978-88-7642-475-5_68
http://dx.doi.org/10.1007/978-88-7642-475-5_68
http://dx.doi.org/10.1038/ncomms1063
http://dx.doi.org/10.1017/CBO9780511814068
http://arxiv.org/abs/1511.00576
http://dx.doi.org/10.1007/978-3-540-28608-0
http://dx.doi.org/10.1007/978-3-642-31585-5_51
http://dx.doi.org/10.1109/18.825799
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1145/1150402.1150476
http://dx.doi.org/10.5445/IR/1000068617
http://snap.stanford.edu/data

M. Penschuck 26:17

20 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20, 2014.
doi:10.1145/2627692.2627694.

21 Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. Graph structure
in the web – revisited: a trick of the heavy tail. In 23rd International World Wide Web
Conference, WWW’14, Seoul, Republic of Korea, April 7-11, 2014, Companion Volume,
pages 427–432, 2014. doi:10.1145/2567948.2576928.

22 Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for Memory Hierarch-
ies, Advanced Lectures [Dagstuhl Research Seminar, March 10-14, 2002], volume 2625 of
Lecture Notes in Computer Science. Springer, 2003.

23 Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy J. Lin. Information network
or social network?: the structure of the twitter follow graph. In 23rd International World
Wide Web Conference, Seoul, Republic of Korea, 2014. doi:10.1145/2567948.2576939.

24 Yuval Shavitt and Tomer Tankel. Hyperbolic embedding of internet graph for distance
estimation and overlay construction. IEEE/ACM Trans. Netw., 16(1):25–36, 2008. doi:
10.1145/1373452.1373455.

25 Christian Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool suite for
large-scale complex network analysis. Network Science, 4(4):508–530, 2016. doi:10.1017/
nws.2016.20.

26 Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating random hyper-
bolic graphs in subquadratic time. In Algorithms and Computation – 26th International
Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 467–
478, 2015. doi:10.1007/978-3-662-48971-0_40.

27 Moritz von Looz, Mustafa Safa Özdayi, Sören Laue, and Henning Meyerhenke. Generating
massive complex networks with hyperbolic geometry faster in practice. In 2016 IEEE High
Performance Extreme Computing Conference, HPEC 2016, Waltham, MA, USA, Septem-
ber 13-15, 2016, pages 1–6, 2016. doi:10.1109/HPEC.2016.7761644.

SEA 2017

http://dx.doi.org/10.1145/2627692.2627694
http://dx.doi.org/10.1145/2567948.2576928
http://dx.doi.org/10.1145/2567948.2576939
http://dx.doi.org/10.1145/1373452.1373455
http://dx.doi.org/10.1145/1373452.1373455
http://dx.doi.org/10.1017/nws.2016.20
http://dx.doi.org/10.1017/nws.2016.20
http://dx.doi.org/10.1007/978-3-662-48971-0_40
http://dx.doi.org/10.1109/HPEC.2016.7761644

26:18 Generating Hyperbolic Random Graphs

A Definitions, useful identities and approximations

A.1 Hyperbolic functions

sinh(x) := 1
2
(
ex − e−x

)
asinh(y) = x ⇒ sinh(x) = y

cosh(x) := 1
2
(
ex + e−x

)
acosh(y) = x ⇒ cosh(x) = y

A.2 Geometry related definitions

ρ(r) := α
α sinh(αr)
cosh(αR) radial density, cf. Eq 1

µ(Br(0)) :=
∫ r

0
ρ(x)dx = cosh(αx)− 1

cosh(αR) radial cdf

∆θ(r, b) :=
{
π if r+b < R

acos
[cosh(r) cosh(b)−cosh(R)

sinh(r) sinh(b)
]

otherwise
cf. Eq. 4

A.3 Approximations
Gugelmann et al. derived the following approximations15 [12]:

∆θ(r, b) =
{
π if r + b < R

2e
R−r−y

2 (1 + Θ(eR−r−y)) if r + b ≥ R
(20)

µ(Br(0)) =
∫ r

0
ρ(x)dx = cosh(αr)

cosh(αR)− 1 = eα(r−R)(1 + o(1)) (21)

µ [(BR(r)∩BR(0))\Bx(0)] = 2
π

αe−r/2

α− 1
2
·1±O(e−(α− 1

2)r + e−r) if x < R−r[
1−(1+α− 1

2
α+ 1

2
e−2αx)e−(α− 1

2)(R−x)
]

(1±O(e−r+e−r−(α− 3
2)(R−x))) if x ≥ R−r

(22)

15We drop the (1 +O(·)) error terms in our calculations without further notice if they are either irrelevant
or dominated by other simplifications made

M. Penschuck 26:19

B Additional experimental results

Table 1 Comparison of generators for n = 226, α ∈ {0.55, 1}, and d̄ ∈ {10, 1000}. Comp refers
to the number of distance computations between two points. It does not include node pairs
that could be ruled out earlier (e.g., by comparing indices or radii). For HyperGen the value
is higher due to vectorisation which often prevents such early discarding. RSS is the maximal
resident set size (i.e. peak memory allocation) as reported by the operating system. In case of
RHGen it is the sum of RSS of all MPI processes yielding a higher overhead. GirgGen is a purely
sequential implementation and includes fewer data points due to the high runtime. We report the
standard deviation of the S measurements as uncertainty and apply statistical error propagation.

† Experiment was cancelled after a runtime of 105 s.

n=226, d̄=10, α=0.55, R=39.2 in total per edge relative to HyperGen
Algo S Degree Comp. [108] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time
HyperGen 6 10.3± 0.4 7.5± 0.2 0.0± 0.0 11.8± 0.1 2.1± 0.1 34.0± 1.4 1 1 1
NkGen 6 9.8± 0.7 5.6± 0.3 4.6± 0.3 57.1± 3.0 1.7± 0.2 173± 22 0.8± 0.1 290± 22 4.8± 0.3
NkGenOpt 6 9.6± 0.4 5.3± 0.2 4.1± 0.0 36.0± 0.3 1.7± 0.1 111.7± 6.1 0.7± 0.0 263.5± 3.2 3.1± 0.0
RHGen 4 8.3± 0.1 7.9± 0.0 6.7± 0.6 110.0± 1.0 2.8± 0.0 395.8± 6.7 1.1± 0.0 428± 39 9.3± 0.1
GirgGen 3 10.0± 0.0 18.1± 0.0 3.9± 0.0 884.3± 0.8 5.4± 0.0 2635.5± 2.8 2.4± 0.1 248.1± 2.2 75.0± 0.5

n=226, d̄=10, α=1.00, R=33.3 in total per edge relative to HyperGen
Algo S Degree Comp. [108] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time
HyperGen 5 9.7± 0.0 7.0± 0.0 0.0± 0.0 12.9± 0.1 2.1± 0.0 39.6± 0.3 1 1 1
NkGen 5 10.0± 0.0 5.5± 0.0 4.1± 0.0 54.9± 0.5 1.6± 0.0 163.5± 1.6 0.8± 0.0 602± 13 4.3± 0.1
NkGenOpt 5 10.0± 0.0 5.2± 0.0 4.1± 0.0 34.4± 0.2 1.6± 0.0 102.3± 0.8 0.8± 0.0 596± 12 2.7± 0.0
RHGen 5 10.0± 0.0 8.1± 0.0 7.5± 0.5 120.5± 0.4 2.4± 0.0 359.2± 1.2 1.2± 0.0 1100± 99 9.4± 0.1
GirgGen 3 10.0± 0.0 16.6± 0.0 3.9± 0.0 819.8± 7.1 5.0± 0.0 2443± 21 2.4± 0.0 566± 11 63.6± 1.0

n=226, d̄=1000, α=0.55, R=29.5 in total per edge relative to HyperGen
Algo S Degree Comp. [108] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time
HyperGen 5 1052.2± 1.6 622.8± 1.2 0.2± 0.0 86.9± 0.4 1.8± 0.0 2.5± 0.0 1 1 1
NkGen 5 994.4± 3.3 456.2± 1.3 6.4± 0.3 955.5± 4.9 1.4± 0.0 28.6± 0.2 0.7± 0.0 27.2± 1.3 11.0± 0.1
NkGenOpt 5 991± 19 441.6± 7.8 4.2± 0.0 299.5± 5.1 1.3± 0.0 9.0± 0.3 0.7± 0.0 17.6± 0.3 3.4± 0.1
RHGen 5 889.1± 2.2 426.0± 1.1 23.9± 2.4 2205± 64 1.4± 0.0 73.9± 2.3 0.7± 0.0 101± 11 25.4± 0.9
GirgGen 1 1000.0 1160.6 3.8 55756.0 3.5 1661.6 1.9± 0.0 16.2± 0.1 641.5± 2.8

n=226, d̄=1000, α=1.00, R=24.1 in total per edge relative to HyperGen
Algo S Degree Comp. [108] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time
HyperGen 5 1015.8± 1.3 616.2± 0.7 0.1± 0.0 84.3± 0.5 1.8± 0.0 2.5± 0.0 1 1 1
NkGen 5 999.9± 0.6 443.3± 0.3 4.4± 0.1 1878± 468 1.3± 0.0 56± 14 0.7± 0.0 43.7± 2.4 22.3± 5.7
NkGenOpt 5 999.7± 0.4 428.5± 0.2 4.2± 0.0 261.1± 6.7 1.3± 0.0 7.8± 0.2 0.7± 0.0 41.6± 1.1 3.1± 0.1
RHGen 5 999.1± 0.0 410.5± 0.0 8.1± 0.2 1234.8± 5.8 1.2± 0.0 36.8± 0.2 0.7± 0.0 79.8± 3.7 14.6± 0.2
GirgGen† 1 ≥ 105 ≥ 1150

SEA 2017

26:20 Generating Hyperbolic Random Graphs

106 107 108 109

Number m of edges

10−2

10−1

100

101

102

103

104

t(
n

)
W
al
lti
m
e
[s]

Deg: 10, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

106 107 108 109

Number m of edges

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Deg: 10, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

106 107 108 109

Number m of edges

10−2

10−1

100

101

102

103

t(
n

)
W
al
lti
m
e
[s]

Deg: 10, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen
HyperGen(Phi)

106 107 108 109

Number m of edges

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Deg: 10, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen
HyperGen(Phi)

108 109 1010 1011

Number m of edges

10−1

100

101

102

103

104

105

t(
n

)
W
al
lti
m
e
[s]

Deg: 1000, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

108 109 1010 1011

Number m of edges

100

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Deg: 1000, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

108 109 1010 1011 1012

Number m of edges

10−1

100

101

102

103

104

105

106

t(
n

)
W
al
lti
m
e
[s]

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen
HyperGen(Phi)

108 109 1010 1011 1012

Number m of edges

100

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen
HyperGen(Phi)

Figure 6 Runtime of generators as function of the number n of nodes.

M. Penschuck 26:21

105 106 107 108 109

Number n of nodes

100

101

102

103

104

105

M
ax

.
R
es
id
en
t
Se
t
Si
ze

[M
iB
]

Deg: 10, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−2

10−1

100

101

102

103

M
ax

.
R
es
.
Se
t
Si
ze

[B
]p

er
no

de

Deg: 10, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

100

101

102

103

104

105

M
ax

.
R
es
id
en
t
Se
t
Si
ze

[M
iB
]

Deg: 10, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−3

10−2

10−1

100

101

102

103

M
ax

.
R
es
.
Se
t
Si
ze

[B
]p

er
no

de

Deg: 10, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

101

102

103

104

105

M
ax

.
R
es
id
en
t
Se
t
Si
ze

[M
iB
]

Deg: 1000, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

100

101

102

103

104

M
ax

.
R
es
.
Se
t
Si
ze

[B
]p

er
no

de

Deg: 1000, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

101

102

103

104

105

M
ax

.
R
es
id
en
t
Se
t
Si
ze

[M
iB
]

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−1

100

101

102

103

M
ax

.
R
es
.
Se
t
Si
ze

[B
]p

er
no

de

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

Figure 7 Max. memory allocation of generators as function of the number n of nodes.

SEA 2017

	Introduction
	Our contribution
	Notation
	The hyperbolic random graph model G-(alpha,C)(n)
	Hyperbolic graph generators

	MemGen: a fast algorithm with linear memory usage
	Candidate selection is at worst a constant approximation
	Nearly sorted points/request allow for faster sorting

	HyperGen: reducing MemGen's memory footprint
	Accelerating the Endgame
	Parallelism

	Implementation
	Adjacency tests without trigonometric functions
	Optimising NkGen for streaming

	Experimental evaluation
	Runtime
	Memory consumption
	Scalability

	Definitions, useful identities and approximations
	Hyperbolic functions
	Geometry related definitions
	Approximations

	Additional experimental results

