
Practical Range Minimum Queries Revisited
Niklas Baumstark1, Simon Gog2, Tobias Heuer3, and Julian Labeit4

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
niklas.baumstark@student.kit.edu

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
simon.gog@kit.edu

3 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
tobias.heuer@student.kit.edu

4 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
julian.labeit@student.kit.edu

Abstract
Finding the position of the minimal element in a subarray A[i..j] of an array A of size n is a
fundamental operation in many applications. In 2011, Fischer and Heun presented the first index
of size 2n+ o(n) bits which answers the operation in constant time for any subarray. The index
can be computed in linear time and queries can be answered without consulting the original array.
The most recent and currently fastest practical index is due to Ferrada and Navarro (DCC’16).
It reduces the range minimum query (RMQ) to more fundamental and well studied queries on
binary vectors, namely rank and select, and a RMQ query on an array of sublinear size derived
from A. A range min-max tree is employed to solve this recursive RMQ call. In this paper, we
review their practical design and suggest a series of changes which result in consistently faster
query times. Specifically, we provide a customized select implementation, switch to two levels of
recursion, and use the sparse table solution for the recursion base case instead of a range min-max
tree.

We provide an extensive empirical evaluation of our new implementation and also compare it
to the state of the art. Our experimental study shows that our proposal significantly outperforms
the previous solutions on established benchmarks (up to a factor of three) and furthermore
accelerates real world applications such as traversing a succinct tree or listing all distinct elements
in an interval of an array.

1998 ACM Subject Classification E.1 Data Structures, E.4 Coding and Information Theory

Keywords and phrases Succinct Data Structures, Range Minimum Queries, Algorithm Engin-
eering

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.12

1 Introduction

Index data structures are computed once for a given input – for instance a document collection
or a set of points – and can then be used to answer queries efficiently, without scanning
the whole data set again. Hence, a query is reduced to operations whose running time is
sublinear in the size of the original input. In the era of Big Data it is not surprising that
index structures form the backbone of many search application, such as pattern matching in
strings or range queries on point sets. The drawback of traditional index structures is that
they are usually larger than the original data and have to reside in main memory to facilitate
fast queries. An example are pointer-based search trees. This motivates the development of
space-efficient index structures which often are not only substantially smaller than traditional

© Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Practical Range Minimum Queries Revisited

indexes but can also answer queries without access to the original data. In a seminal paper,
Jacobson showed in 1989 how an arbitrary tree of n nodes can be represented in 2n+ o(n)
bits while traversal operations such as finding the parent and children of a node are still
supported in constant or logarithmic time [14]. The tree is represented as a vector over {0, 1}
and navigation is reduced to two operations: rank1(i, B) counts the number of bits set in
the prefix of size i of the binary vector B and select1(j, B) returns the position of the j-th
set bit in B. Today, there exist many other space-efficient counterparts of classic structures
which are based on these two fundamental operations; compressed text indexes such as the
FM-index are probably the most prominent example [8]. More examples can be found in
Navarro’s textbook [16].

Improving the performance of basic data structures in this area is of utmost importance
as an improvement will often directly translate to faster text indexes or other complex
structures [11]. In this paper, we develop a space-efficient data structure to solve range
minimum queries, which occur as sub-problems in many different applications. To give a
concrete example, they arise in information retrieval problems such as top-k completion [13]
and general top-k document retrieval [16].

I Definition 1. Given an array A[1..n] of n numbers. The range minimum query (RMQ)
problem is to find an index structure that returns for any range A[i..j] the position of the
leftmost minimum. More formally, for any pair of positions 1 ≤ i ≤ j ≤ n,

RMQA(i, j) = arg min
i≤k≤j

〈A[k], k〉 .

Two tuples 〈a, b〉 and 〈c, d〉 are compared lexicographically, i.e. 〈a, b〉 < 〈c, d〉 ⇐⇒ a <

c ∨ (a = c ∧ b < d).

Most solutions of the RMQ problem are based on the reduction to a restricted version of
the problem. The restriction is that adjacent entries of the input array A[1..n] only differ
by ±1. Such arrays can be represented as a bit vector B, where B[1] = 1 and B[i] = 1
if A[i]−A[i−1] = +1 and B[i] = 0 otherwise. An entry A[i] can be reconstructed by
A[i] = rank1(i, B)−rank0(i, B) = 2 ·rank1(i, B)− i. rank0 computes the number of zero
bits in a prefix of a vector, analogously to rank1. This formula is also called excess(i, B)
and we use it to define the restricted problem:

I Definition 2. Given a bit vector B[1..n], the ±1RMQ problem is to find an index structure
that returns for any range B[i..j] the position of the leftmost and rightmost excess minimum.
More formally, for any pair of positions 1 ≤ i ≤ j ≤ n,

RMQ±B(i, j) = arg min
i≤k≤j

〈excess(k,B), k〉 ,

RRMQ±B(i, j) = arg min
i≤k≤j

〈excess(k,B),−k〉 .

The RMQ problem is well studied and various solutions have been proposed. The first
optimal space index requires only 2n+ o(n) bits and was invented by Fischer and Heun [9].
It can be built in linear time and answers each query in constant time without accessing the
original array. Several authors implemented variants of the index [12, 11, 5]. Here, we briefly
describe the general idea behind these solutions in order to highlight the contributions of
this paper. Any range minimum query can be translated to a lowest common ancestor query
(LCA) on the Cartesian tree of A. The tree can be stored in a succinct representation which
uses a bitvector B of length 2n. Mapping an array element of A to a node in the tree is

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:3

reduced to a select operation. The LCA operation can be translated back into a ±1RMQ
query on the succinct tree representation. There are several options to solve the ±1RMQ
problem, and most practical implementations use the range min-max tree to do so [17, 1]. In
a last step the result of the ±1RMQ is mapped back to the corresponding position on A,
via a rank operation. Recently, Ferrada and Navarro [5] showed that with a specific tree
representation no more than three basic operation calls (2 × select, 1 × rank) are required
on top of the ±1RMQ call to answer a query1. Previous implementations in the Sdsl [11] and
Succinct [12] library require the execution of another relatively expensive basic operation
for an ancestor test. To decrease space usage, Ferrada and Navarro replaced the constant
time index for select by a binary search over the rank index [6] or a combination of select
dictionary and scanning [5]. While this negatively affects the overall query time, they show
that their solution is still the fastest on a wide range of benchmarks. However, they also
noted that the library implementations are still faster on real-world applications such as
suffix tree traversal.

In this paper we suggest a series of improvements to Ferrada and Navarro’s index.
Specifically,

We show that the knowledge about the height of the Cartesian tree can be used to
accelerate select. For trees with logarithmic height we get constant query time without
using any extra space. This is a major improvement compared to other previous imple-
mentations.
Navarro & Ferrada proposed two succinct tree representations (rightmost and leftmost
path-mapped general tree). One can choose between the two options so as to minimize
the height of the tree, but they require different basic structures (rank1/rank0 and
rightmost/leftmost ±1RMQ). We use a single mapping and simulate the other by
reversing the input.
We introduce an effective optimization for small query ranges. Replacing the second
select for the right border of the range by a local scan on the parentheses sequence
significantly improves the performance on real world applications.
We replace the traditionally used range min-max tree by a recursive call to our optimized
solution and resort to the sparse table approach after a constant number of recursions.

Combining these optimizations we obtain an index that outperforms the existing imple-
mentations not only on established benchmarks but also on real-world applications. The
remainder of the paper is organized as follows: In Section 2 we review the previous work
and present the simplified framework of Ferrada and Navarro. In Section 3 we present our
optimizations in detail and subsequently provide experimental evidence of their effectiveness
in Section 4.

2 Previous Work

A straightforward constant query time solution to the RMQ problem is to precompute every
possible query and store each answer into a lookup table of size O

(
n2). However the memory

requirement of this approach is prohibitively high. Bender & Farach-Colton [2] presented an
elegant O (n logn)-space solution, which uses a sparse version of the naive lookup table. They
precompute a table M [1..n][1.. logn] with M [i][j] = RMQA(i, i+ 2j − 1); i.e. for all queries
with an interval size that is a power of two, the answers are stored. An arbitrary query

1 We note that this simplified approach was also described by Davoodi et al. [4] in CACOON 2012.

SEA 2017

12:4 Practical Range Minimum Queries Revisited

A =

L = 1 2 3 2 3 2 1 2 3 4 3 2 3 4 3 4 3 2 1

T =

5

2

3

1

4

3

1

4

1

2

C
ar

te
si

an
 t
re

e
1 2 3 4 5 6 7 8 9 10

5

2

3

1

4

3

1

4

1

2

E
xtended

C
artesian tree

5 2 3 1 4 3 1 4 1 2

4 2 1 2 3 2 4 7 6 5 6 7 9 8 9 10 9 7 4

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
1

R = 3 2 5 1 10 9 8 14 15 16
1 2 3 4 5 6 7 8 9 10

(((())()(()))()(((())())()((())()(()))))
1 2 3 4 5 6 7 8 9 10

B = 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0

exC
C

Figure 1 Example of a Cartesian and extended Cartesian tree. Note that we use the leftmost
tie-breaking policy.

RMQ(i, j) can be answered by first determining the maximal k with 2k ≤ j − i+ 1. Then
A[M [i, k]] and A[M [j−2k+1, k]] are compared to determine the result. The method requires
just four memory accesses (two to A and two to M), a comparison, and a log-calculation
on integers which corresponds to counting leading zero bits2. We refer to this solution
as SparseTable. More space-efficient RMQ solutions are based on the Cartesian tree
introduced in [19].

I Definition 3. Given an array A[1..n] of numbers. The Cartesian tree C is a binary tree
which is recursively defined as follows: (1) If A is empty, then C(A) is the empty tree.
(2) Otherwise, let p = arg min1≤i≤|A|〈A[i], i〉 be the position of the leftmost minima. The
root of C(A) is element A[p]. Its left subtree is C(A[1..p− 1]) if p > 1 and its right subtree
C(A[p+ 1..|A|]) if p < |A|.

We denote as CL/CR the Cartesian tree where leftmost/rightmost minima are selected in
the case of ties, respectively.

Figure 1 shows the Cartesian tree for an example array. Note that one can map between
array entries and nodes. The in-order index Inorder(v) of a node v corresponds to the
nodes index in A. Conversely, we define the mapping from an index to its node with Innode3.
Gabow et al. observed that an RMQ query in A can be reduced to calculating the lowest
common ancestor (LCA) in C(A) [10].

RMQA(i, j) = Inorder(LCAC(A)(Innode(i), Innode(j))) .

Berkman and Vishkin noted, that the problem of calculating the LCA can again be reduced
to an RMQ query on an array L of the depths of the nodes in the Euler tour T through
C(A) [3]. In Figure 1 arrays T [1..2n] and L[1..2n] contain the nodes (identified by their

2 This operation is part of the instruction set of most modern CPUs.
3 Note that we omit the mapping in cases where we can directly identify nodes by their in-order index.

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:5

in-order index) and their corresponding depth in the Euler tour. Note that L can be replaced
by a bit vector B as L[i] = 2 · rank1(i, B) − i). With an additional array R[1..n] which
contains the first occurrence of each node in the Euler tour LCA queries can be answered as
follows:

LCAC(A)(Innode(i), Innode(j)) = Innode(T [RMQ±B(R[i], R[j])]) .

Bender & Farach-Colton [2] solve the ±1RMQ problem by partitioning B into blocks
of size s = 1

2 logn and creating a SparseTable structure over the n
s block minima. As

there can be at most 2s =
√
n different block types, one can afford to store a lookup table

for all O
(
2s · s2) in-block RMQ queries. For an arbitrary range [i..j], the query is divided

into three sub-queries, including at most two in-block queries in the case where i and j are
not block aligned and a SparseTable query for the blocks with indexes in the interval
[d i+1

s e, b
j−1
s c]. The excess values of the three positions are compared and the position of

the leftmost minimum is returned. This solution requires a linear number of words and the
space is dominated by the SparseTable on the sequence of 2n

logn block minima.
Sadakane [18] showed that the ±1RMQ problem can be solved with just sublinearly many

bits in addition to B by first dividing B into blocks of size log3 n (SparseTable requires
O
(

n
logn

)
∈ o(n) bits), subdividing those into in sub-blocks of size 1

2 logn (SparseTable
in total again in o(n) bits) and handling the inner blocks again with tabulation as above.
He also observed that B can be transformed into a succinct representation – the balanced
parentheses sequence (BP) of C – by replacing 1/0 with opening/closing parentheses and
appending a closing parenthesis at the end.

BPs were originally introduced by Munro & Raman [15]. The 2n-bits BP is defined
by a depth-first traversal where an opening parenthesis is appended when arriving at a
node v and a closing parenthesis is appended after processing v’s subtree. Nodes in BP are
either in DFS-preorder (if they are identified with their corresponding opening parenthesis)
or in DFS-postorder. To use the presented RMQ framework, which is based on in-order,
Sadakane introduced the extended Cartesian tree exC, which adds one pseudo-leaf per node
(see Figure 1) [18]. These n leaves serve as in-order markers of the original nodes. Now
Innode and Inorder can be realized by select and rank on the parentheses pattern “()”
(or “10” if interpreted as bits) and the query can be expressed as follows:

RMQA(i, j) = rank10(RMQ±BP (exC)(select10(i), select10(j))) . (1)

In 2016, Ferrada and Navarro [5] showed how the balanced parentheses representation can
be directly applied to the Cartesian tree. They transform the binary Cartesian tree C into a
leftmost path-mapped general Cartesian tree CL (see Figure 2) using a known mapping [15].
A new pseudo-root is introduced and the node from the leftmost path in the binary tree
(from the leaf to root) are attached to the new root. This process is applied recursively on the
subtrees of the former leftmost path. In CL the node with pre-order index i+ 1 corresponds
to the node with in-order index i in C (the +1 is due to the added pseudo-root). Innode
and Inorder can by directly realized by select and rank on the opening parentheses and
the RMQ expressed as follows:

RMQA(i, j) = rank1(RRMQ±BP (CL)(select1(i+ 1)− 1, select1(j + 1))) . (2)

Note that the ±1RMQ has to return the rightmost minimum. Alternatively, they provide
the formula for the rightmost path mapping (CR); see Figure 2. In this case pre-order is

SEA 2017

12:6 Practical Range Minimum Queries Revisited

5

2

3

1

4

3

1

4

1

2Le
ft
m

os
t
pa

th
m

ap
pi

ng

5

2

3

1

4

3

1

4

1

2

R
ightm

ost path
m

apping

(() (()) (() () (() (())))) (((()) ()) ((())) (()) ())

1

2

3

4

5 6

7

8 9 10

Figure 2 Transformation of a binary Cartesian tree into a general tree. We show the leftmost
path mapping (CL) and rightmost path mapping (CR) for the example of Figure 1.

replaced by post-order, select1/rank1 by select0/rank0 and the ±1RMQ has to return
the leftmost minimum.

RMQA(i, j) = rank0(RMQ±BP (CR)(select0(i), select0(j))) . (3)

Ferrada and Navarro already noted the possibility of constructing indexes based on both
mappings and choosing the more attractive one, e.g. the one which minimizes the height of
the tree. In Figure 2 CL has a depth of five, while CR has a depth of four. This observation
acts as a starting point of our work.

3 An Optimized Recursive Solution

Our first optimization considers the select1 operation, which is used to find the position of
node v with Preorder(v) = i when answering range minimum queries using Equation 2.
The result of select can be directly determined if depth(v) is known:

I Lemma 4. Let T be a rooted ordered tree and BP be the balanced parentheses sequence
of T . The position of the representing opening parenthesis in B of a node v ∈ T with
Preorder(v) = i is select1(i, BP) = 2i−depth(v)− 1, where depth(v) ≥ 0 denotes the
distance of v to the root node.

Proof. By construction the opening parenthesis of v is appended to BP after processing the
i− 1 nodes with smaller pre-order IDs. The i− 1− depth(v) nodes which are not ancestors
of v were fully processed and we have written a parentheses pair for each of them. The
depth(v) ancestors are not yet fully processed as v is a node in their subtree. So we have
written only one parenthesis per ancestor. In total we output v’s opening parenthesis at
position 2 · (i − 1 − depth(v)) + depth(v) + 1 = 2i − depth(v) − 1 in an 1-index based
sequence. J

The answer of every select1 query can therefore be estimated using the depth of T or
the maximal excess in BP More precisely the answer must be within the interval BP [2i−
max_excess(BP) − 1..2i − 1], where max_excess(BP) := max0≤i≤|BP | excess(i, BP).
We note that for trees of logarithmic depth we can directly calculate the correct 64-bit word
containing the answer without using any extra space. To guarantee constant running time
for larger tree sizes, we can employ a sampling scheme similar which uses o(n) space and is
very similar to the traditional solution for select.

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:7

 2 1 4 1 3 4 1 3 2 5
1 2 3 4 5 6 7 8 9 10

5

2

3

1

4

3

1

4

1

2

5

2

3

1

4

3

1

4

1

2

BP =(()(())((()))(()()())))

Figure 3 Left: Cartesian tree CR(A[n..1]) built over A[n..1] (the reverse array of the example in
Figure 1; the rightmost tie-breaking policy is used. Right: Leftmost-path general tree CLR(A[n..1]) of
CR(A[n..1]). Note that this is the mirrored tree of CRL (A[1..n]) in Figure 2 (right).

Next we show that it is not actually necessary to implement the rightmost mapping and
its underlying primitives as it can be simulated using the leftmost mapping on the reversed
input and a changed tie-breaking policy.

I Theorem 5. Let A[1..n] be an array of integers and ←−A = A[n..1] the array in reverse
order. Then CRL (A) is isomorphic to CLR(←−A).

Proof. First we show that reversing the input and changing the tie braking policy yields the
same Cartesian tree, hence CL(A) is isomorphic to CR(←−A). The statement is trivially true for
n = 1. For n > 1 the root of CL(A) is the leftmost minimum m = A[p]. As ←−A contains the
same values as A, m also has to be the minimum in ←−A . The mirrored position p′ = n+ 1− p
contains m and has to be the rightmost minimum in ←−A . Otherwise, there would be a p′′ > p′

with ←−A [p′′] = m which is mapped to a position q = n+ 1− (n+ 1− p) < p with A[q] = m.
This contradicts the assumption that A[p] is the leftmost minimum. The left child of the
root of CL(A) is CL(A[1..p− 1]) and the right child of the root of CR(←−A) is CR(←−A [p′ + 1..n]).
By definition ←−A [p′ + 1..n] is the reverse array of A[1..p− 1]. By induction CL(A[1..p− 1])
is isomorphic to CR(←−A [p′ + 1..n]). The same argument can be apply to ←−A [1..p′ − 1] and
A[p+ 1..n]. Thus CL(A) is isomorphic to CR(←−A).

Further we observe that CL(A) is the mirrored version of CR(←−A). I.e. the rightmost path
in CL(A) corresponds to the leftmost path in CR(←−A). Therefore, the leftmost path mapped
tree CLR(←−A) of CR(←−A) is the mirrored version of the rightmost path mapped tree CRL (A) of
CL(A). Hence CRL (A) is isomorphic to CLR(←−A). J

The right tree in Figure 2 and the right tree in Figure 3 show both trees, CRL (A) and
CLR(←−A), for our running example. A query RMQA(i, j) can be answered with CLR(←−A) as
follows. The query range [i, j] is mirrored [µ(j), µ(i)], with µ(x) = n+ 1− x, and we get the
position p of the rightmost minimum in ←−A [µ(j), µ(i)] as CLR breaks ties with rightmost policy.
The mirrored position µ(p) of p in turn is the leftmost minimum in A[i, j]. This observation
helps to simplify the query algorithm, as it does not need to support both rightmost and the
leftmost mapping.

SEA 2017

12:8 Practical Range Minimum Queries Revisited

The technique of reversing the input sequence and adjusting the query range can also be
used to implement ±1RRMQ and we therefore get a recursive algorithm. Remember that
Bender &Farach-Colton divided BP (C) into blocks of fixed size s and built the structure
again over the sequence E of block minima. The recursive structure built for E again profits
from our proposed optimizations in Lemma 4 and of Theorem 5. The recursion is terminated
when the length of E is in o(n

log2 n
) and the SparseTable structure can be applied.

Algorithm 1 summarizes the construction of our RMQ-index. The recursion base case in
Line 3 constructs SparseTable. For the remaining Λ levels, first the leftmost-path mapped
Cartesian tree with leftmost tie breaking policy CLL over A and the leftmost-path mapped
Cartesian tree with rightmost tie breaking policy CLR over the reverse of A is built. The tree
of minimal depth is selected and its balanced parentheses sequence stored in BPλ along with
a flag indicating whether A was reversed; see Lines 5–8. Next, BP is partitioned into blocks
of size sλ and two new arrays of size n

sλ
are generated in linear time by iterating over BP :

Array Iλ and Iλ contain for each block of BP the position respectively the excess-value
of the rightmost element with minimal excess. In the pseudo-code, the entries in Iλ are
considered as absolute positions in Aλ. In practice these values are stored relative to the
start index of each block. So only log sλ bits per element are required. The second array
Eλ contains the excess-value for each entry in Iλ. The entries in Eλ are stored as absolute
values, each taking log max_excess(BP) bits. In Line 11 we recursively index E. Note
that we index the reverse ←−E of E in the recursive call. We will see that this approach results
in a very simple query algorithm.

The time complexity of Algorithm 1 is linear in the original input size n for an appropriate
choice of Λ and s. For Λ = 3 and s = [logn, logn, logn] the SparseTable structure in Line 3
is built in the fourth recursive level for an array of size n′′′ = n

log3 n
; i.e. as SparseTable is

constructed in O (n′′′ logn′′′) this step takes o(n) time. It is easy to see the all remaining
steps up to and including the third recursion level take linear time.

The space complexity for this choice is 2n + o(n) bits if Eλ is represented implicitly4.
The 2n-bit term is due to BP1 and storing the relative values of I1 we get additional
O
(
n log logn

logn

)
= o(n) bits of space for the first level. For deeper recursion levels the

input is sublinear in n and we can therefore store both BPλ and Iλ in sublinear space.
Finally, SparseTable is in o(n) as the length of the input was reduced to n′′′ = n

log3 n
and

SparseTable takes O
(
n′′′ log2 n′′′

)
bits.

We have split the query implementation in two parts. The general leftmost RMQ query
(see Algorithm 2) and the rightmost ±1RMQ query (see Algorithm 3). We start by ex-
plaining Algorithm 2. The recusion base case in Line 3 is easily solved by the precomputed
SparseTable. Otherwise we follow Equation 2 by using select to map the query interval
[i, j] to position in BPλ (see Line 6 and 9), solving the ±1RRMQ and mapping the corres-
ponding position back to the original array via rank (see Line 10). Note that handling the
tree height minimization only required minor adjustments: First, we introduce a function
µ(x) = x+revλ ·(n+1−x) which maps a position x in the original array to the corresponding
position in the preprocessed array. Second, we swap the left and right bound of the given
query range for cases where the array was reversed during preprocessing (see Line 4 and 5).
This ensures that µ(i+ 1) ≤ µ(j + 1) and the range [`, r] for the recursive call has a positive
size.

4 This can be achieve by a rank structure over BPλ.

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:9

Algorithm 1 Recursive construction of a Λ-level RMQ-index with leftmost tie-breaking
policy for an array A with block sizes s. The λ parameter corresponds to the current recursion
level. On level λ the data structure stores the parentheses sequence BPλ, a flag revλ which
indicates whether the sequence was reversed, and two arrays (Iλ, Eλ) which contain for
each block of BPλ the position respectively the excess-value of its rightmost element with
minimal excess.
1: procedure Preprocessing(A[1..n], λ,Λ, s = [s1, . . . , sΛ])
2: if λ > Λ then
3: construct SparseTable over A
4: else
5: if depth(CLL (A[1..n]) ≤ depth(CLR(A[n..1])) then
6: 〈BPλ, revλ〉 ← 〈CLL(A[1..n]), 0〉
7: else
8: 〈BPλ, revλ〉 ← 〈CLR(A[n..1]), 1〉

9: Iλ ← [±1RRMQBPλ
((i− 1)sλ + 1, i · sλ) | 1 ≤ i ≤ 2n+2

sλ
]

10: Eλ ← [excess(i, BPλ) | i ∈ Iλ]

11: Preprocessing(Eλ[n..1], λ+ 1,Λ, s) . Recursive construction

In the experimental part we will observe that most of the query time is spent on the two
select operations in Line 6 and 9). This motivates the optimization in Line 7. For small
ranges (j − i < logn) we scan a constant number of words for the index and excess of the
rightmost minimum. On success (6= ⊥), i.e. we reached the j-th opening parenthesis during
the scan, we output the result and avoid the second select call in Line 9.

In Algorithm 3 we finally outline our ±1RRMQ implementation. The basic concept
follows the idea of Bender & Farach-Colton (see Section 2). In Line 2 we determine the range
of blocks [`′, r′] which intersects the query interval [`, r]. In the next line, we recursively
determine the position of the rightmost minimum excess value in the blocks, which are fully
contained inside the query interval [`, r]. We mirror the range bounds as well as the result,
since we built the RMQ over the reversed array ←−E of E (see Line 11 in Algorithm 1). Note
that the recursive call returns the leftmost minimum of the reversed array, which corresponds
to the desired rightmost minimum in the non-reversed array. Next, we obtain the position
and excess-value of the rightmost minimum in the two fringe blocks `′ and r′ by accessing
the corresponding entries of I and E. If an obtained position is outside the query range
[`, r] and the corresponding excess-value smaller than the excess-value obtained from the
recursive call, we scan the fringe block to identify the position and excess-value of the
rightmost minimum inside the query range. We note, that such a strategy to avoid local
scans was similarly suggested by Ferrada and Navarro [5] in the context of range min-max
trees.

It is easy to see that the time complexity of a RMQ query is constant. There are
a constant number of recursive calls and all basic operations, except Scan, require only
constant time. Note that Scan can be implemented in constant time for blocks of size 1

2 logn
by employing lookup tables of sublinear size. In the next section, we will see that scanning
a block of a reasonable size, e.g. a constant number of cache lines, will not dominate the
practical query time.

SEA 2017

12:10 Practical Range Minimum Queries Revisited

Algorithm 2 Recursive query implementation on a Λ-level RMQ-index with leftmost tie-
breaking policy. We use two helper functions in the code: An array position x is mapped to the
corresponding position in the reversed or non-reversed array by µ(x) = x+ revλ · (n+ 1− 2x).
Method Scan(BP) returns a (excess-value,position)-pair of the rightmost element with
minimal excess at or to the left of the j-th opening parentheses. In case the j-th opening
parentheis is not located in the block ⊥ is returned.
1: procedure RMQ(i, j, λ,Λ)
2: if λ > Λ then
3: return SparseTable(i, j)

4: if revλ = 1 then . If CLR was built on the reversed sequence on level λ
5: 〈i, j〉 ← 〈j, i〉 . swap left and right bound

6: `← select1(µ(i+ 1), BPλ)− 1
7: if j − i < logn and (〈e, p〉 ← Scan(BPλ[`..`+ 2 logn])) 6= ⊥ then
8: return µ(rank1(p,BPλ))
9: r ← select1(µ(j + 1), BPλ)

10: return µ (rank1(±1RRMQ(l, r, λ,Λ), BPλ)) . Cf. Equation 2

4 Experimental Evaluation

We created a generic C++ implementation of the proposed RMQ-index. We refer to it
as NewRMQ5 and compare it to the follows baselines: the two library implementations
Sdsl6 [11] and Succinct7 [12] and the code of Ferrada and Navarro [5] (F&N’168).

The experiments were executed on a single core of a machine equipped with four Intel
Xeon E5-4640 processors, with a combined number of 32 cores and 64 hyper-threads, and 512
GiB of memory. All programs were compiled using GCC 4.8.4 with optimizations turned on.

Following the methodology in [5] we generated three variants of artificial inputs. (1) Ran-
dom inputs random: Values were drawn uniformly at random from the range [1, n].
(2) Pseudo-increasing inputs inc-δ: For a given δ, entry A[i] was chosen at random in
[i− δ, i+ delta]. (3) Pseudo-decreasing inputs dec-δ: For a given δ, entry A[i] was chosen
at random in [n− i− δ, n− i+ δ]. We varied input lengths (n = 10x, x ∈ N+) and for each
variant and generated 104 random queries [i, j] for each range size j − i+ 1 ∈ {101, .., 10x−1}.

In an initial experiment we explored the effect of varying the block size sλ and number of
recursion levels Λ in NewRMQ on random. While we tested a large range of block sizes and
recursion levels we restrict our presentation to the most promising parameters. Specifically,
s ∈ {1024, 2048, 4096}, which corresponds to 2, 4, and 8 cache lines, and Λ ∈ {1, 2, 3}.
Figure 4 depicts query times and Table 2 index space. In the following we excluded all
version with s ∈ {2048, 4069} since the query time for median sized intervals was much worse
than for s = 1024. We also excluded the Λ = 1 variants due to their larger memory overhead

5 Our code is available at https://github.com/kittobi1992/rmq-experiments.
6 Available at https://github.com/simongog/sdsl-lite (Accessed at 20.12.2016).
7 Available at https://github.com/ot/succinct (Accessed at 20.12.2016).
8 Available at https://github.com/hferrada/rmq (Accessed at 20.12.2016).

https://github.com/kittobi1992/rmq-experiments
https://github.com/simongog/sdsl-lite
https://github.com/ot/succinct
https://github.com/hferrada/rmq

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:11

Algorithm 3 Rightmost ±1RMQ query implementation on a Λ-levelRMQ-index.
1: procedure ±1RRMQ(`, r, λ,Λ)
2: 〈`′, r′〉 ← 〈

⌈
`+1
sλ

⌉
− 1,

⌊
r
sλ

⌋
+ 1〉 . Leftmost/rightmost covered blocks

3: p′ ← |Eλ|+1−RMQ(|Eλ|+1−(r′−1), |Eλ|+1−(`′+1), λ+ 1,Λ) . Recurse

4: 〈〈p`′ , e`′〉, 〈pr′ , er′〉〉 ← 〈〈Iλ[`′], Eλ[`′]〉, 〈Iλ[r′], Eλ[r′]〉〉

5: if e`′ < Eλ[p′] ∧ p`′ < ` then . Try to avoid Scan of leftmost block.
6: 〈p`′ , e`′〉 ← Scan(BPλ[`..(`′ + 1)sλ])
7: if er′ < Eλ[p′] ∧ pr′ > r then . Try to avoid Scan of rightmost block.
8: 〈pr′ , er′〉 ← Scan(BPλ[(r′ − 1)sλ..r])

9: 〈e,−p〉 ← min{〈e`′ ,−p`′〉, 〈Eλ[p′],−p′〉, 〈er′ ,−pr′〉}
10: return p

n = 109

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8

Size of query range [10x]

T
im

e
pe

r
qu

er
y
[µ
s]

Block size s
1024
2048
4096

Max. number of
recursion Λ

1
2
3

Figure 4 Query time distribution for the recursive RMQ-index on input random.

and the Λ = 3 variants due to their slow performance for large intervals. In the remaining
experiments NewRMQ is therefore parametrized with by s = 1024 and Λ = 2. Figure 5
shows how much time is spent on the basic operations. Most time is spent on select1 and
access of E and I. These operations consist mainly of memory accesses and get therefore
more expensive for larger inputs due to address translation. Note that select1 is cheaper
for smaller ranges due to caching effects and also the time spent in Scan is notable for small
query ranges. For larger query ranges Scan is not triggered, as we can exclude the results
from the fringe bocks by the optimizations presented in Algorithm 3.

Next, we compare NewRMQ to the other implementations on random. The results in
Figure 6 for the three competitors are consistent with the outcome of Navarro & Ferrada’s
study [5]. The experiment shows that the optimization for large query ranges, which avoids
scanning the fringe blocks, is much more effective for NewRMQ than for F&N’16, where it
is only applied to the range min-max tree. We found that the range min-max tree is not
necessarily the cause for many cache misses but for many cache references; see Figure 7 for
detailed numbers. Applying SparseTable and the tailored select in NewRMQ reduced
the number of cache references significantly.

SEA 2017

12:12 Practical Range Minimum Queries Revisited

n = 109 n = 1010

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Size of query range [10x]

T
im

e
pe

r
qu

er
y
[n
s] Basic operation

other
SparseTable
rank1

access E & I

Scan
select1

Figure 5 Query time breakdown for NewRMQ obtained by measuring time spent in each basic
operation.

Table 1 Statistics for LCP arrays of the full Pizza&Chilli texts.

dblp dna english sources

Depth of CLL(A) 543 371 664 765
Depth of CLR(←−A) 54 120 132 3232
Depth of suffix tree 124 305 148 3238

Ratio of avoided second select calls 88.32% 91.41% 87.31% 88.33%
(by optimization in Line 7 of Algo. 2)

Next, we explore the performance on pseudo-increasing and -decreasing inputs (inc-δ and
dec-δ). Figure 8 and Figure 9 show the results. As expected the performance of NewRMQ
is very similar on both inputs, since we minimize the height of the tree in both cases. For
these inputs, it is very likely that the result of a query is located in the left or right fringe
block. Therefore the optimization that avoid the scan of fringe blocks for large query ranges
is not as effective as in the previous experiment.

Finally, we also consider the performance on a real-world application, namely the traversal
of a suffix tree. Here we build our structure over the LCP array and use RMQs to implement
the child operation for a node. A stack is used to maintain the ancestors of the currently
traversed node. Query ranges – in non-degenerate suffix trees – are typically small and
therefore the optimization in Line 7 in Algorithm 2 takes effect. Figure 10 depicts the timing
results while Table 1 quantifies the saved operations and also reports the heights of the two
Cartesian tree variants.

5 Conclusion

In this work we concerned ourselves with a practical solution for the range minimum query
problem. In order to develop a fast solution that is also space efficient, we build upon previous
theory and implementation ideas. We propose a new implementation that incorporates novel
optimizations that improve the practical performance even further. Compared to existing
solutions we replace the range min-max tree with a simpler recursive approach terminated
by a sparse table.

Our experimental results show that our new implementation is up to three times faster
than previous implementations, while retaining low space usage only slightly above the

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:13

n=107 n=108 n=109

0

2

4

6

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Size of query range [10x]

T
im

e
[µ
s]

Sdsl Succinct F&N’16 NewRMQ

Figure 6 Query time distribution for all implementations on input random.

theoretical lower bound of 2 bits per input element. For all tested inputs, including both
artificial uniform and pseudo-increasing/decreasing random sequences as well as a selected
real-world application, we consistently outperform previous implementations.

References
1 D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees in practice. In

Proc. ALENEX, pages 84–97. SIAM, 2010.
2 M. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. LATIN, pages

88–94. Springer, 2000.
3 O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM Journal on

Computing, 22(2):221–242, 1993.
4 Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. Succinct representations of binary

trees for range minimum queries. In Proc. CACOON, pages 396–407, 2012.
5 H. Ferrada and G. Navarro. Improved range minimum queries. J. Discrete Alg., 2016. To

appear.
6 H. Ferrada and G. Navarro. Improved range minimum queries. In Proc. DCC, pages

516–525, 2016.
7 P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes: From

theory to practice. J. Exp. Algorithmics, 13:12:1.12–12:1.31, February 2009. doi:10.1145/
1412228.1455268.

8 P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc.
FOCS, pages 390–398, 2000.

9 J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum queries
on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

10 H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geometry problems.
In Proc. STOC, pages 135–143. ACM, 1984.

11 S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play with
succinct data structures. In Proc. SEA, pages 326–337, 2014.

SEA 2017

http://dx.doi.org/10.1145/1412228.1455268
http://dx.doi.org/10.1145/1412228.1455268

12:14 Practical Range Minimum Queries Revisited

50 59 41 37 36

Avg. number of cache misses per query

0
5

10
15
20
25

2 4 6 8

61 87 96 87 59
Avg. number of cache references per query

0
10
20
30
40
50

2 4 6 8

Size of query range [10x]

Sdsl Succinct F&N’16 NewRMQ
Figure 7 Cache access statistics for all implementations on input random of size n = 109.

12 R. Grossi and G. Ottaviano. Design of practical succinct data structures for large data
collections. In Proc. SEA, pages 5–17, 2013.

13 B. Hsu and G. Ottaviano. Space-efficient data structures for top-k completion. In Proc.
WWW, pages 583–594. ACM, 2013.

14 G. Jacobson. Space-efficient static trees and graphs. In Proc. FOCS, pages 549–554, 1989.
15 J. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.

SIAM Journal on Computing, 31(3):762–776, 2001.
16 G. Navarro. Compact Data Structures – A practical approach. Cambridge University Press,

2016.
17 G. Navarro and K. Sadakane. Fully functional static and dynamic succinct trees. ACM

Transactions on Algorithms, 10(3):16:1–16:39, May 2014. doi:10.1145/2601073.
18 K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing Systems,

41(4):589–607, 2007.
19 J. Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229–

239, 1980.

http://dx.doi.org/10.1145/2601073

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:15

δ = 0 δ = 100 δ = 10000

0

1

2

3

4

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Size of query range [10x]

T
im

e
[µ
s]

Sdsl Succinct F&N’16 NewRMQ
Figure 8 Query time distribution for pseudo-increasing input arrays of size n = 109.

δ = 0 δ = 100 δ = 10000

0

2

4

6

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Size of query range [10x]

T
im

e
[µ
s]

Sdsl Succinct F&N’16 NewRMQ
Figure 9 Query time distribution for pseudo-decreasing input arrays of size n = 109.

SEA 2017

12:16 Practical Range Minimum Queries Revisited

160

237
284

127
155

217
270

133

154

221
259

136
165

235
278

139

dblp dna

english sources

0

100

200

300

0

100

200

300

T
im

e
pe

r
qu

er
y
[n
s]

Sdsl
Succinct
F&N’16
NewRMQ

Figure 10 Application benchmark: DFS traversal of a suffix tree. RMQs over the LCP-array are
used to calculate the children of a node. We used different texts of the Pizza&Chilli corpus[7].

Table 2 Memory consumption dependent on experiment, input size, and implementation. For
Figure 5 and Figure 8 we show the data for strictly increasing respectively decreasing sequences.

Implementation Space in bits per element with varying n

n = 104 n = 105 n = 106 n = 107 n = 108 n = 109

Data of Fig. 4
s = 1024, Λ = 1 2.41 2.33 2.37 2.44 2.54 2.65
s = 1024, Λ = 2 2.41 2.18 2.16 2.16 2.16 2.17
s = 1024, Λ = 3 2.41 2.18 2.16 2.16 2.16 2.16
s = 2048, Λ = 1 2.32 2.23 2.24 2.27 2.32 2.37
s = 2048, Λ = 2 2.32 2.16 2.14 2.14 2.14 2.15
s = 2048, Λ = 3 2.32 2.16 2.14 2.14 2.14 2.14
s = 4096, Λ = 1 2.27 2.18 2.18 2.19 2.21 2.24
s = 4096, Λ = 2 2.27 2.18 2.14 2.14 2.14 2.14
s = 4096, Λ = 3 2.27 2.18 2.14 2.13 2.13 2.13

Data of Fig. 6
Sdsl 2.64 3.26 2.61 2.55 2.54 2.54
Succinct 2.80 2.71 2.70 2.71 2.71 2.70
F&N’16 4.52 2.31 2.10 2.09 2.10 2.10
NewRMQ 2.41 2.18 2.16 2.16 2.16 2.17

Data of Fig. 8
Sdsl 2.62 3.26 2.60 2.54 2.53 2.53
Succinct 2.80 2.71 2.70 2.71 2.71 2.70
F&N’16 4.63 2.43 2.24 2.26 2.28 2.31
NewRMQ 2.41 2.17 2.16 2.15 2.15 2.16

Data of Fig. 9
Sdsl 2.64 3.27 2.62 2.55 2.54 2.54
Succinct 2.80 2.71 2.70 2.71 2.71 2.70
F&N’16 4.51 2.29 2.07 2.05 2.06 2.06
NewRMQ 2.41 2.17 2.16 2.15 2.15 2.16

	Introduction
	Previous Work
	An Optimized Recursive Solution
	Experimental Evaluation
	Conclusion

