
Extending Search Phases in the Micali-Vazirani
Algorithm∗

Michael Huang1 and Clifford Stein2

1 Department of IEOR, Columbia University, New York, NY, USA
mh3166@columbia.edu

2 Department of IEOR, Columbia University, New York, NY, USA
cliff@ieor.columbia.edu

Abstract
The Micali-Vazirani algorithm is an augmenting path algorithm that offers the best theoretical
runtime of O(n0.5m) for solving the maximum cardinality matching problem for non-bipartite
graphs. This paper builds upon the algorithm by focusing on the bottleneck caused by its
search phase structure and proposes a new implementation that improves efficiency by extending
the search phases in order to find more augmenting paths. Experiments on different types of
randomly generated and real world graphs demonstrate this new implementation’s effectiveness
and limitations.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases matching, graph algorithm, experimental evaluation, non-bipartite

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.10

1 Introduction

Matching, a commonly studied problem in the field of algorithms, has a variety of applications
in other fields such as bioinformatics, computer science, statistics, and operations research.
The paper focuses on a new efficient implementation for finding the maximum cardinality
matching for non-bipartite graphs. Additionally, our experiments on non-bipartite graphs
generated from historical NYC taxi cab trip data, demonstrate non-bipartite matching in
solving consumer matching problems like forming carpools.

Non-bipartite matching has been a well studied problem. Since first O(n4) algorithm
provided by Edmonds’ [3] in 1965 there have been contributions from Gabow [5], Kameda and
Munro [9], Lawler [11], Even and Kariv [4], and Micali and Vazirani [15]. The Micali-Vazirani
(MV) algorithm remains the most efficient algorithm for non-bipartite graphs with the same
O(
√
nm) Hopcroft and Karp runtime [8] for bipartite graphs. Implementation studies from

the first DIMACS Implementation Challenge [2, 14] showed that the algorithm is efficient in
practice as well by comparing it against Gabow’s O(n3) implementation. In a more recent
study by Kececioglu and Pecqueur [10], its performance was still better against Tarjan’s
O(mnα(m,n)) implementation, but performed slightly worse compared to the modified
O(mnα(m,n)) implementation presented.

In this study, we improve the MV algorithm by testing various implementations on
different graph types. Since the MV algorithm is an augmenting path algorithm, previous

∗ This work was partially supported by NSF grant CCF-1421161.

© Michael Huang and Clifford Stein;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Extending Search Phases in the Micali-Vazirani Algorithm

works have suggested improving the performance by reducing the number of phases. We also
reduce the number of phases. Our key idea is that, in each phase, we find extra augmenting
paths in addition to the maximal set of shortest edge-disjoint augmenting paths. This
additional work only takes O(m) time and, in many cases, significantly reduces the number
of phases of the algorithm. We also consider several previously suggested improvements and
find that one, greedy initialization, also helps reduce the number of phases. Using both of
these improvements we obtain significant reduction in the number of phases. While the worst
case running time remains, the observed running time is much better.

2 Algorithm

2.1 Basic Definitions

A matching for an undirected graph G = (V,E) is a set of edges M such that no two
edges meet at a vertex. We designated edges and the corresponding vertices in M and not
in M as matched and unmatched edges/vertices, respectively. The maximum cardinality
matching problem finds any matching such that the number of edges in the set is maximized.
Many algorithms that solve this problem search for augmenting paths. An alternating
path is a simple path that alternates between edges in M and in E −M . An augmenting
path is an alternating path that starts and ends with unmatched vertices. We augment by
changing unmatched edges to matched edges and vice versa for all edges on the augmenting
path–increasing the cardinality of the matching increases by one. When there are no more
augmenting paths, a maximum matching is found.

Matching in bipartite and non-bipartite graphs qualitatively differ. In the first type, all
lengths of alternating paths to a matched vertex v have the same parity (odd or even), where
as matched vertices in second type can be both–which lead to odd length alternating cycles.
This makes matching more difficult for non-bipartite graph, but Edmonds addressed this
challenge by introducing structures called blossoms to handle odd-length cycles. In the MV
algorithm, petals are the equivalent structure and are essential for achieving the efficient
runtime.

2.2 Micali-Vazirani Algorithm

We will give a brief description of the Micali-Vazirani Algorithm based on Vazirani’s most
recent paper on the topic [16]. This paper presented a complete proof of the runtime and
defined some new terms that we will use to describe the finer details of the algorithm.

2.2.1 Key Concepts

First we provide concepts specific to the MV algorithm. Below are relevant definitions that
are used in the high level description of the MV algorithm in Listing 1.

I Definition 1 (Evenlevel and oddlevel of v). An evenlevel/oddlevel is the length of the
shortest even/odd alternating path from an unmatched vertex to v, denoted as evenlevel(v)
and oddlevel(v), respectively.

I Definition 2 (Minlevel and maxlevel of v). The minlevel of v, denoted as minlevel(v), is
the minimum of evenlevel(v) and oddlevel(v). Similarly, the maxlevel is the maximum of
evenlevel(v) and oddlevel(v).

M. Huang and C. Stein 10:3

Listing 1 Micali-Vazirani Algorithm pseudocode.
1 Set initial greedy matching for G
2 Reset edge labels
3 Set minlevel = 0 and maxlevel = ∞ for each unmatched vertex
4 Set minlevel = ∞ and maxlevel = ∞ for each matched vertex
5 Set level = 0
6 If there exist u such that maxlevel (u) == level or minlevel (u) ==

↪→ level then continue , else go to line 31
7 For each u such that maxlevel (u) == level or minlevel (u) == level:
8 For each unscanned (u,v) with appropriate edge parity :
9 If minlevel (v) ≥ level + 1 then ,
10 Set minlevel (v) = level + 1
11 Add u to the list of predecessors of u
12 Label (u,v) as prop
13 Else ,
14 label (u,v) as bridge
15 If tenacity ((u,v)) != ∞ then
16 Add (u,v) to the list of bridges with the same tenacity
17 For each bridge of tenacity == 2* level + 1:
18 Find support using DDFS
19 If bottleneck found then
20 Augment alternating path
21 Delete the vertices in the augmented path and all vertices that

↪→ are orphanned (no predcessors) as a result
22 Else ,
23 For each v in the support :
24 Set maxlevel (v) = 2* level + 1 - minlevel (v)
25 If v is an inner vertex then
26 For all incident (v,u) which are not props:
27 If tenacity ((u,v)) != ∞ then
28 Add (u,v) to the list of bridges with the same tenacity
29 Set level = level + 1
30 If augmentation occured then go back to line 2, else go to line 6
31 Return the current matching

I Definition 3 (Inner and outer vertices). A vertex is outer if oddlevel(v) > evenlevel(v) and
inner otherwise.

I Definition 4 (Tenacity). Tenacity of vertex v is defined as, tenacity(v) = evenlevel(v) +
oddlevel(v). Tenacity of edge (u, v) is defined as, tenacity((u, v)) = oddlevel(u) + oddlevel(v)
+ 1 for an matched edge and tenacity((u, v)) = evenlevel(u) + evenlevel(v) + 1 for an
unmatched edge.

I Definition 5 (Predecessor, prop, and bridge). For any edge (u, v) such that minlevel(v) ==
minlevel(u) + 1, u is defined to be a predecessor of v. Any edge that joins a vertex and its
predecessor is defined as a prop. If an edge is not a prop, then it is a bridge.

I Definition 6 (Support of a bridge). If (u, v) is a bridge of tenacity t, then the support is
defined as {w|tenacity(w) = t and ∃ a maxlevel(w) path containing (u, v)}

The double depth first search (ddfs) algorithm is also specifically emphasized in Vazirani’s
paper, since it is an essential method for finding augmenting paths and forming petals. The

SEA 2017

10:4 Extending Search Phases in the Micali-Vazirani Algorithm

ddfs finds disjoint paths to the root nodes from any pair of vertices in a level graph. In the
MV algorithm, if such paths exist then an augmenting path is found, otherwise there is a
bottleneck and we form a petal.

2.2.2 Algorithm Description
The MV algorithm is a non-bipartite matching algorithm that operates in phases. Each
phase finds a maximal set of vertex disjoint shortest length augmenting paths. Like the
Hopcroft-Karp algorithm for bipartite graphs, each phase synchronously constructs a level
graph using breadth-first search from unmatched vertices to find alternating paths. Every
time the level graph expands, the algorithm identifies bridges and performs double depth
first searches on them to check for augmenting paths and to form petals. After performing
the double depth first searches at the current level, the phase ends if a path was augmented.
The algorithm terminates once we search the entire graph and do not find an augmenting
path.

Below is a general overview of the MV algorithm in Listing 1:
Lines 5–30: One complete phase
Lines 6–16: The synchronous breadth-first search
Lines 17–28: Using ddfs to find augmenting paths and forming petals
Lines 30: Phase termination condition
Lines 6: Algorithm termination condition

Since each phase ends when the maximum set of vertex disjoint minimum length alternating
path is augmented, there are at most

√
n phases. The algorithm also guarantees O(m) [6]

runtime per phase which leads to the overall runtime of O(m
√
n).

2.3 Past Work
In Kececioglu and Pecqueur [10] a new O(mnα(m,n)) time implementation of Edmonds’
algorithm demonstrated that including simple heuristics in the algorithm could significantly
impact runtime. While the MV algorithm is theoretically the most efficient algorithm known
for non-bipartite matching, experimental studies have identified potential inefficiencies in
implementation [14]. Due to the heuristics’ success in improving the Edmonds’ algorithm,
we considered three analogous heuristics and improvements to target these inefficiencies of
the MV algorithm.

2.3.1 Greedy matching initialization
It is a natural idea to “initialize” a maximum matching algorithm with a greedy (maximal)
matching. Kececioglu [10] considered initializing the modified Edmonds’ algorithm with
different greedy matching algorithms since starting with a larger matching would reduce
the number of augmenting paths needed to be found. The function is the same in the MV
algorithm, but its impact may be greater since we would start with fewer search trees which
would reduce the amount of searching per phase in addition to reducing the total number of
phases.

2.3.2 Order of bridge processing
Bridge processing potentially impacts the performance of the MV algorithm as well.
Mattingly [14] provided examples demonstrating the importance of bridge processing order
towards scenarios where a optimal matching could be found in a single phase. We can extend
this observation and note that even if a maximum matching cannot be found in the phase,

M. Huang and C. Stein 10:5

the order processing bridges can affect phase performance. By processing bridges that lead
to augmentations first, we can avoid processing future bridges that may be topologically
deleted. Changing the order of bridge processing leads to not only fewer phases as Mattingly
suggested, but also shorter phases.

2.3.3 Blossom formation
In previous work, Crocker [2] noted that blossom formation limited the performance of
Gabow’s implementation of the Edmonds’ blossom algorithm. Kececioglu [10] addressed the
issue with heuristics to avoid or delay blossom related operations for Tarjan’s implement-
ation of Edmonds’ blossom algorithm. While these heuristics failed to provide significant
performance boosts, it may improve the performance of the MV algorithm. This is closely
related the order of bridge processing since we may be able to avoid forming petals if the
related bridges are deleted after an augmentation.

2.4 Preliminary Results
In initial trials, only greedy matching initialization significantly reduced the number of
phases of the MV algorithm. For determining the best order for processing trees, difficulty
arose from identifying which alternating paths should be augmented. Attempts were made
by considering the number different free nodes and alternating paths that were associated
with a bridge, however, tracking that information was complicated and priority was hard
to determine since we could only compare bridges associated with alternating paths of the
same length. Reducing blossom formation was unsuccessful as well since phases without
augmentations need blossoms to be formed in order to construct the level graph properly,
meaning the gains from reducing the number of blossoms formed is diminished in future
phases.

2.5 Algorithmic contribution
The Micali-Vazirani algorithm can be improved either by reducing the number of phases or
improving the efficiency of the phases themselves. Due to the bottlenecks analyzed and the
previous work of others, this paper mainly focuses on the former rather than the latter and
achieves this by proposing broader algorithmic changes rather than technical/computational
changes. As a result, the improvements in the number of phases are unaffected by the
computing environment and can be directly compared to the theoretical runtime.

2.5.1 Motivation
The primary inefficiency examined in this paper relates to the termination conditions of each
phase. In previous works, it has been noted that the MV algorithm’s performance is closely
related to the number of phases due to the high overhead in initiating phases[2]. As the
minimum alternating paths get longer, the time to grow each individual search tree from the
unmatched vertices increases and the number of paths augmented per phase decreases. The
initialization for each phase becomes inefficient if we continually reconstruct the same trees
and do not find an augmenting path.

An avenue to attack this inefficiency is to preserve the search trees by continuing the
search phase. Figure 1 provides motivation for why this works. The dashed edges denote
matches while the solid edges are unmatched edges. As the graph continues to the right,
the number of edges separating the triangles grows so that the edges between the kth and
k + 1th triangle is greater than the number of edges between the k − 1th and kth triangle.

SEA 2017

10:6 Extending Search Phases in the Micali-Vazirani Algorithm

Figure 1 The red edges form the augmenting path between the free vertices at the top of each
triangle.

In this scenario, the greedy initialization of the graph leaves vertices 1, 2, 3, and 4
unmatched. A phase of the base MV algorithm terminates after we augment the path
between vertices 1 and 2 in the figure. Even though the search trees of vertices 3 and 4
remain unaffected by the augmentation, the phase resets and the progress towards finding
the path between these two vertices is discarded. Extending the search phase would allow
the augmenting path between 3 and 4 to be discovered in the next search level instead of
the next phase. Assuming the numbering continues in the figure, nodes 2n− 1 and 2n will
be matched in the same phase as well. Thus, instead of augmenting the path between the
2n− 1 and 2n in the nth phase, we augment the paths for all pairs in the first phase.

2.5.2 Termination conditions
Our primary contribution to the MV algorithm targets the termination bottleneck by not
resetting phases even after an augmentation occurs. To describe the changes to the algorithm
we reference the pseudocode in Listing 1 and the actual Python code. Below are the names
of the key procedures in the Python code and the corresponding lines in the pseudocode.

MIN – This is the search procedure that constructs the level graph and corresponds to
lines 7–16 in Listing 1. The MIN procedure in the Python code is provided an array of
vertices to search every phase. These vertices are set in the previous MIN procedures
and in the previous MAX procedures. If the list is empty at the start of the procedure,
the MV algorithm terminates.
MAX – This is the bridge processing procedure that forms petals and augments alternating
paths. It corresponds to lines 17–28 in Listing 1. When petals are formed, vertices are
given their maxlabel and are added to the list of nodes for MIN to process. If augmentation
occurs the current phase terminates.

In the MV algorithm, each phase alternates between running the MIN and MAX procedure
until the termination condition in MIN or MAX is realized. Our modification removes the
augmentation termination condition (line 30) in MAX and replaces it with the condition
that the phase will terminate after running a designated number of MAX procedures that
augmented at least one path. We can set this value so that each phase terminates only when
the end condition is met by MIN. The extended phase MV algorithm pseudocode can be
seen in Listing 2 in the appendix.

The modification allows the algorithm to preserve work put into constructing the level
graph in the current phase. Additionally, the level graph that remains after augmentation
preserves the search trees from unmatched nodes that were disjoint from the augmented
paths since it topologically deletes the search trees of the matched nodes. This results in the
selection of a maximal set of augmenting paths during each phase.

The three principles/observations that make the modification immediately attractive are:
1. It is guaranteed to not have more phases than the original algorithm.
2. In earlier phases, the alternating paths are shorter. That means the total number of

alternating paths that intersect with augmented paths is lower and the maximal matching
will find a larger fraction of the remaining matches.

M. Huang and C. Stein 10:7

3. In later phases, the number of alternating paths becomes more sparse as the number of
free vertices decreases and are more likely to have different lengths. It also becomes less
likely that augmenting one path will impact other search trees. Extending the phases
saves in reconstructing unused search trees in a manner similar to the motivational
example discussed earlier.

3 Experiments

In past experimental studies, the best algorithm in practice was Kececioglu’s modification
of Tarjan’s O(mnα(m,n)) algorithm, which ran roughly 4 times faster than Crocker’s MV
algorithm[10]. Our experiments will primarily focus on measuring the relative improvements
that can be made on the MV algorithm by reducing the number of phases. The relative
measure can provide insight on how it will perform against Kececioglu’s algorithm.

Since the main goal focuses on methods reducing the number of search phases, less effort
was put into the implementation and selection of data structures that could optimize the
performance of each individual search phase. In order to remain consistent, we use the same
implementation of the search phase for each variant of the algorithm.

The implementation was written in Python 2.7.10 and utilizes the time, csv, NumPy, and
NetworkX modules. The majority of the experiments were conducted on Columbia Business
School research grid. For larger graphs that required more memory to store the node and
edge data, we used a Intel Xeon E5-2667 processor with 256 GB of main memory. The
different implementations and experiments are available at:

https://github.com/mh3166/Extended_MV_algorithm

3.1 Variants/Implementations
For our experiment, we present two different modifications:

1. The first chooses a different initialization method. We construct the initial maximal
matching using the heuristics and reductions discussed in Magun’s experimental work
with greedy matching algorithms [13]. Like our simple greedy algorithm, every time
an edge is added to the the matching, the adjacent vertices and the adjacent edges are
removed from the graph. We then find the maximal matching for the remaining graph.
The new greedy algorithm performs 1 reductions which means that in the current graph,
the edges of vertices of degree 1 must be included in the maximal matching. It also
uses a heuristic (referred to as Heuristic 1), which states that each edge we add to the
maximal matching must include a node with minimum degree in the current graph, and
another heuristic, which states that the opposite node to the one in Heuristic 1 must
have minimum degree among the neighboring vertices.

2. The second is our algorithmic contribution that replaces the termination condition for
the MAX phase of the MV algorithm with a more relaxed version that only terminates a
phase after it encounters a specified number of MAX phases that augmented a path. In
the experiment, this number was 100 and was never reached in any trial.
Let the following be notation for the different variants of the MV algorithm.
a. MV0 is the base algorithm
b. MV1 is the variant with modification 1.
c. MV2 is the variant with modification 2.
d. MV3 is the variant with modification 1. and modification 2.

SEA 2017

https://github.com/mh3166/Extended_MV_algorithm

10:8 Extending Search Phases in the Micali-Vazirani Algorithm

3.2 Graphs
Building upon the previous MV algorithm work of Crocker [2] and Mattingly and Ritchey
[14], we examined the graphs of previous experiments that had non-trivial processing times.
Given that we know the structure of these graphs, the results can provide insight into the
improved performance. We also tested the algorithm on real world graphs that provided
significant challenge to the original algorithm in order to demonstrate the improved algorithm’s
robustness. Below are the selected graph:

1. Random graphs with n nodes and with expected degree d. This is a Erdős-Rényi
graph, a binomial graph that was generated with the fast_gnp_ random_graph method
in NetworkX [7]. It takes the inputs n and p = d

n . Following Crocker [2], we chose the
average degrees that differed by factors of 21/16 and chose a range of 0 ≤ d ≤ 8.

2. Grid graphs with n2 nodes with expected degree d. The grid graph is a n× n lattice
graph that has some of the edges removed. Rather than having each node be adjacent to
four edges, we construct it so that the average degree d of the graph is 2 ≤ d ≤ 4. The
graph is constructed by visiting each node and adding each of the four edges to the graph
with probability p = 1− (1− d

4)1/2 which accounts for visiting each edge twice. We test
sizes for 4 ≤ n ≤ 10.

3. One-connected triangles with 2k triangles. The graph has 2k vertex disjoint triangles.
These triangles are then interconnected by only one edge. To construct the graph, we
add the following edges

(3i, 3i+ 1), (3i+ 1, 3i+ 2), (3i+ 2, 3i) 0 ≤ i ≤ 2k − 1,

(3i+ (i mod 3), 3i+ 3 + (i mod 3)) 0 ≤ i ≤ 2k − 2,

where {0, . . . , 3 · 2k − 1} is the set of vertices. Since the algorithm will process the edges
and nodes in numerical order, the graphs are randomized by switching numbering while
maintaining the same structure. We test for 10 ≤ k ≤ 20.

4. Three-connected triangles with 2k triangles. The graph also has 2k vertex disjoint
triangles. The triangles are now interconnected by three edges instead of one. To construct
the graph, we add the following edges

(3i, 3i+ 1), (3i+ 1, 3i+ 2), (3i+ 2, 3i) 0 ≤ i ≤ 2k − 1,

(3i, 3i+ 3), (3i+ 1, 3i+ 4), (3i+ 2, 3i+ 5) 0 ≤ i ≤ 2k − 2,

where {0, . . . , 3·2k−1} is the set of vertices. Again we randomize the graph by randomizing
the labels of the nodes. We test for 10 ≤ k ≤ 14. The lower range is because we run into
recursion issues when opening petals in graphs with k ≥ 15.

5. Real World Graphs are composed of selections from Stanford’s Large Network Dataset
Collection [12] as well as graphs constructed by the NYC taxi cab data from 2015 as
shown in Table 1. From Stanford’s data set we chose network graphs showing representing
Amazon’s product co-purchasing network as of certain dates. Most of these graphs were
only selected for their size and average degree rather than for their practical application.
From the NYC taxi cab data, we constructed a more realistic matching problem the
graph by finding taxicab passengers who were close in departure time and location and
were headed in a similar direction. See the github link for the code that generated these
graphs. The maximum matching in this graph would provide the maximum number of
carpooling opportunities in NYC in a day.

M. Huang and C. Stein 10:9

Table 1 Description of Real World Graphs.

Network Graph |N | |E| Avg. Deg.

Amazon Co-Purchasing 3/2/03 262111 899792 3.43
Amazon Co-Purchasing 3/12/03 400727 2349869 5.86
Amazon Co-Purchasing 5/5/2003 410236 2439437 5.95
Amazon Co-Purchasing 6/1/2003 403394 2443408 6.06

2/1/15 Taxi Data 325109 952974 2.93
2/2/15 Taxi Data 569599 1487866 2.61
2/4/15 Taxi Data 1216990 3414986 2.81
2/5/15 Taxi Data 1578057 4564025 2.89
2/7/15 Taxi Data 2335680 6993447 2.99

Figure 2 Average search phases and running time as the expected degree changes for random
graphs with 220 nodes.

4 Results

In this section, we observe the relationship between the structure of the graphs and the
performance of the algorithms.

Overall, we see phase reduction and thus lower running time when utilizing our modifica-
tion of extending phases. Changing the greedy initialization also has significant impact on
phases (~60% reduction at best) and running time as well, but we get the most consistent
performance in phase reduction when combining the two modifications as seen by MV3. In
the few cases where MV3 performs worse than MV2, we are mainly hampered by overhead
in our modified greedy initialization.

While we see overall improvement, we also see noticeable differences in performance on
different graphs.

4.1 Random Graphs
The random graphs experiment provides a starting point to analyze what could reduce the
number of phases in the MV algorithm. As seen in Figure 2, we replicated the observation
from Crocker [2] that the number of phases peaks at degree ~3 and empirically observed the
proposition by Bast[1] that with high probability the length of the maximum augmenting
path–and thus the maximum number of phases–for any non-maximum matching is O(logn)

SEA 2017

10:10 Extending Search Phases in the Micali-Vazirani Algorithm

Figure 3 Average percent reduction of search phases and running time as the number of nodes
increases for random graphs with an expected degree of

√
8.

for random graphs with average degree above some constant c. In this experiment, we also
discovered that utilizing an initialization heuristic alone can reduce phases and that it can
also improve the performance of the MV algorithm with extended search phases.

From Magun [13], we know that compared to initializing with a random maximal matching,
both the starting number of matches and average degree of the free vertices are more likely
to be greater. That implies the MV algorithm could be receiving a performance boost from
the fewer matches to be found or the larger number of alternating paths per free vertex.

4.2 Grid graphs
To further investigate the effect of search phase extension and the initialization heuristic,
we can compare the random graph experiment to the grid graph experiment by comparing
Figure 4 to Figure 3. In the worst case examples, grid graphs require significantly more
phases and thus more time to be solved compared to random graphs. Additionally, the
initialization heuristic has little effect in improving performance as graph size grows. While
we again see that the worst case performance occurs in randomly generated graphs with an
average degree of 3, it is clear that the limited range of degrees for vertices has a negative
effect on the performance of the MV algorithm.

4.3 One-connected Triangles
One-connected triangle graphs provide an even more extreme scenario where simple structures
result in high phase costs for the MV algorithm. In Figure 5, we see that applying the

M. Huang and C. Stein 10:11

Figure 4 Average percent reduction of search phases and running time as the number of nodes
increases for grid graphs with expected degree of 3.12.

initialization heuristic helps deal with that issue by consistently reducing the number of
phases by 60%. However, by extending phases, the MV2 and MV3 algorithm perform
significantly better by reducing the number of phases by over a factor of 50 as seen in Table 2.
This type of graph closely resembles the motivational graph in Figure 1 and demonstrates the
type of graphs and subgraphs that benefit from extending search phases. See the appendix
for further discussion.

4.4 Three-connected Triangles
The Three-connected triangle graph experiment had similar results to the one-connected
version in terms of the phase count. We include this experiment to demonstrate the effect
of nested petals on performance. In the algorithm, the nested structure requires recursive
calls to open petals in order to find augmenting paths. From a technical standpoint, in
larger graphs this triggers the default maximum recursion depth safeguard for Python which
terminates the algorithm early. This problem can be avoided by implementing a non-recursive
method for finding augmenting paths as discussed by Mattingly [14].

4.5 Real World Graphs
In Table 3, we see that the benefits of the greedy initialization and phase extension apply
to real world graphs. Our results primarily focused on solving the maximum cardinality
matching problem for large graphs where each phase is computationally expensive. The

SEA 2017

10:12 Extending Search Phases in the Micali-Vazirani Algorithm

Table 2 Average runtime and phase for one connected triangle graphs as number of triangles
increase.

Average Runtime (sec) Average Phases
Triangles MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3
210 0.923 0.374 0.34 0.327 24.1 10 4 3.7
212 7.734 2.627 2.019 2.04 50.5 18 4.8 4.2
214 89.298 24.088 11.175 11.002 103.1 35.6 5.4 5.1
216 829.863 195.934 53.978 52.98 200.8 70.2 6.3 5.8
218 6185.386 1668.073 238.776 221.504 410.2 140.1 8.4 6.5

Table 3 Search phases and running time for different real world graphs.

Average Runtime (sec) Average Phases
Network Graph MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3

Amazon Co-Purchasing 3/2/03 178.89 194.36 66.23 118.12 21 20 4 5
Amazon Co-Purchasing 3/12/03 398.23 466.23 227.72 248.53 18 19 5 3
Amazon Co-Purchasing 5/5/2003 380.5 422.09 191.73 256.7 18 17 5 4
Amazon Co-Purchasing 6/1/2003 400.7 469.1 260.45 287.07 17 18 5 4

2/1/15 Taxi Data 622.61 458.32 187.15 141.46 53 42 10 6
2/2/15 Taxi Data 972.02 946.72 315.67 257.57 56 48 11 7
2/4/15 Taxi Data 3142.8 2852.5 724.79 640.93 72 59 10 7
2/5/15 Taxi Data 5277.9 4552.8 1158.1 1035.1 75 63 10 7
2/7/15 Taxi Data 9480.2 8593.6 1868.8 1546.5 81 75 11 7

results of the real world graphs fall in line with the artificially created graphs. The Amazon
Co-Purchasing graphs demonstrate the higher average degree correlates to fewer phases
observation discovered in the random graph experiments. The modifications to the MV
algorithm thus have a lesser impact towards improving performance. The taxi graph results
provide an example of graphs whose performance is dictated by degree and structure. While
the higher degree reduces the number of phases needed compared to that of the worst case
random graphs, the number of phases needed does not decrease at the same rate. Thus, we
see significant improvement similar to that of artificial graphs that have a specific structure.
These real world graphs show that our modifications are effective against structure that
hampers the MV algorithm.

5 Discussion

5.1 Runtime
Through our experiments we have seen that the removal of the termination condition in
MAX greatly reduces the number of phases the algorithm must be processed. When we plot
the growth of number of phases vs. the log size of the problem in Figure 6, we see that there
is a linear relationship. Thus, it seems that the number of phases grows in O(logn).

Additionally, in our experiments, after obtaining the maximum matching, we also were
able to calculate the fraction of remaining matches that were processed during each phase.
Figure 7 plots the average fraction found per phase for one-triangle connected graphs as
the graph size grows in number of triangles. We see that the algorithms with the extended
phases can better preserve the O(logn) number of phases by consistently finding a high
fraction of remaining matches per phase.

M. Huang and C. Stein 10:13

Figure 5 Average percent reduction of search phases and running time as the number of triangles
increases for one-connected triangle graphs.

5.2 Worst Case Graph
From our experiments we have only seen graphs that perform well after making the algorithmic
modification to the MV algorithm. Figure 8 is an example of a type of graph where the
worst case runtime is O(

√
nm).

With the greedy matching shown after the initial phase, both the base and the modified
algorithm will have a O(

√
nm) runtime if it first augments the path that intersects all other

alternating paths. The resulting new graph again has a alternating path that intersects all
other alternating paths. In each phase, there is the possibility that only one path will be
augmented. Since we start with n matchings to be found and the starting graph is of size
O(n2), we obtain the O(

√
n) number of phases. In this case, the modified algorithms have

the same performance as the base MV algorithm.

6 Conclusion

We introduced a new implementation of the Micali-Vazirani algorithm that effectively reduced
the number of search phases and demonstrated its effectiveness on a variety of graph types.
Our primary contribution considers extending search phases which in our experiment reduces
the number of phases by at least 40% in smaller graphs and up to 98% in larger graphs.
The phase reduction translates well to runtime when the phase improvement is large. This
saves in overhead cost from reseting the graph each phase. For cases where the graphs
could already be solved by the base MV algorithm in a few phases, runtime improvement is

SEA 2017

10:14 Extending Search Phases in the Micali-Vazirani Algorithm

Figure 6 Comparison of phase growth with and without the termination condition in MAX
phase.

Figure 7 Comparison of average percent of remaining matches found per phase.

smaller since the algorithm is already using each phase efficiently. In the future, we hope to
improve the more technical aspects of the implementation, such as choosing more efficient
data structures and cleaning up any inefficiencies in the code. A fully optimized version
would allow for better comparison with matching algorithms in previous works as well as
matching algorithms exclusive to bipartite graphs. From a more theoretical standpoint,
we would also like to study how the structure of the graphs impacts the performance of
the modified MV algorithm. This may provide insight that could result in more significant
contributions that could improve the performance of the MV algorithm.

References

1 Holger Bast, Kurt Mehlhorn, Guido Schafer, and Hisao Tamaki. Matching algorithms are
fast in sparse random graphs. Theory of Computing Systems, 39(1):3–14, 2006.

2 Steven T. Crocker. An experimental comparison of two maximum cardinality matching
programs. In Catherine C. McGeoch David S. Johnson, editor, Network Flows and Match-
ing: First DIMACS Implementation Challenge, volume 12 of Discrete Mathematics and
Theoretical Computer Science, pages 519–537, 1993.

M. Huang and C. Stein 10:15

Figure 8 Example of O(
√

nm) performance for the modified algorithm: Augmented paths are in
red. In the example, the worst case maximal set of one is chosen in each phase.

3 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

4 Shimon Even and Oded Kariv. An O(n2.5) algorithm for maximum matching in general
graphs. In Foundations of Computer Science, 1975., 16th Annual Symposium on, pages
100–112. IEEE, 1975.

5 Harold N. Gabow. An efficient implementation of Edmonds’ algorithm for maximum match-
ing on graphs. Journal of the ACM (JACM), 23(2):221–234, 1976.

6 Harold N. Gabow. Set-merging for the Matching Algorithm of Micali and Vazirani. arXiv
preprint arXiv:1501.00212, 2014.

7 Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy2008), pages 11–15, Pasadena, CA USA, August 2008.

8 John E. Hopcroft and Richard M. Karp. A n5/2 algorithm for maximum matchings in
bipartite. In Switching and Automata Theory, 1971., 12th Annual Symposium on, pages
122–125. IEEE, 1971.

9 T. Kameda and I. Munro. A O(|V | · |E|) algorithm for maximum matching of graphs.
Computing, 12(1):91–98, 1974.

10 John D. Kececioglu and A. Justin Pecqueur. Computing maximum-cardinality matchings
in sparse general graphs. In Algorithm Engineering, pages 121–132, 1998.

11 Eugene L. Lawler. Combinatorial optimization, 1976.
12 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection,

jun 2014. URL: http://snap.stanford.edu/data.
13 Jakob Magun. Greeding matching algorithms, an experimental study. J. Exp. Algorithmics,

3, sep 1998. doi:10.1145/297096.297131.
14 R. Bruce Mattingly and Nathan P. Ritchey. Implementing an o(sqrtNm) cardinality match-

ing algorithm. In Catherine C. McGeoch David S. Johnson, editor, Network Flows and

SEA 2017

http://snap.stanford.edu/data
http://dx.doi.org/10.1145/297096.297131

10:16 Extending Search Phases in the Micali-Vazirani Algorithm

Matching: First DIMACS Implementation Challenge, volume 12 of Discrete Mathematics
and Theoretical Computer Science, pages 539–556, 1993.

15 Silvio Micali and Vijay V. Vazirani. An O(
√
|V | · |E|) algoithm for finding maximum

matching in general graphs. In Foundations of Computer Science, 1980, 21st Annual
Symposium on, pages 17–27. IEEE, 1980.

16 Vijay V. Vazirani. An improved definition of blossoms and a simpler proof of the MV
matching algorithm. CoRR, abs/1210.4594, 2012. URL: http://arxiv.org/abs/1210.
4594.

A Appendix

A.1 Additional Results: Graphs

Figure 9 Average percent reduction of search phases and running time as the number of triangles
increases for three-connected triangle graphs.

http://arxiv.org/abs/1210.4594
http://arxiv.org/abs/1210.4594

M. Huang and C. Stein 10:17

Figure 10 Average search phases and running time as the expected degree increases for grid
graphs with 220 nodes.

A.2 Additional Results: Tables

Table 4 Average search phases and running time as the number of nodes increases for random
graphs with an expected degree of

√
8.

Average Runtime (sec) Average Phases
N MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3
210 0.106 0.078 0.076 0.084 10.2 2.6 4.8 2
212 0.846 0.482 0.48 0.496 16.4 4.2 5.4 2.6
214 6.208 2.694 2.47 2.184 28.6 7.8 7 3.4
216 53.052 15.654 14.58 11.13 48 9.6 8.2 3.2
218 343.739 100.947 67.186 48.578 69.5 17.1 8.6 3.5
220 1549.718 469.49 262.22 192.17 97.8 26.6 9.6 4

Table 5 Average runtime and phase for three connected triangle graphs as number of triangles
increase.

Average Runtime (sec) Average Phases
Triangles MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3
29 0.535 0.262 0.251 0.291 12.4 6 3.6 3.8
210 1.266 0.609 0.6 0.581 17.6 8.6 4.1 4
211 3.464 1.332 1.218 1.37 25.5 11.8 4.3 4.5
212 10.144 3.686 3.374 2.931 35 14.4 5 5
213 33.639 10.169 7.482 7.423 50 19.7 5.1 5.3
214 179.793 33.029 18.856 19.772 70.2 27.3 5.1 5.5

SEA 2017

10:18 Extending Search Phases in the Micali-Vazirani Algorithm

Table 6 Average search phases and running time as the number of nodes increases for grid graphs
with expected degree of 3.12.

Average Runtime (sec) Average Phases
N MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3
210 0.12 0.141 0.085 0.132 4.8 2.9 2.4 1.8
212 0.639 0.811 0.362 0.535 9.5 7 3.2 3.1
214 6.082 6.552 2.125 2.919 15.3 16.8 4.1 4
216 47.305 49.861 11.824 14.806 27.4 27.8 4.5 4.5
218 545.662 622.501 93.476 92.991 87.9 89.5 7.6 6.9
220 2819.185 2928.456 324.903 366.417 171.1 174.9 11 10.9

A.3 Micali-Vazirani Algorithm with Extended Phases

Listing 2 Micali-Vazirani Algorithm pseudocode.
1 Set initial greedy matching for G
2 Reset edge labels
3 Set minlevel = 0 and maxlevel = ∞ for each unmatched vertex
4 Set minlevel = ∞ and maxlevel = ∞ for each matched vertex
5 Set level = 0
6 Set augmentation_count = 0
7 If there exist u such that maxlevel (u) == level or minlevel (u) ==

↪→ level then continue , else go to line 31
8 For each u such that maxlevel (u) == level or minlevel (u) == level:
9 For each unscanned (u,v) with appropriate edge parity :
10 If minlevel (v) ≥ level + 1 then ,
11 Set minlevel (v) = level + 1
12 Add u to the list of predecessors of u
13 Label (u,v) as prop
14 Else ,
15 label (u,v) as bridge
16 If tenacity ((u,v)) != ∞ then
17 Add (u,v) to the list of bridges with the same tenacity
18 For each bridge of tenacity == 2* level + 1:
19 Find support using DDFS
20 If bottleneck found then
21 Augment alternating path
22 Delete the vertices in the augmented path and all vertices that

↪→ are orphanned (no predcessors) as a result
23 Else ,
24 For each v in the support :
25 Set maxlevel (v) = 2* level + 1 - minlevel (v)
26 If v is an inner vertex then
27 For all incident (v,u) which are not props:
28 If tenacity ((u,v)) != ∞ then
29 Add (u,v) to the list of bridges with the same tenacity
30 Set level = level + 1
31 If augmentation occured then augmentation_count += 1
32 If augmentation_count == 100 then go to line 2, else go to line 7
33 Return the current matching

M. Huang and C. Stein 10:19

A.4 Lemmas
I Lemma 7. Augmenting a maximal set of vertex disjoint augmenting paths that includes a
maximal set of vertex disjoint shortest augmenting paths increases the length of the shortest
augmenting path in the new matching

Proof. Let M be the initial matching, let M ′ be the subsequent matching after augmenting
the maximal set of disjoint shortest augmenting paths P in M , and let M ′′ be the subsequent
matching after augmenting the maximal set of disjoint augmenting paths P ′ in M . From
Hopcroft and Karp [8] we know that if the length of the shortest augmenting path of a
matching M is l, then the length of the shortest augmenting path in M ′ is strictly greater
than l. Since P ∈ P ′ and the paths in P ′−P are disjoint from P , augmenting the set P ′−P
in matching M ′ gives us M ′′. The shortest augmenting path cannot get shorter, thus the
shortest augmenting path in M ′′ is still strictly greater than l. J

A.5 Additional Discussion
We can show O(m logn) in the worst case for certain families of graphs while also proving
the base algorithm operates in O(

√
nm) time. The construction of such a graph is similar to

that of the one-connected triangles graph in that it is constructed by joining vertex disjoint
triangles. Instead of joining the triangles with one edge, it is replaced by a sequence of edges
described below.

Let the number of edges between each triangle be determined by the following. Let us
number the triangles from 1 to k. The number of edges joining triangle 2i − 1 and 2i be
2(i− 1) + 1 and let the number of edges joining triangle 2i and 2i+ 1 be 2i+ 1.

To demonstrate the worst case performance, let us assume that after a greedy matching,
we have a graph such that the only free vertices are the nodes of each triangle i that is not
adjacent to the set of edges connecting the triangle to triangle i− 1 or i+ 1.

In the case of the modified algorithm MV2, we see that after the initial greedy matching,
each phase selects a maximal set of augmenting paths. Since the unmatched vertices essentially
lie on the same line, augmenting paths will always be guaranteed to be matched at most two
potential free vertices. That means the algorithm also never encounters non vertex disjoint
alternating paths. The problem can be reduced to selecting a maximal matching, where
unmatched edges are the alternating paths. Rather than randomly choosing the matching, it
is determined by the length of the alternating paths, but since it is a maximal selection, the
equivalent problem is also a maximal matching. Since we know that a maximal matching is
a 2-approximation of the maximum matching, it implies that the maximal set of alternating
paths is also a 2-approximation of selecting the maximum set of augmenting paths. Thus,
we are guaranteed to reduce the number of remaining matchings to be found in half each
phase giving us the O(m logn) worse case run time.

SEA 2017

	Introduction
	Algorithm
	Basic Definitions
	Micali-Vazirani Algorithm
	Key Concepts
	Algorithm Description

	Past Work
	Greedy matching initialization
	Order of bridge processing
	Blossom formation

	Preliminary Results
	Algorithmic contribution
	Motivation
	Termination conditions

	Experiments
	Variants/Implementations
	Graphs

	Results
	Random Graphs
	Grid graphs
	One-connected Triangles
	Three-connected Triangles
	Real World Graphs

	Discussion
	Runtime
	Worst Case Graph

	Conclusion
	Appendix
	Additional Results: Graphs
	Additional Results: Tables
	Micali-Vazirani Algorithm with Extended Phases
	Lemmas
	Additional Discussion

