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Abstract
The wavelet tree (WT) is a flexible and efficient data structure for representing character strings
in succinct space, while allowing for fast generalised rank, select and access operations. As such,
they play an important role in modern text indexing methods. However, despite their popularity,
not many algorithms have been published concerning their construction. In particular, while the
WT is capable of representing a sequence of length n over an alphabet of sizem in n lgm+o(n lgm)
bits, much more space is typically used for its construction. Here we propose an O(n lgm)-time
online method for the construction of the WT, requiring no prior knowledge about the input
alphabet. The proposed algorithm is conceptually simpler than other state-of-the-art methods,
while having comparable time performance and being more space-efficient in practice, since it
performs just one pass over the input text and uses little extra space other than for the structure
itself, as shown both theoretically and empirically.
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1 Introduction

The wavelet tree is a fundamental data structure proposed by Grossi, Gupta and Vitter [10],
whose myriad virtues have been widely recognised since its introduction [6, 18, 17]. They are
used for representing large character strings in tight space, while allowing for some specific
questions about their composition, for instance ‘how many occurrences of a particular letter
are there between positions 3- to 8-billion?’, to be answered very quickly, without having to
probe the string. It is thus a cornerstone of modern string matching techniques.

Despite having been introduced for well over a decade, not many papers have been
published that deal specifically with their construction. In this paper we present a simple and
efficient method for the online construction of wavelet trees. We contend that the algorithm
proposed herein is among the most efficient methods in practice, both in time and space,
and provide experimental evidence to support this claim.

We begin by describing the data structure, its main operations and space requirements.
Then we present our construction algorithm with a theoretical analysis of its costs. After
that we discuss previous related work, and where our contribution sits in the context. Finally,
we report on our experimental analysis and state our conclusions.
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Figure 1 Balanced WT of T = wavelet_tree over A = {a, e, l, r, t, v, w,_}. Only the bit vectors
are actually stored. The strings and alphabets are shown for illustration purposes only.

2 The Wavelet Tree

We consider strings T = t0 · · · tn−1 over a finite alphabet A = {a0, . . . , am−1}. For any
subset A′ ⊆ A, let proj(T,A′) be the noncontiguous, possibly empty, subsequence of T
consisting of all its positions in A′. We call this the projection of T on A′. In particular,
proj(T, [l : r]), with 0 ≤ l, r ≤ m, denotes the subsequence of T made of its characters in the
range A[l : r] ≡ {al, . . . , ar−1}. For example, if A = {a, b, c, d} and T = adbcabdcb, then
proj(T, [1 : 3]) = bcbcb. Complementary, we define the support of T as supp(T ) = ∪n−1

i=0 {ti},
that is, the subset of A consisting of the characters in T . Hence we have proj(T, supp(T )) = T ,
and supp(proj(T,A′)) ⊆ A′.

I Definition 1. A wavelet tree (WT) of a nonempty string T with support A is a digital
search tree recursively defined as

W (T,A) =


⊥, if |A| = 1,

B(T,A0,A1)

W (proj(T,A0),A0) W (proj(T,A1),A1)
, otherwise,

(1)

where
A = A0 ∪ A1 is a nontrivial partition of the alphabet,
The root consists in an indicator bit array B(T,A0,A1) = b0 · · · bn−1 of length n = |T |,
such that bi = 0, if ti ∈ A0, or bi = 1, if ti ∈ A1,
The left and right subtrees, W (proj(T,A0),A0) and W (proj(T,A1),A1) correspond to
wavelet trees of the projections of T over the subalphabets A0 and A1, respectively, and
⊥ represents a null (empty) tree, which is the base case for unary alphabets.

The most common case of the definition of W (T,A) happens when, at each node, the
alphabet is split into two halves, as shown in Figure 1. In this case, the WT is said to be
balanced.

The WT data structure provides for generalised access, rank, and select queries. Given
W = W (T,A), W.access(i) returns the character ti, W.rank(c, i) returns the number of
occurrences of character c in T up to (and including) position i, and W.select(c, j) returns
the position of the jth occurrence of character c in T , so that if i = W.select(c, j), then
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W.rank(c, i) = j. In order to do so efficiently both in time and space, the WT employs
specialised bit vectors supporting constant-time binary rank and select primitive operations, at
the cost of only a sublinear amount of extra bits E(r) = o(r), where r is the lenght of the raw
sequence of bits [1, 11]. Hence the balanced WT requires ≈ lgm(n+o(n)) = n lgm+o(n lgm)
bits of space for the bit vectors since, at every level of the tree, each letter of the text is
represented exactly once. On top of that, we have one pointer per node, each taking O(lgn)
bits, thus O(m lgn) bits for the tree structure. This O(m lgn) factor can actually be avoided,
as discussed in [18], and we can have a representation with just one bitvector and no pointers
in n lgm + o(n lgm) bits of space, which qualifies the WT as a succinct data structure
[15], since the uncompressed sequence takes n lgm bits. Moreover, the generalised access,
rank and select queries can be answered in O(lgm) time by following root-to-leaf paths and
performing rank and select queries on their bit arrays.

3 WT construction

The naive recursive procedure for building W (T,A) that mirrors Definition 1 requires
partitioning A, computing the indicator bit array of the root node, B(T,A0,A1), based on
each character of T belonging to either A0 or A1, and recursively building the left and right
subtrees from the projections of T over these subalphabets. In the balanced WT, at each
node subalphabets can be represented as [l : r] pairs, and the bit array and the projections can
be computed in one pass over the corresponding substring. In total, we have O(n lgm) time
complexity. Nevertheless this strategy requires creating and maintaining several intermediate
substrings (the projections) through the recursion stack, and going over multiple copies of
the same character of T .

The main motivation of our method is to completely avoid the costly operations of
explicitly partitioning the alphabet and projecting the strings, or any other expensive
substring manipulation like character counting or sorting. We want to process the input
string in one single pass and so our proposed algorithms are online, that is we scan each
character of T exactly once from left to right, and maintain no extra copies.

For the sake of presentation only, we consider two different scenarios. In the first case,
the support alphabet is known in advance. This situation is used as an introduction to the
more general case where the alphabet is unknown, and revealed only as the string is scanned.

3.1 WT construction with known alphabet
The first procedure, shown in Algorithm 1, is used to build a WT for a string T whose
support alphabet is given. The idea is very simple and consists in, first, initialising an empty
WT, called template, and then filling the bit arrays in one scan of T . For every scanned
character ti, the algorithm follows the corresponding (unique) root-to-leaf path, appending
the necessary bits to the nodes on its way.

There is just one subtlety that will prove important in what follows. We have been
accustomed to depictions of balanced WTs where the alphabet is literally cut in half, with
the first dm/2e symbols assigned to the first subalphabet, and the remaining bm/2c to the
second one. This is equivalent to assigning aj to left or right subtrees down the root based on
the binary representation of j from left to right, that is, from the most to the least significant
bit. However, this need not be the case in general, for it suffices that the partition be evenly
sized so as to keep the tree balanced, irrespective of which symbol goes where. So, instead,
we choose to follow the bits of j from right (lsb) to left (msb). This results in symbols being
assigned to the left/right subalphabets in an alternate fashion.
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Algorithm 1 Balanced WT online construction with known alphabet
1: Algorithm WT0 (T = t0 · · · tn−1, A =
{a0, . . . , am−1})

2: root← buildTemplate([0 :m])
3: for i← 0, . . . , n− 1 do
4: cur ← root

5: j ← A.index(ti)
6: while cur 6= ⊥ do
7: if jmod 2 = 0 then
8: cur.B.append(0)
9: cur ← cur.left

10: else
11: cur.B.append(1)
12: cur ← cur.right

13: j ← j � 1 . Right shift
14: return root

1: Algorithm buildTemplate ([l : r])
2: if (r − l) = 1 then
3: return ⊥
4: root← new empty WT node
5: h← d(l + r)/2e
6: root.left← buildTemplate([0 :h])
7: root.right← buildTemplate([h :m])
8: return root

I Proposition 2. Algorithm 1 builds W (T,A) in O(n lgm) time, using αn lgm+O(1) bits
of space beyond the size of the WT and A, for some constant 0 < α ≤ 1.

Proof. The procedure buildTemplate is used to create a strictly binary tree with m terminal
null nodes (⊥), hence m− 1 actual nodes, of which bm/2c are leaves. Since the nodes are
empty, just O(m) time is needed.

For each character read, the algorithm visits dlgme nodes on the path from the root to a
leaf. At each node, a bit is appended to a growing bit vector, which can be done in constant
amortised time by using dynamic arrays [5, Sec 17.4]. Therefore we have O(n lgm) time for
filling the previously built template. Since m = |supp(T )| ≤ |T | = n, this phase dominates
the cost, and we have O(n lgm) time for the entire construction process.

As for the space, notice that only the currently scanned symbol of T is used in the main
loop, and so only that symbol needs to be kept in memory at any given time. Therefore
we would only need space for the WT itself (bit arrays, pointers, etc.), plus the alphabet,
plus a small constant amount of bits for the working variables. However, the dynamic arrays
require extra space to ensure the constant amortised time per append operation. At any
time, each level of the tree has as many used bits as the number of characters read so far, but
at most α times as many bits may be physically allocated, with typical values of α ranging
from 1.5 to 2. Hence at most αn lgm+O(1) bits of total extra space may be required. J

I Remark. (i) In this analysis, we are not explicitly accounting for the work to build the
auxiliary structures of the bit vectors, needed for constant-time rank/select. We can safely
assume, however, that this work is linear on the size of the arrays, and thus the proposition
remains valid. (ii) We also assume that the alphabet data type supports the computation of
the index (rank) of a given character in constant time, which is easily accomplished by many
dictionary data structures albeit with different space-time tradeoffs.

3.2 WT construction with unknown alphabet
We now turn to the online construction of the balanced WT of T with no prior knowledge
about its support alphabet. Contrary to Algorithm 1, the WT cannot be laid out in advance
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in this case. Instead, the alphabet, and consequently the shape of the tree itself, must be
updated along with its content as the characters are scanned.

Let us consider first the update in the tree structure as the size m of the alphabet grows.
The structure of the WT reflects an hierarchic binary decomposition of the alphabet, with an
1:1 correspondence between nodes and subalphabets. In order to keep the partition balanced
as m increases, each new symbol will be successively assigned to either the left or right
subalphabet in an alternate fashion, as with the previous case.

Now, consider the update from W (i) = W (T [0 : i],A(i) = supp(T [0 : i])) to W (i+1) =
W (T [0 : i+ 1],A(i+1) = supp(T [0 : i+ 1])) upon reading ti. If ti = aj for some aj ∈ A(i),
then the update is similar to one iteration of Algorithm 1, for the symbol is already represented
inW (i). If, on the other hand, ti 6∈ A(i), then the update goes as follows. Let s = |A(i)| be the
size of the current alphabet. Starting at the root, if s is even (lsb=0), then the next symbol
as = ti should be assigned to the left subalphabet. Thus the next position of the root bit array
should be set to 0 and the left subtree should then be updated. If s is odd (lsb=1), we set
root.B[i] to 1 and proceed down to the right subtree. Appending a new bit to a bit vector does
not affect its previous positions because of the alternating partitioning pattern. By following
the same procedure at each node down the path, we may eventually reach an endpoint (a leaf
in this case) corresponding to a binary subalphabet, say {ap, aq} with p < q < s. After the
addition of the bit concerning ti = as to this endpoint, the subalphabet becomes {ap, aq, as},
at which point this node has to be further split into a left child accounting for the binary
subalphabet {ap, as}, and an ‘implicit’ (⊥) right child corresponding to {aq}. The new left
child bit array should now represent proj(T [ : i+ 1], {ap, as}) with ap ≡ 0 and as ≡ 1, thus
being in the form 0k1, for the only occurrence of as corresponds to the newly added ti.
Another possibility is that the endpoint represents a ternary alphabet {ap, aq, ar}. In this
case it would have a left child but not a right child, which is where the update should proceed
to. So, a new right child has to be added to represent proj(T [ : i+ 1], {aq, as}). An endpoint
cannot correspond to a subalphabet of size ≥ 3, or it would have split in previous iterations
and the update could have continued to one of its children.

The procedure outlined above is given in Algorithm 2. The WT1(T ) algorithm returns a
reference to the root of the WT, as well as the support alphabet uncovered during the con-
struction. It uses two main functions to incrementally build the WT. The update(root,A, c)
function updates the bit vectors of the nodes in the appropriate root-to-leaf path of the
current WT, adding information about ti. As mentioned, this procedure is similar to one
iteration of Algorithm 1. It returns a pointer to the endpoint term where the update stopped,
plus the size sterm of the subalphabet represented by that node after the update. These
values are fed into the testAndSplit procedure, which tests whether term needs to be further
split and, if so, creates the appropriate child nodes.

I Proposition 3. Algorithm 2 builds W (T,A) in O(n lgm) time, using αn lgm+O(1) bits
of space beyond the size of the constructed WT and A, for some constant 0 < α ≤ 1.

Proof. As in Algorithm 1, the total work amounts to creating the tree structure and filling
the bit arrays. The only difference is that now these steps are interleaved rather than
performed one after the other. The work required for creating the tree structure alone is the
same in either case, since the resulting trees are isomorphic. As for the operations required
for filling the bit arrays, we notice that every bit of the WT is set exactly once by a call to a
bit array append operation, and is never modified thereafter. So, each bit is added in O(1)
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Algorithm 2 Balanced WT online construction with unknown alphabet
1: Algorithm WT1 (T = t0 · · · tn−1)
2: A ← {}
3: root← new WT node
4: for i = 0, . . . , n− 1 do
5: term, sterm← update(root,A, ti)
6: testAndSplit(term, sterm)
7: A ← A∪ {ti}
8: return root,A

1: Algorithm testAndSplit(term, sterm)
2: if sterm ≤ 2 then
3: return
4: chd← new WT node
5: b← (sterm− 1) mod 2
6: k ← term.B.count(b)− 1
7: chd.B.append(0k)
8: chd.B.append(1)
9: if sterm = 3 then
10: term.left← chd

11: else if sterm = 4 then
12: term.right← chd

1: Algorithm update(root,A, c)
2: if c ∈ A then
3: s← A.index(c)
4: newc← 0
5: else
6: s← |A|
7: newc← 1
8: cur ← root

9: prev, sprev ← ⊥, 0
10: while cur 6= ⊥ do
11: prev ← cur

12: sprev ← s

13: if smod 2 = 0 then
14: cur.B.append(0)
15: cur ← cur.left

16: else
17: cur.B.append(1)
18: cur ← cur.right

19: s← s� 1
20: return prev, sprev + newc

amortised cost by using dynamic arrays.1 Hence we have the same O(n lgm) time for the
entire construction procedure.

The space requirements analysis is identical to that of Proposition 2. J

4 Related work

As mentioned, the standard recursive procedure for constructing WTs requires O(n lgm)
time. However the constants involved are somewhat large in practice, since it requires
manipulating strings at each node. The space requirements are also significant because of the
explicit projected copies of T at each level of the recursion, for a total O(n lg2 m) bits in the
worst case. As pointed out by some authors [19, 3], this space can be reduced to O(n lgm),
on top of the original sequence, by reusing parts of the same allocated space through the
recursion. This approach is implemented in LIBCDS [2]. The string manipulations remain
costly nonetheless.

One way to reuse the same copy of the input sequence is by sorting their symbols according
to the level of the recursion/WT. For instance, in a ‘classic’ WT, all the symbols whose
highest bit is 0/1 will be to the left/right of the root. Thus, is we perform a stable, in-place
sort of the sequence based on that bit, we will have all its symbols in the correct order
for the next level, and the projections can now be represented by [l : r] pairs. On the next
level, the sort is based on the second highest bit, and so on. Tischler [25] explores these

1 Actually, setting the initial bits of a newly created leaf (line 7 of procedure testAndSplit) may be a bit
‘cheaper’ in practice because we amortise the cost of getting to that node and, moreover, appending
multiple zeros can be implemented a bit faster.
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ideas to give space-efficient constructions of WTs in BFS and DFS order, using between
constant and O(

√
n(lgm+ lgn)) bits of extra space depending on a parameter c that also

implies a lg c runtime multiplier. Claude and coauthors [3] also proposed space-efficient
construction algorithms that are however more complex. Their most efficient algorithm runs
in O(n lgn lg2 m + C(n lgm)) using O(lgm lgn) + E(n lgm)) extra bits, where C(r) and
E(r) denote the time to build and the space used by the auxiliary rank/select structures of
the bit vectors. Such time and space are explicitly accounted for because the construction
process depends on these structures. This algorithm is also destructive, meaning that it
overwrites the original input sequence.

Simon Gog maintains SDSL, a very complete and mature C++ library of succinct data
structures [9], containing the implementation of several methods described in the literature.
This library has a few implementations of WTs with support to various topologies, alphabets,
and bit vectors. The standard construction procedure consists in first reading the input to
compute individual character counts and the effective support alphabet size, then initializing
the tree structure, and finally filling in the node contents, much like in Algorithm 1.2 Our
novelty relative to this algorithm lies in the fact that our Algorithm 2 is online on the input
and does not require precomputing the alphabet, which is both more general in theory, and
can represent practical advantages, for example, in the context of streaming applications.

Some authors have recently proposed parallel algorithms for the construction of WTs.
Fuentes-Sepúlveda and collaborators [7] explore the fact that the node corresponding to a
certain character, at any given level of a classic WT, can be accessed by the highest bits of
its index in the alphabet (as explained in Section 3.1), to build multiple levels in parallel.
This O(n lgm) work is performed in O(n) depth with O(lgm) processors, but the algorithm
assumes continuous integers alphabet that need to be given as input. Shun [24] follows a
similar ideas but builds the WT level-by-level, each level requiring O(n) work in O(lgn)
depth, for a total O(lgn lgm) depth. These bounds are further improved by using stable
sort algorithms to sort the characters of the input at each level of the tree by its highest bits
so as to put them in the right order. However, this significantly increases memory demands.

Very recently, Munro and coauthors [13] presented the first algorithm to build a WT
in O(ndlgm/

√
lgne), therefore a

√
lgn-speedup over previous methods. Their technique is

based on the use of bit-parallelism to pack the information concerning group symbols of the
input sequence in words and process them together, thus achieving a time that is actually
smaller than the size of the structure. Unfortunately, no implementation is available to the
best of our knowledge [12].

5 Experimental analysis

In order to evaluate the applicability of our algorithm, we implemented a prototype in C
and tested it with data obtained from the Pizza&Chili corpus website [20], as summarised in
Table 1. For each data set, we created input files of sizes 2, 4, 8, 16, 32, 64, and 128 MB,
by cropping the original files. These input sizes were shown to be enough for establishing a
pattern in our experiments, as seen below. In addition, because the theoretical analysis of
the previous section assumes the word-RAM model, these sizes also allow for a more clear
comparison, unaffected by virtual secondary memory usage factors. We have then a total
of 5 × 7 = 35 input sequences of varying length (n) and alphabet size (m), the two main
parameters that affect the construction time and memory. We wanted to assess how our

2 We have not found a description or analysis of this algorithm in the literature.
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Table 1 Data sets used in the experiments. Original sources are indicated in [20].

Data set Id Brief description Total size Alphabet size (m) H0 Entropy
dna Gene DNA sequence 386 MB 16 5.465

proteins Aminoacid sequence 1.2 GB 27 4.206
xml XML bibliography data 283 MB 97 5.262

sources C/Java source files 202 MB 230 5.537
english English language texts 2.1 GB 239 4.525

implementation behaved in practice, relative to the theoretical predictions of Propositions 2
and 3.

Our implementation, herein identified as fs, consists in a simple pointer-based WT with
O(lgm)-time access, rank, and select operations, using a straightforward implementation of
the uncompressed combined sampling rank and select bit vector [21]. We used no external
libraries other than the C standard API. It is important to note that, although the alphabet
is actually known for each data set in Table 1, this information is not fed into our algorithm.
Instead, only the path to the text file is provided, which is read in one single pass as described
in Section 3.2. In this case, the use of the C standard I/O (stdio) file manipulation functions
[14] effectively results in a buffered input stream behaviour.

For comparison sake, we benchmarked our prototype together with other publicly available
WT code. We wanted to assess the algorithms in a realistic situation where only the path
to the file with the input is given. However, each implementation has different interfaces
and so, for some of them, we wrote minimal wrapper code to read the input and pass it to
the WT constructor using the appropriate internal data structures. We account for those
operations as part of the algorithms to have a more uniform comparison. Here is a summary.

libcds. The LIBCDS [2] is a compressed data structures library whose WT code has been
used in other comparative studies, including [3, 7]. The input has to be loaded into
internal structures.

sdslil, sdslrrr. We used two variants of the WT construction example provided with the SDSL
distribution [9]. The first variant, herein identified as sdslrrr, is identical to the example
and uses RRR bit arrays[23], which is a compressed structure. Since our implementation
does not use compression, we have also added a version based on uncompressed bit array,
herein identified as sdslil. No input preprocessing was necessary.

pwt, dd. We used the code made available by the authors of [7]. The code requires that the
text be encoded in a contiguous integer alphabet whose size has to be informed, and so
we had to made the appropriate conversions.

swt. We used the code of the serialWT version made available by Shun [24], which gave the
best results among the provided variants. No input conversion was needed.

When provided, the original scripts were used to build the executables. The only eventual
modifications were made to ensure that each implementation was compiled with the same
-O3 optimisation flag. The actual code can be obtained from the address indicated at the
end of this paper. All experiments reported here were performed on a portable computer
equipped with a 2.0GHz Intel® CoreTM i7-3537U CPU, 8 GB of RAM, and running 64-bit
(Ubuntu 16.04 LTS) Linux ver. 4.4.0, with GCC ver. 5.4.0.
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Figure 2 Experimental results (Part 1 – continued on next page). On the left, the average
execution times, on the right, the corresponding memory usage information. Alphabet size (m)
grows from top to bottom row.

5.1 Time experiments
We used the input files to build WT with all algorithms and measured the total execution
time using the built-in Bash shell time command, including the user time, and the time
spent by the system on behalf of the process. The tests were repeated 5 times for each input
file and the average results are graphically summarised in the left column of Figure 2.

As it can be seen, a clear linear dependence on the length of the text is shown for all
algorithms and for any given alphabet size. The logarithmic dependence on m is also fairly
visible from the plots, by noticing, for instance, that de average times for the dna data

SEA 2017



16:10 Online Construction of Wavelet Trees

 0

 2

 4

 6

 8

 10

24 8 16 32 64 128

Ex
ec

ut
io

n 
tim

e 
(in

 s
ec

on
ds

)

Input size (in MBytes)

Execution times for data set 'sources'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0

 100

 200

 300

 400

 500

 600

24 8 16 32 64 128

M
em

or
y 

us
ag

e 
(in

 M
By

te
s)

Input size (in MBytes)

Memory usage for data set 'sources'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0

 2

 4

 6

 8

 10

24 8 16 32 64 128

Ex
ec

ut
io

n 
tim

e 
(in

 s
ec

on
ds

)

Input size (in MBytes)

Execution times for data set 'english'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0

 100

 200

 300

 400

 500

 600

24 8 16 32 64 128

M
em

or
y 

us
ag

e 
(in

 M
By

te
s)

Input size (in MBytes)

Memory usage for data set 'english'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

Figure 2 Experimental results (Part 2 – continued from previous page).

(lgm = 4) are roughly half of those for the english data set (lgm ≈ 8), with the notable
exception of libcds. The results confirm the expected O(n lgm)-time behaviour for (almost)
all algorithms, although naturally not always with the same constant factors. Globally, all
algorithms performed similarly (except libcds). sdslil was actually faster than the others,
followed closely by our implementation.

In order to confirm the scalability of the method, we performed one last round of
experiments with the largest input of Table 1, that is the 2.1GB english file. This time, we
did not include the libcds method because it takes unreasonable time. As expected, the trend
was maintained and sdslil was the fastest at 1m23s, followed by fs 1m31s. Other times were
significantly higher: pwt 2m01s, sdslrrr 2m07s, dd 2m12s, and swt 2m39s.

5.2 Memory experiments
We also measured the memory usage of all algorithms on each input file using the massif tool
of the valgrind package [22]. Since all algorithms are deterministic, the memory consumption
does not vary between executions with the same input. The results are summarised in the
right column of Figure 2. Shown are the peak total heap usage in MB during each execution.

As with time, there is a clear linear dependence on the text length for all algorithms, for
any given alphabet size. The logarithmic dependence on the alphabet size is still clearly
visible for some, in particular fs, but not all implementations. It is important to observe
that the results shown in Figure 2 comprise the space taken by the WT itself, and the extra
working space used by the construction algorithm. The fact that some implementations, like
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Table 2 Average memory overheads (standard deviation in parenthesis).

Data set Algorithm
dd fs libcds pwt

dna 2.76 (0.25) 0.34 (0.04) 6.27 (0.02) 1.90 (0.13)
proteins 2.84 (0.00) 0.33 (0.04) 5.12 (0.02) 1.79 (0.00)

xml 2.39 (0.00) 0.37 (0.03) 3.41 (0.01) 1.33 (0.00)
sources 1.93 (0.12) 0.24 (0.11) 3.09 (0.01) 1.00 (0.06)
english 1.98 (0.13) 0.29 (0.07) 3.06 (0.01) 1.02 (0.07)

sdslil sdslrrr swt
dna 0.99 (0.32) 0.72 (0.28) 5.88 (0.11)

proteins 1.39 (0.30) 1.28 (0.30) 5.12 (0.02)
xml 1.33 (0.22) 1.15 (0.22) 3.71 (0.02)

sources 1.10 (0.16) 0.85 (0.16) 3.00 (0.05)
english 1.11 (0.14) 0.80 (0.15) 3.01 (0.05)

libcds and swt, use much more space than the others, while representing the same information,
and, moreover, that this working memory varies very little with the alphabet size, suggest
that the total space is dominated by structures used by the construction algorithm which
depend essentially on n.

We also estimated the relative space overhead, defined as the ratio (M − S)/S, where
S = m lgn bits is a lower bound of the space taken by the uncompressed WT, and M is
the total memory measured in the experiments. The average overheads per algorithm and
per data set are shown in Table 2. The numbers confirm that the extra memory required
by fs was comfortably under the predicted upper bound of 50% due to its use of a α = 1.5
growth factor for the dynamic bit arrays. In all tests, our implementation outperformed the
others in that respect, seconded only by sdslrrr, which uses compression, with 2–3 times more
overhead.

Finally, we also performed one last test to gauge memory consumption using the 2.1GB
english file. Our method performed better than all the others by similar margins. The
fs implementation used 2.80GB, seconded by sdslrrr, which used 3.57GB, followed by pwt
4.22GB, sdslil 4.34GB, dd 6.27GB, and swt 8.23GB.

6 Discussion

We have presented a method for the online construction of the balanced wavelet tree of
a source text T requiring O(n lgm) time and very little working memory. No previous
information about the alphabet is assumed. We argue that our algorithm is conceptually
simpler than most other methods but, despite its simplicity, it compares quite well in practice
against other implementations, as shown by a series of experiments on real data, offering an
appealing time vs. space compromise, not to mention that the online characteristic makes it
more amenable to certain applications.

We regret not having an implementation of [13] to compare, but we note that, even
for inputs of one petabyte (250 bytes), the theoretical speedup would be of just about 7×.
This margin can be easily eroded in practice by a more complex code. We equally regret
not having found the space-efficient implementation PERMUTE [3] although the asymptotic
costs and the reported comparisons of this algorithm against LIBCDS suggest that our
implementation could still be a more favourable compromise.
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Our current implementation is pointer-based, requiring O(m lgn) bits of space for the tree
topology alone, which can be a drawback for applications with large alphabets. To mitigate
this problem, we notice that Algorithm 2 builds the WT one level at a time, and so we can
represent its structure implicitly, at any time, by using an array P [0 : h] of h = 2dlg se − 1
positions, where s stands for the number of characters currently represented. As in the binary
heap [5, Sec 6.1], we assign the root to position 0 and, from there on, the left and right
children of the node at position i are associated to positions 2i+ 1 and 2i+ 2, respectively.
We let P [i] store the (pointer to the) bit vector of the node corresponding to position i. In
this case, P , and hence the WT, is actually a dynamic array of bit vectors which is doubled
every time a node is first added to a new level. This way we still have constant amortised
time per node creation and we no longer need the node pointers. However we may yet have
up to s− 2 unused positions of P , corresponding to the incomplete lowest level of the WT.
So, the overall space is about the same in the worst case as with node pointers, but it may
be more space-efficient in practice since we expect the lowest level to be fairly populated,
and the unused positions at the end of P can be easily trimmed off after the construction.

Notice also that, in the test data sets of Table 1, the alphabet size was always under 256,
so that it could be efficiently represented as a simple byte array, whereas in applications with
large alphabets, the representation of the alphabet itself can be an issue. However, this is
arguably a separate problem not particular to our construction method. In fact Algorithm 2
is reasonably oblivious to the actual data structure used, other than by supposing that it is a
form of dictionary that supports insertion and membership queries in constant time. Notice
that the space required by the alphabet was consciously excluded from the space complexity
of Proposition 3.

Another limitation of our method is that it imposes an order on the alphabet symbols
by somehow sorting them according to their order of appearance on the represented string.
By contrast, the traditional balanced WT construction recursively partitions the alphabet
in halves, respecting a certain ‘natural’ order, e.g. the lexicographic order for character
alphabets, or the ascending order for integer alphabets. While our approach is coherent with
the interpretation that the alphabet is ‘unknown’ (and hence so is its natural order), and
this does not present a problem for the rank, select, or access operations, it may void the
use of the WT on applications that assume a specific order for the alphabet, like in range
quantile queries [8].

The first algorithm presented in this paper can be adapted to other WT topologies like
the Huffman WT [18]. If we know the alphabet and relative character frequencies, then
we can build the template tree following the greedy O(m lgm) Huffman tree construction
algorithm [5, Sec 16.3] and then fill its contents just like in Algorithm 1. Even if the alphabet
is unknown, we can still first build the template with one pass over T and then fill it in a
second pass. It remains to be shown whether the single-pass online method could be adapted
to the Huffman WT within the same time bounds.

Finally, we remark that the online construction procedure shown in Algorithm 2 suggests
the static case where the input string/stream is read to its end to fill the raw bit contents of
the nodes, before the WT is ever used. These raw bit vectors are then usually processed
in linear time to produce a sub-linear amount of supporting information that allow for
constant-time binary rank and select queries. However, we notice that the construction
method is independent of the actual bit vector implementation. All it supposes is that
the bit vectors support constant (amortised) time append operations so that Proposition 3
holds. In particular, if dynamic rank/select bit vectors are used [16, 4] then this construction
method yields a partially dynamic WT implementation that allows for rank, select, and
access operations to be performed at any time on a prefix of the input sequence.
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7 Availability

The source code, as well as the experimental data and scripts used in this paper can be
obtained from http://www.cin.ufpe.br/~paguso/sea2017.
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