
Efficient Traffic Assignment for Public Transit
Networks∗

Lars Briem1, Sebastian Buck2, Holger Ebhart3, Nicolai Mallig4,
Ben Strasser5, Peter Vortisch6, Dorothea Wagner7, and
Tobias Zündorf8

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
lars.briem@kit.edu,

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
sebastian.buck@kit.edu

3 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
holger.ebhart@ira.uka.de

4 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
nicolai.mallig@kit.edu

5 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
strasser@kit.edu

6 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
peter.vortisch@kit.edu

7 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
dorothea.wagner@kit.edu

8 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
zuendorf@kit.edu

Abstract
We study the problem of computing traffic assignments for public transit networks: Given a
public transit network and a demand (i.e. a list of passengers, each with associated origin, destin-
ation, and departure time), the objective is to compute the utilization of every vehicle. Efficient
assignment algorithms are a core component of many urban traffic planning tools. In this work,
we present a novel algorithm for computing public transit assignments. Our approach is based
upon a microscopic Monte Carlo simulation of individual passengers. In order to model realistic
passenger behavior, we base all routing decisions on travel time, number of transfers, time spent
walking or waiting, and delay robustness. We show how several passengers can be processed
during a single scan of the network, based on the Connection Scan Algorithm [6], resulting in
a highly efficient algorithm. We conclude with an experimental study, showing that our assign-
ments are comparable in terms of quality to the state-of-the-art. Using the parallelized version of
our algorithm, we are able to compute a traffic assignment for more than ten million passengers
in well below a minute, which outperforms previous works by more than an order of magnitude.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Algorithms, Optimization, Route planning, Public transportation

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.20

∗ Tobias Zündorf’s research was supported by DFG Research Grant WA654/23-1.

© Lars Briem, Sebastian Buck, Holger Ebhart, Nicolai Mallig, Ben Strasser, Peter Vortisch,
Dorothea Wagner, and Tobias Zündorf;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


20:2 Efficient Traffic Assignment for Public Transit Networks

1 Introduction

Traffic assignment problems are widely studied for the case of street networks and private
transport. However, virtually no work addresses the algorithmic challenges of finding a
traffic assignment for public transit networks, despite the fact that such assignments are a
very important tool for planning public transportation services. When implementing new
public transit lines (or redirecting existing ones), it is often desired, that the capacity of
all the vehicles serving the lines is well utilized. If vehicles are overcrowded, then more or
larger vehicles have to be deployed. However, if vehicles are only sparsely used, they may be
dropped from the schedule. Using traffic assignments, the utilization of the vehicles can be
estimated ahead of time allowing an efficient public transportation service design.

Determining a public transit assignment requires two components: The timetable of the
underlying public transit network; and an estimation of the overall passenger flow, specified
by individual origin, destination, and time triples, called demand. The most basic variant
of the assignment problem asks only for the expectable utilization of the vehicles operating
in the public transit network. A more elaborate variant of the problem requires that every
individual passenger is assigned to a route from his origin to his destination. The objective
of the assignment is in every case a statistical analysis of the network utilization. Thus, a
passenger may even be proportionally assigned to several routes, in order to increase the
overall accuracy of the assignment.

In this work we present a novel algorithm for computing public transit assignments.
Our approach for assigning routes to individual passengers is based on a Monte Carlo
simulation. Every passenger’s movement through the network is simulated step by step until
his destination is reached. We consider multiple criteria of each possible route, in order to
achieve a realistic movement of the passengers: the arrival time at the destination, the time
that has to be waited for connecting vehicles, the time that has to spent walking between
stops, the number of transfers between vehicles, and the delay robustness. We describe an
efficient approach for this simulation, based on the Connection Scanning Algorithm [6], which
allows for efficient one to all queries on public transit networks.

Our paper is organized as follows: In Section 2 we formally define the public transit
network and the demand, and we introduce the basic notation used throughout this paper.
Next, we propose the notion of perceived arrival times, which we use to model passenger
preferences in Section 3. We continue with presenting our algorithm in Section 4. In Section 5
we conduct an experimental study, showing that the quality of our assignment is comparable
to state-of-the-art, while the running time is more than an order of magnitude lower.

1.1 Related Work
The problem of finding a traffic assignment comprises two important subproblems. First,
achieving a high quality assignment requires a sophisticated procedure for deciding which
route a passenger would choose in the real world. Second, efficient route planning algorithms
are required in order to compute possible routes to choose from. There has been a lot of
research addressing route planning problems in recent years. A comprehensive overview of
state-of-the art route planning algorithms is given in [2]. Unlike time independent route
planning, it is quite hard to accelerate routing algorithms for public transit [4]. Several
speed-up techniques have been proposed, in order to increase the efficiency of public transit
route planning, many of them exploit the special structure of timetables. The RAPTOR [5]
algorithm is one of the first techniques solely based on an efficient timetable representation.
With Transfer Patterns [1, 3] a first approach that utilizes preprocessing in order to enable fast



L. Briem et al. 20:3

public transit queries was introduced. The author of [12] proposes an algorithm for fast profile
queries, based on a data model focused on trips and transfers between them. The Connection
Scanning Algorithm (CSA) [6, 11] relies on a particularly simple data model, namely a sorted
array of connection. Nevertheless, it allows for fast one to all profile queries. Based on CSA,
the MEAT [7] technique was developed, enabling delay robust journey planning.

An overview over traffic assignment techniques and models can be found in [10]. An
important concept for achieving realistic traffic assignments are equilibrium models, which
enable that the assignment adapts to congested parts of the network. Various variants
of equilibrium models are discussed in [8]. Just like route planning, traffic assignment
problems become more difficult when applied to public transit networks. An implementation
of state-of-the-art traffic assignment algorithms is available in VISUM from PTV AG1.

2 Preliminaries

Our algorithm operates on a public transit network (C, G) consisting of a finite set of
elementary connections C and a directed, weighted transfer graph G = (V, E , τtrans).

A connection c ∈ C is a tuple (vdep(c), varr(c), τdep(c), τarr(c), trip(c)) representing a
vehicle driving from a departure stop vdep(c) ∈ V to an arrival stop varr(c) ∈ V without
any intermediate stops. The vehicle is scheduled to depart from vdep(c) at the departure
time τdep(c) and arrives at varr(c) at the arrival time τarr(c) which we require to be greater
than τdep(c). We assume that connections departing from the same stop have a well defined
order of departure, i.e. vdep(c) = vdep(c′) ⇒ τdep(c) 6= τdep(c′). However, this is not a real
restriction, as such a scenario is unrealistic, and a unique order could be established by
perturbing the departure times by some ε > 0. Consecutive connections c1 and c2 are part
of a trip trip(c1) = trip(c2) if they are served by the same vehicle. Using two successive
connections of different trips requires a transfer in between.

Valid transfers are defined using the transfer graph G = (V, E , τtrans), where V is a set of
vertices, E ⊆ V×V is a set of directed edges, and τtrans : E → N0 is an edge weight representing
the minimal required transfer time for using an edge. We expand τtrans for arbitrary pairs
of vertices u, v ∈ V, by setting τtrans(u, v) := τtrans(e) if there exists an edge e = (u, v) ∈ E ,
otherwise we define τtrans(u, v) :=∞. Transferring between connections c1 and c2 of different
trips is only possible if there exists an edge e = (varr(c1), vdep(c2)) connecting the arrival
stop of the first connection c1 with the departure stop of the second connection c2, such
that τarr(c1) + τtrans(e) ≤ τdep(c2). Note that by our definition, a transfer edge has to
be used even if varr(c1) = vdep(c2). This enables us to model minimum transfer times
for changing between trips stopping at the same vertex. We define by τwait(v, τ, c) :=
τdep(c)− τ − τtrans(v, vdep(c)) the additional waiting time after transferring from vertex v
at time τ to vdep(c), before c departs. Given two connections c, c′ ∈ C, the waiting time for
transferring from c to c′ is given by τwait(c, c′) := τwait(varr(c), τarr(c), c′). Thus, a transfer
between connections c and c′ is valid if and only if τwait(c, c′) ≥ 0 holds. Following [5, 11],
we require that the transfer graph is transitively closed and fulfills the triangle inequality.
This ensures that an edge e = (u, v) is always a shortest path in G from u to v. We call a
vertex v ∈ V stop if there exists at least one connection c such that vdep(c) = v or varr(c) = v,
the set of all stops is denoted by S ⊆ V.

A journey j = 〈c1, . . . , ck〉 is a sequence of connections, such that transferring between
subsequent connections in j is valid. Formally, this means that the connections in j have to be

1 http://vision-traffic.ptvgroup.com/en-us/products/ptv-visum/

SEA 2017

http://vision-traffic.ptvgroup.com/en-us/products/ptv-visum/


20:4 Efficient Traffic Assignment for Public Transit Networks

sorted chronologically. Furthermore, we require that subsequent connections ci and ci+1 are
either part of the same trip (i.e. trip(ci) = trip(ci+1)), or there exits a transfer connecting
them (i.e. τwait(ci, ci+1) ≥ 0), for every i ∈ [1, k − 1]. Analogous to connections, we
define a departure stop vdep(j) := vdep(c1), a departure time τdep(j) := τdep(c1), an arrival
stop varr(j) := varr(ck), and an arrival time τarr(j) := τarr(ck), for a journey j = 〈c1, . . . , ck〉.

In addition to a public transit network, the input of a traffic assignment instance also
contains a set of demands D. A demand D ∈ D is a triple (o(D), d(D), τdep(D)) representing
a passenger who wishes to travel from his origin o(D) ∈ V to his destination d(D) ∈ V,
starting at his departure time τdep(D). The objective of the traffic assignment is to compute
for every passenger represented by D a journey that satisfies his demand. A journey j satisfies
a demand D, if it can be used to travel from o(D) to d(D), with a departure time of at
least τdep(D). More precisely, the journey must be reachable from the demanded origin when
departing after τdep(D). This is the case, if either the journey departs not earlier than τdep(D)
directly from o(D) (i.e. o(D) = o(j)∧ τdep(D) ≤ τdep(j)) or if transferring from the origin to
the journeys departure is valid (i.e. τdep(D) + τtrans(o(D), vdep(j)) ≤ τdep(j)). Furthermore,
the journey has to end at the demanded destination, either directly or by using an additional
transfer. Formally, we assume that either varr(j) = d(D) or τtrans(varr(j), d(D)) <∞ holds.
An empty journey j = 〈〉 satisfies a demand D, if o(D) = d(D) or τtrans(o(D), d(D)) <∞
holds. Note that we do not require a journey to be optimal with respect to any metric, in
order to satisfy a demand.

Given two vertices u, v ∈ V , a u-v-profile is a function fu,v(τ) mapping departure times τ
onto the minimal costs for traveling from u at time τ to v, with respect to some cost function.
If no such journey exists we define fu,v(τ) as ∞. Profile functions are piecewise linear, since
for every departure time τ the value fu,v(τ) corresponds to a unique journey. Each journey
contributing to fu,v(τ) is either empty or has a fixed departure time, depending solely on
the journeys first connection. Since there exists only a finite number of connections, every
profile function can be described using a finite number of supporting points.

3 Perceived Arrival Time (PAT)

The core problem of computing a public transit assignment, is to decide for each passenger
which connections he takes in order to reach his destination. The quality of the resulting
assignment highly depends on these choices. Thus it is important to model the behavior and
preferences of the passengers in a realistic way. This means that we cannot assign connections
to the passengers solely based on the travel time of the resulting journey. For example, a
passenger might prefer a journey with a slightly longer travel time, if this reduces the number
of changes between vehicles.

As a means of reflecting the passengers preferences, we introduce the notion of perceived
arrival time (short PAT). Given a connection c ∈ C and a destination d ∈ V, the perceived
arrival time τp(c, d) is a measurement for how useful c is in order do reach d. The PAT τp(c, d)
depends on the possible journeys that end at d and contain c. We consider five properties
of these journeys that influence the perceived arrival time: the actual arrival time at d,
the number of transfers, the time spend walking, the time spend waiting, and the delay
robustness. We account for walking and waiting time by weighting the corresponding times
with factors λwalk, λwait ∈ R. For every transfer during the journey we add an additional cost
of λtrans ∈ R. Finally, we incorporate delay robustness by computing the expected arrival
time under the assumption that each connection has a random delay of at most ∆max

τ .
We adapt the concept of minimum expected arrival time (MEAT) introduced by Dibbelt

et al. [7], in order to model delay robustness. Following their approach, we introduce a



L. Briem et al. 20:5

random variable ∆cτ ∈ R+
0 for every connection c ∈ C, that represents the delay of the

connection. This means that the arrival stop varr(c) will be reached at τarr(c) + ∆cτ . Thus,
transferring to another connection can become invalid, if the delay exceeds the waiting time
of the transfer. The probability that the delay is at most x, is given by the cumulative
distribution function P [∆cτ ≤ x]. We define P [∆cτ ≤ x] as follows: P [∆cτ ≤ x] := 0 for x ≤ 0,
P [∆cτ ≤ x] := 1 for x ≥ ∆max

τ , and P [∆cτ ≤ x] := 31/30 − (11∆max
τ )/(300x + 30∆max

τ )
for 0 < x < 1, where ∆max

τ is the maximal delay that can occur. Based on this, the probability
that a transfer between two connections c, c′ ∈ C is valid, is given by P [∆cτ ≤ τwait(c, c′)].
Additionally, we define the probability P [y < ∆cτ ≤ x] := P [∆cτ ≤ x]− P [∆cτ ≤ y] that the
delay of c is between y and x. For more details on the delay model see [7].

We now proceed with defining the perceived arrival time τp(c, d) in a recursive way,
which allows us to take all journeys containing c into account. There exist three distinct
cases for continuing a journey after using the connection c. If it is possible to use a transfer
from the arrival stop of c to the destination, then the journey can be completed by walking.
Otherwise, the journey continues either with the next connection of the same trip as trip(c)
or the vehicle serving c is left at varr(c). Therefore we define

τp
arr(c, d) := min{τp

arr(c, d | walk), τp
arr(c, d | trip), τp

arr(c, d | trans)},

where τp
arr(c, d | walk) is the PAT under the constraint that the journey is completed by

walking from c to d, τp
arr(c, d | trip) is the PAT under the constraint that the journey continues

with the same trip as trip(c), and τp
arr(c, d | trans) is the PAT under the constraint for that

the journey continues with a transfer to another connection after c. The perceived arrival
time for walking to the destination is defined as:

τp
arr(c, d | walk) :=

{
τarr(c) if varr(c) = d

τarr(c) + λwalk · τtrans
(
varr(c), d

)
otherwise.

This means that the PAT is the actual arrival time, if the destination is reached directly by
using c. If this is not the case, the time needed for walking to the destination is multiplied
with the cost factor λwalk and added to the arrival time. For the definition of τp

arr(c, d | trip)
let T (c) := {c′ ∈ C | trip(c′) = trip(c) ∧ τdep(c′) ≥ τarr(c)} be the set of all connections
following after c in the trip of c. We then define the PAT for continuing with the same trip
as the minimum over the perceived arrival times of all subsequent connections in the trip:

τp
arr(c, d | trip) :=

{
min{τp(c′, d) | c′ ∈ T (c)} if T (c) 6= ∅
∞ otherwise.

Finally, we proceed with defining the PAT τp
arr(c, d | trans) for transferring from c to a

connection c′ of another trip. For this purpose, we first introduce the perceived time τp
trans(u, v)

for transferring from u to v as a weighted sum of walking respectively waiting time and
transfer costs:

τp
trans(u, v) :=

{
λtrans + λwait · τtrans(u, u) if u = v

λtrans + λwalk · τtrans(u, v) otherwise.

Additionally, we define τp
trans(c, c′) := τp

trans(varr(c), vdep(c′)), in order to reflect the perceived
time for transferring from a connection c to another connection c′. Transferring between
connections c, c′ ∈ C may include some additional waiting time τwait(c, c′) at the departure
stop of c′, after the actual transfer took place. We account for this by introducing the perceived

SEA 2017



20:6 Efficient Traffic Assignment for Public Transit Networks

waiting times τp
wait(v, τ, c) := λwait · τwait(v, τ, c), respectively τp

wait(c, c′) := λwait · τwait(c, c′).
Using this we define the perceived arrival time τp

arr(c, c′, d) := τp
trans(c, c′) + τp

wait(c, c′) +
τp
arr(c′, d) of journeys starting with the connection c, followed by a transfer to the connection c′,
and ending at the destination d. In order to define τp

arr(c, d | trans), we only need to specify,
which connection c′ is used after c. Here, we take not only the perceived arrival time τp(c′, d)
into account, but also the possibility that the transfer from c to c′ might become invalid
due to a delay of c. We achieve this by considering all connections that are Pareto-optimal
with respect to their PAT and their delay robustness as possible candidates. Based on
the set R(c) := {c′ ∈ C | τwait(c, c′) ≥ 0} of all connections that are reachable from c, the
set Ropt(c) of Pareto-optimal connections, reachable from c can be defined as:

Ropt(c) := {c′ ∈ R(c) | ∀c̄ ∈ R(c) : τwait(c, c̄) ≥ τwait(c, c′)⇒ τp
arr(c, c̄, d) ≥ τp

arr(c, c′, d)}.

Let 〈c1, . . . , ck〉 be the sequence of connections from Ropt(c) sorted by their waiting time
in increasing order, that is τwait(c, ci) ≥ τwait(c, ci−1) for i ∈ [2, k]. This means transferring
from c to c1 results in the minimum PAT. If however, transferring to c1 is not possible, due
to delay, c2 is the next best option, and so on. We define the waiting time when transferring
to the i-th connection of the sequence as τ cwait(i) := τwait(c, ci) for i ∈ [1, k]. For i 6= [1, k] we
set τ cwait(i) := −∞. Finally we define τp

trans(c, d) as the sum of the perceived arrival times of
all ci, weighted by the probability that transfer to ci is valid, while the transfer to ci−1 is
invalid:

τp
arr(c, d | trans) :=


k∑
i=1

(
P [τ cwait(i− 1) < ∆cτ ≤ τ cwait(i)]

P [∆cτ ≤ τ cwait(k)] · τp
arr(c, ci, d)

)
if k > 0

∞ otherwise.

Note that our recursive definition of τp(c, d) is well-defined, since it only depends on the
perceived arrival times of connections c′ with τdep(c′) > τdep(c).

4 Our Approach

Our algorithm is based on a microscopic Monte Carlo simulation of individual passengers
represented by a unique integer identifier. For each vertex of the network we maintain a list
containing all the passengers, who currently reside at the vertex. Passengers are gradually
moved from one vertex to the next, until they reach their destination. We decide for every
passenger which vertex he visits next, based on perceived arrival times. The vertex chosen as
next vertex is not necessarily the one that minimizes the PAT. We assign a probability based
on the perceived arrival times to every possible option. Next, we choose randomly an option
for every passenger. In order to increase the accuracy of the simulation we generate λmul
times as many passengers as specified by the demand. After the simulation finished, the
results are divided by λmul, in order to obtain a stochastic distribution of the passengers
specified by the demand.

We observe that passengers with the same destination d and roughly the same time
of travel, will eventually encounter each other on their journeys (at least at d). If they
meet before d, then there exists a vertex v where they have the same options for continuing
their journey to d. Our algorithm exploits this observation by evaluating the options and
computing the decisions for all passengers at v at once. In order to achieve this, we partition
the passengers based on their destination. We proceed with showing how the traffic assignment
for passenger with a common destination can be computed. A complete traffic assignment



L. Briem et al. 20:7

waiting
at stop

sitting in
vehicle

arriving
at stop

board next
vehicle?

exit
vehicle at next

stop?

demand
satisfied

generate
passengers

from demand

reached
destination?

reached
destination?

transfer to
another stop?

1.

2.

3.

yes

noyes

no

yes no

yes

no

yes no

Figure 1 A flowchart describing the movement of a passenger through the network. Passengers
are generated according to the demand. If their destination differs from their origin, then they
enter the main cycle (colored part) of the simulation. Passengers traverse the main cycle until they
reach their destination. During this they can be in one of three situations (green). The situation a
passenger is in changes depending on his decisions (red).

can be obtained by doing this for every destination and aggregating the results. For the
remainder of this chapter we assume d to be a fixed destination vertex.

We compute the traffic assignment for passengers with destination d in three phases.
First, we compute for every connection the minimum perceived arrival times for taking and
avoiding that connection. Next, we simulate the movement of the passengers through the
network. Every time a passenger could use a connection c without producing an invalid
transfer, we decide based on the previously computed perceived transfer times whether the
passenger takes the connection c. Connections that are used by the passenger are added to
the passengers journey. Finally, we simplify the journeys by removing unwanted cycles.

4.1 Perceived Arrival Time Computation
In the first phase we compute all information required to build journeys one connection at a
time. We identified three situations that can occur during the simulation of a passenger’s
movement, that require a decision about the journey’s continuation (see Figure 1).

The first situation arises when a passenger waits at a stop s, while a connection c departs
from s. In this case, it has to be decided if the passenger boards the vehicle serving c, or
keeps waiting at the stop. In order to make this decision, we need the perceived arrival times
for both alternatives. The PAT for using the connection c (i.e. boarding the vehicle) is given
by τp(c, d). On the other hand, skipping the connection c and waiting at the stop, implies
that some later connection departing from the stop has to be taken. Transferring to another
stop is not an option, as the passenger transferred to his current stop s, with the intention to
board some vehicle at s. The set of all alternative connections departing from the same stop
is given by A(c) := {c′ ∈ C | vdep(c′) = vdep(c), τdep(c′) > τdep(c)}. We use these alternative
connections to obtain the PAT τp

arr(c, d | skip c) for skipping the connection c as the sum of
the additional waiting time and the perceived arrival time of the best alternative connection.
Formally, we define: τp

arr(c, d | skip c) := min{τp
wait(vdep(c), τdep(c), c′)+τp

arr(c′, d) | c′ ∈ A(c)}.
The second situation affects passengers using a connection that is not the last connection

of its trip. These passengers again have to make a binary decision. Either they leave
the vehicle at the arrival stop of the current connection, or they use another connection

SEA 2017



20:8 Efficient Traffic Assignment for Public Transit Networks

of the trip. As before, making this decision requires the perceived arrival times of both
alternatives. The PAT for continuing with the same trip is given by τp

arr(c, d | trip). When
disembarking the vehicle, a passenger can continue his journey by either walking to his
destination or transferring to another vehicle. Therefore, the PAT for disembarking is given
by τp

arr(c, d | disembark) := min{τp
arr(c, d | walk), τp

arr(c, d | trans)}.
The last situation where a decision has to be made occurs when a passenger leaves a

vehicle, but has not yet reached his destination. In this case, it has to be decided to which
stop the passenger transfers, in order to wait for another connection. This decision requires
a perceived arrival times for every stop v that can be reached by a transfer. Similar to
the definition of τp

arr(c, d | skip c), the PAT for the stop v is given by the PAT of the best
connection c departing from v plus the additional waiting time between the arrival time τ
at v and the departure of c. As this value is required for every possible arrival time τ at v,
we simply compute a profile function fv,dwait(τ) for every vertex, which we define as:

fv,dwait(τ) := min{τp
wait(v, τ, c) + τp

arr(c, d) | c ∈ C, τdep(c) ≥ τ, vdep(c) = v}.

In summary, we require for decision making three values per connection: τp
arr(c, d | trip),

τp
arr(c, d | skip c), and τp

arr(c, d | disembark), as well as a profile function fv,dwait(τ) per vertex.
We now show how these values can be computed in a single sweep over the connection
array. As basis for our algorithm, we use the MEAT algorithm [7], which allows for efficient
all-to-one profile queries. Instead of computing minimum expected arrival time profiles, as
the original MEAT algorithm does, we compute minimum perceived arrival time profiles. In
addition to the profile fv,dwait(τ), we compute a second profile fv,dtrans(τ), which we use in order
to determine the three PAT values needed per connection. The difference between the two
profile is that fv,dtrans(τ) requires an initial transfer to another stop. Formally, we define:

fv,dtrans(τ) := min{τp
trans(v, vdep(c)) + τp

wait(v, τ, c) + τp
arr(c, d) | c ∈ C, τwait(v, τ, c) ≥ 0}.

Our algorithm maintains for every vertex the two initially incomplete profiles fv,dwait(·),
and fv,dtrans(·). Additionally we store for every trip t a value τp

arr(t), that keeps track of
the current value for τp

arr(c, d | trip) with trip(c) = t, and is initially ∞. We scan the
connection array in decreasing order by departure time. For every connection c we can
directly determine the three required values. Since we store the arrival time for continuing
with the same trip separately we can set τp

arr(c, d | trip)← τp
arr(trip(c)). The PAT for ignoring

the connection c is given by the profile that describes waiting at the departure stop of c.
Thus, we set τp

arr(c, d | skip c)← f
vdep(c),d
wait (τdep(c)). Similarly, the PAT for disembarking at

the arrival stop of c is given by the profile that requires an initial transfer. Accordingly, we
set τp

arr(c, d | disembark)← f
varr(c),d
trans (τarr(c)). For the special case that a transfer edge from

the arrival stop of c to the destination exists, we have to consider the possibility of walking
to the destination. Therefore, we set τp

arr(c, d | disembark) ← τarr(c) + τtrans(varr(c), d), if
this is smaller than the previous value of τp

arr(c, d | disembark). Afterwards, we temporarily
compute the PAT of the connection c: τp

arr(c, d)← min(τp
arr(c, d | trip), τp

arr(c, d | disembark)).
We use this value in order to update the profiles and the value τp

arr(trip(c)). First we
set τp

arr(trip(c))← τp
arr(c, d). Next, we add the point (τdep(c), τp

arr(c, d)) as a break point to
the profile fvdep(c),d

wait (·), unless this profile already contains a breakpoint with smaller PAT.
Finally, we iterate over all vertices v with (v, vdep(c)) ∈ E . For each such vertex v we add the
point (τdep(c) − τtrans(v, vdep(c)), τp

arr(c, d)) as a break point to the profile fv,dtrans(·), unless
the profile already contains a breakpoint with smaller PAT. We repeat this process for every
connection. Afterwards, we have computed all values required for decision making and can
continue with the actual assignment.



L. Briem et al. 20:9

4.2 Assignment
The second phase of our algorithm uses the previously computed perceived arrival times to
compute the journeys for all the passengers with destination d. To this intent, we maintain
for every passenger a list of connections used by the passenger. Additionally, we maintain a
list of passengers for every vertex and trip, representing the passengers currently waiting
at the vertex, respectively sitting in the vehicle serving the trip. Furthermore, we use a
queue sorted by arrival time for every vertex, containing the passengers that are currently
transferring to the stop. The transfer queue of each vertex v is initialized with passengers
created from the demand with origin v, using their desired departure time as keys.

We now describe how the passengers movement through the network is simulated, using
a single scan over the connection array in ascending order by departure time. During this
scan, we decide for each connection, which passengers use the connection. When scanning
a connection c we first determine the set of passengers that could enter the vehicle. We
establish this by removing all the passengers from the transfer queue of vdep(c) that arrive
at vdep(c) before τdep(c) These passengers are then added to the list of passengers waiting
at vdep(c). Afterwards, the list of passengers waiting at vdep(c) comprises exactly the
passengers that could enter c. We decide whether the passengers take c or not, based on
the two PATs τ1 = min(τp

arr(c, d | trip), τp
arr(c, d | disembark)) and τ2 = τp

arr(c, d | skip c). We
do so by assigning a probability P [i], that describes the likelihood of a passenger using the
option associated with τi, to each of the alternatives.

In general, given k options, with perceived arrival times τ1, . . . , τk, we define the probabil-
ity P [i] for choosing option i as follows. First, we compute the gain of each option, which we
define as g(i) := max(0,minj 6=i(τp(j))−τp(i)+λ∆max). Doing so results in a gain of zero, for
options that differ from the optimum by more than λ∆max. For all other options τi, the gain
correlates linearly to the difference between τi and the optimal, respectively nest best option.
The probability that a passenger uses option i is equivalent to the gain of option i, divided
by the sum of the gain of all other options. Formally we define: P [i] := g(i)/

∑k
j=1 g(j)).

Using this, the probabilities of the two options τ1 (for using the connection c), and τ2 (for
skipping the connection), are given by P [1] := (τ2−τ1 +λ∆max)/2λ∆max, and P [1] := 1−P [2].
Based on these probabilities, we make a random decision for every passenger waiting at the
departure stop of c. If a passenger happens to enter the connection, then he is removed
from the list of passengers waiting at vdep(c), and added to the list of passengers sitting the
trip trip(c). Furthermore, the connection c is added to the journey of the passenger.

Next, we decide for every passenger sitting in the trip, if he disembarks at the arrival
stop of the connection. In this case, the two options are given by τ1 = τp

arr(c, d | disembark)
for leaving the vehicle, and τ2 = τp

arr(c, d | trip) for continuing with the same trip. As
before we compute the probabilities of both options, and make a random decision for every
passenger sitting in the trip, based on these probabilities. Passengers disembarking the
vehicle are collected in a temporary list. If the arrival stop of the connections happens
to be the destination vertex, then the journeys of all passengers in the temporary list are
complete, and we simply continue with the next connection. Otherwise, we have to decide
for all passenger in the temporary list, to which vertex they transfers. Let v1, . . . , vk be all
vertices for which τtrans(varr(c), vi) <∞ holds. The perceived arrival time for transferring
to vi is given by τi = τp

trans(varr(c), vi) + fvi,d
wait(τarr(c) + τtrans(varr(c), vi)). Based on these

perceived arrival times, we compute the probability of a passenger transferring to vertex vi,
for i ∈ [1, k]. As before, we determine for every passenger randomly, which option he chooses.
Finally, passengers transferring to vertex v are added to the queue of transferring passengers
of the vertex v, their arrival time at v is τarr(c) + τtrans(varr(c), v). We repeat this process

SEA 2017



20:10 Efficient Traffic Assignment for Public Transit Networks

for every connectionc ∈ C. After processing every connection, we have assigned journeys to
all passengers except the ones where no valid journey exists.

4.3 Cycle Elimination
During the second phase, we assigned a journey to every passenger which might not necessarily
be an optimal journey. Therefore it is possible that the assigned journey contains cycles. In
fact, it is even possible that a journey that is optimal with respect to perceived arrival time
can contain cycles. This could be the case if the waiting cost λwait is very high, such that
driving in a circle instead of waiting reduces the perceived arrival time. However, for some
applications it might be undesirable or inadmissible to assign journeys containing cycles.
Thus, we now describe an optional third phase of our algorithm, that removes all cycles from
the assigned journeys.

In order to detect and remove cycles from a journey j = 〈c1, . . . , ck〉 satisfying a demandD,
we first convert it into a sequence 〈(v1, τ1), . . . , (v2k+2, τ2k+2)〉 of vertex, time pairs. We do so
by setting v2i := vdep(ci), τ2i := τdep(ci), v2i+1 := varr(ci), and τ2i+1 := τarr(ci), for i ∈ [1, k].
Furthermore we define the first and last pair as v1 := o(D), τ1 := τdep(D), v2k+2 := d(D),
and τ2k+2 :=∞. Given this, we say that the journey contains a cycle, if their exist indices i
and j > i+ 1, such that the part of the journey between vertices vi and vj can be replaced
by a transfer. This is possible if τi + τtrans(vi, vj) ≤ τj holds. Since the transfer graph is
transitively closed, it consist of disjoint cliques. Thus a journey can only contain a cycle if it
contains two vertices vi, vj of the same clique. We can check this efficiently while iterating
through the sequence of vertex, time pairs. For every i ∈ [1, 2k + 2] add i to a set associated
with the clique that contains vi Afterwards we check for each of these sets, if it contains
indices i, j such that τi + τtrans(vi, vj) ≤ τj holds. If we found such indices i, j, then we have
also found a cycle that can be replaced with a transfer. We remove this cycle be removing
the connections cbi/2c, . . . , cdj/2e from the journey.

4.4 Parallelization
Our algorithm begins with a short setup phase, during which the connections get sorted,
and the passengers get divided by their destination. Afterwards, a separate assignment
is computed for every destination. Finally, the results are aggregated and the algorithm
terminates. The assignment computation for the different destinations is by far the most
complex part of the algorithm and can be performed for every destination independently.
Therefore, it is quite easy to parallelize this part of the algorithm. First, the destinations
a distributed among the available processors. Afterwards each processor computes an
independent assignment for the corresponding destinations.

5 Evaluation

We implemented our algorithm in C++ compiled with GCC version 5.3.1 and optimization
flag -O3. Experiments were conducted on a quad core Intel Xeon E5-1630v3 clocked at 3.7GHz,
with 128GiB of DDR4-2133 RAM, 10MiB of L3 cach, and 256KiB of L2 cache.

5.1 Instance
We tested our algorithm on a public transit network covering the greater region of Stuttgart,
as well as some long distance routes, reaching as far as Mannheim, Basel or Munich. This



L. Briem et al. 20:11

Table 1 Instance size.

#Vertices 15 115
#Stops 13 941
#Edges 33 890
#Edges − #Loops 18 775
#Connections 780 042
#Trips 47 844
#Passenger 1 249 910

Table 2 Running time of our algorithm depending on the maximum delay ∆max
τ .

∆max
τ time

1min 108.57 sec
2min 109.92 sec
4min 111.49 sec
8min 117.32 sec

16min 125.26 sec
32min 136.25 sec
64min 149.61 sec

network as well as the associated model for demand was introduced in [9]. The timetable
covers roughly the traffic of one day, the earliest connection departs at 0:39 am and the last
connection arrives at 2:37 am on the second day. Some key figures of the network are listed
in Table 1. Since we require the transfer graph to be transitively closed, it contains a loop
edge at every vertex, which increases the number of total edges significantly. Our algorithm
depends on several tuning parameters that are used to adequately model passenger behavior.
For our experiments, we chose the following values: the walking cost is set to λwalk = 2.0,
the waiting cost is set to λwait = 0.5, the transfer cost as well as the delay tolerance are set
to λtrans = λ∆max = 300 sec, and the maximum delay is set to ∆max

τ = 60 sec.

5.2 Experiments
Our first experiment evaluates the performance of our algorithm, depending on the various
tuning parameters. These parameters are primarily intended to model different passenger
preferences. As such they do not directly influence the computational complexity of the
algorithm. In fact there is no measurable difference in running times when the paramet-
ers λwalk, λwait, λtrans, or λ∆max are changed. However, increasing the maximum delay ∆max

τ

of the connections slightly increases the running time, as stated in Table 2. For every row
in the table we repeated the assignment computation ten times and report the mean of
the resulting running times. The increase in running time is caused by the computation
of τp

arr(c, d | trans), since more connections have a non zero probability of being the successor
connection for c.

Another important tuning parameter, is the passenger multiplier λmul. Changing λmul
directly influences the amount of work that has to be done, since more passengers have
to be simulated. Figure 2 shows the running time of our algorithm dependent on λmul,
differentiated by the phases of the algorithm. As expected the running time increases with an
increasing passenger multiplier. The additional running time is mostly due to the assignment

SEA 2017



20:12 Efficient Traffic Assignment for Public Transit Networks

0 100 200 300 400 500
0

120

240

360

480

600

Passenger Multiplier λmul

T
im

e
[se

c]

Total
Assignment
Cycle Elimination
PAT
Setup

0

120

240

360

480

600

Figure 2 The running time of our algorithm depending on the passenger multiplier, differentiated
by the phases of the algorithm. Changing the passenger multiplier primarily affects the assignment
phase. Every measurement is the mean over the running times of ten repetitions of our algorithm.

phase. However, the running time of the assignment phase is not doubled when the number
of passengers is doubled. This is the case, because an increased number of passengers leads
to more passengers making the same decisions. Thus synergy effects can be used during
the computation. The PAT computation is completely independent from the number of
passengers, which leads to a constant running time as seen in Figure 2. The time required
for the cycle elimination and the setup phase (i.e. sorting the connections and distributing
the passengers by destination) increases only slightly with an increased passenger multiplier.

Next, we evaluate the performance of the parallelized version of our algorithm. For the
following experiment we use a passenger multiplier of λmul = 10, since this is in most cases
sufficient for an accurate result. The serial version of the algorithm has a running time
of 108.57 sec. Using the parallelized version with only one thread results in a slightly increased
running time of 108.92 sec. Using two threads we achieve a running time of 65.57 sec, four
threads achieve 38.41 sec. As before all measurements are the mean over ten executions.
Using four threads we only achieve a speed-up of 2.83, despite the fact that the computations
are complete independent of each other. This could be the case, because our algorithm
primarily scans through the memory. Thus, memory bandwidth could be a limiting factor.

Additionally, we compare the running time of our algorithm to VISUM, which is a
commercial tool from PTV AG. On the same instance the VISUM computation took just
above 30 minutes, and was parallelized using 8 threads. The VISUM assignment was computed
on an Intel Core i7-6700 clocked at 3.4GHz with 64GiB of RAM, running Windows 10. Thus
our algorithm outperforms the state-of-the-art by a factor of about 50.

Finally, we compare the quality of the assignment computed by our algorithm to the one
computed by VISUM. Table 3 summarizes the results. Overall, the assignments computed
by our algorithm and VISUM are quite similar. Our algorithm assigns journeys with slightly
longer mean travel time, in favor of a slightly decreased number of transfers. At the same
time, our algorithm assigns journeys with a higher maximum number of trips. The reason
for this is that VISUM prunes all journeys with more than 6 trips, while our algorithm
has no hard limit on the number of transfers. It is noticeable, that both techniques assign
about 1200 passengers to a single vehicle, since both are not able to handle vehicle capacities.



L. Briem et al. 20:13

Table 3 Comparison between an assignment computed by VISUM and our algorithm. We report
for every quantity the minimum (min), mean, standard deviation (sd), and maximum (max) over
all journeys. The figures for both assignments are quite similar. However, our assignment slightly
favors journeys with fewer trips (transfers), at the disadvantage of marginal increased travel time.

VISUM Our Algorithm

Quantity min mean sd max min mean sd max

Total travel time [min] 2.98 46.885 23.753 429.00 2.98 47.199 23.443 429.00
Time spent in vehicle [min] 0.02 21.059 18.796 380.00 0.02 21.231 18.749 323.97
Time spent walking [min] 2.00 22.394 5.200 149.00 2.00 22.476 5.265 149.00
Time spent waiting [min] 0.00 3.432 5.722 217.02 0.00 3.492 5.677 217.02

Trips per passenger 1.00 1.771 0.833 6.00 1.00 1.746 0.843 8.00
Connections per passenger 1.00 9.396 7.435 109.00 1.00 9.474 7.331 97.00
Passengers per connection 0.00 12.740 37.795 1 290.10 0.00 12.847 37.584 1 233.60

6 Conclusion and Future Work

In this work we presented a novel algorithmic approach to compute public transit traffic
assignments. As a means of modeling realistic passenger behavior we introduced perceived
arrival times. This allowed us to consider several important criteria of a journey while
developing an efficient algorithm. We showed that the resulting assignment is comparable
to the state-of-the-art in terms of quality. Concerning running time, our algorithm is more
than an order of magnitude faster then state-of-the-art.

For future work, it would be interesting to incorporate vehicle capacities and an equilibrium
model in our approach, since our experiments showed that a lack of those results in some
vehicles having a very high utilization. Moreover, we would like to incorporate the cycle
elimination phase into the assignment phase, such that journeys containing cycles are not
assigned in the first place.

References
1 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin

Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In Proceedings of the 18th Annual European Symposium on Algorithms
(ESA’10), volume 6346 of Lecture Notes in Computer Science, pages 290–301. Springer,
2010.

2 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks. In Algorithm Engineering – Selected Results and Surveys, volume
9220 of Lecture Notes in Computer Science, pages 19–80. Springer, 2016.

3 Hannah Bast, Jonas Sternisko, and Sabine Storandt. Delay-robustness of transfer patterns
in public transportation route planning. In Proceedings of the 13th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’13), Open-
Access Series in Informatics (OASIcs), pages 42–54, 2013. doi:10.4230/OASIcs.ATMOS.
2013.42.

4 Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller–Hannemann.
Accelerating time-dependent multi-criteria timetable information is harder than expected.
In Proceedings of the 9th Workshop on Algorithmic Approaches for Transportation Modeling,

SEA 2017

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.42
http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.42


20:14 Efficient Traffic Assignment for Public Transit Networks

Optimization, and Systems (ATMOS’09), OpenAccess Series in Informatics (OASIcs), 2009.
doi:10.4230/OASIcs.ATMOS.2009.2148.

5 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-based public transit routing.
Transportation Science, 2014. doi:10.1287/trsc.2014.0534.

6 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple and
fast transit routing. In Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13), volume 7933 of Lecture Notes in Computer Science, pages 43–54.
Springer, 2013.

7 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Delay-robust journeys in timetable
networks with minimum expected arrival time. In Proceedings of the 14th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (AT-
MOS’14), OpenAccess Series in Informatics (OASIcs), 2014. doi:10.4230/OASIcs.ATMOS.
2014.1.

8 Michael Patriksson. The Traffic Assignment Problem: Models and Methods. Courier Dover
Publications, 2015.

9 Johannes Schlaich, Udo Heidl, and Regine Pohlner. Verkehrsmodellierung für die Region
Stuttgart – Schlussbericht. Unpublished manuscript, 2011.

10 Yosef Sheffi. Urban Transportation Networks. Prentice-Hall, Englewood Cliffs, NJ, 1985.
11 Ben Strasser and Dorothea Wagner. Connection scan accelerated. In Proceedings of the

16th Meeting on Algorithm Engineering and Experiments (ALENEX’14), pages 125–137.
SIAM, 2014.

12 Sascha Witt. Trip-based public transit routing. In Proceedings of the 23rd Annual European
Symposium on Algorithms (ESA’15), Lecture Notes in Computer Science. Springer, 2015.
Accepted for publication.

http://dx.doi.org/10.4230/OASIcs.ATMOS.2009.2148
http://dx.doi.org/10.1287/trsc.2014.0534
http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.1
http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.1

	Introduction
	Related Work

	Preliminaries
	Perceived Arrival Time (PAT)
	Our Approach
	Perceived Arrival Time Computation
	Assignment
	Cycle Elimination
	Parallelization

	Evaluation
	Instance
	Experiments

	Conclusion and Future Work

