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Abstract
Many low-degree tests examine the input function via its restrictions to random hyperplanes of a
certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane (Raz,
Safra 1997), and cube-vs-cube (Bhangale, Dinur, Livni 2017) tests.

In this paper we study tests that only consider restrictions along axis-parallel hyperplanes,
which have been studied by Polishchuk and Spielman (1994) and Ben-Sasson and Sudan (2006).
While such tests are necessarily “weaker”, they work for a more general class of codes, namely
tensor product codes. Moreover, axis-parallel tests play a key role in constructing LTCs with
inverse polylogarithmic rate and short PCPs (Polishchuk, Spielman 1994; Ben-Sasson, Sudan
2008; Meir 2010). We present two results on axis-parallel tests.
1. Bivariate low-degree testing with low-agreement. We prove an analogue of the Bivariate Low-

Degree Testing Theorem of Polishchuk and Spielman in the low-agreement regime, albeit
with much larger field size. Namely, for the 2-wise tensor product of the Reed–Solomon code,
we prove that for sufficiently large fields, the 2-query variant of the axis-parallel line test
(row-vs-column test) works for arbitrarily small agreement. Prior analyses of axis-parallel
tests assumed high agreement, and no results for such tests in the low-agreement regime were
known.
Our proof technique deviates significantly from that of Polishchuk and Spielman, which relies
on algebraic methods such as Bézout’s Theorem, and instead leverages a fundamental result
in extremal graph theory by Kövári, Sós, and Turán. To our knowledge, this is the first time
this result is used in the context of low-degree testing.

2. Improved robustness for tensor product codes. Robustness is a strengthening of local testabil-
ity that underlies many applications. We prove that the axis-parallel hyperplane test for the
m-wise tensor product of a linear code with block length n and distance d is Ω( dm

nm )-robust.
This improves on a theorem of Viderman (2012) by a factor of 1/ poly(m). While the im-
provement is not large, we believe that our proof is a notable simplification compared to prior
work.
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1 Introduction

Locally testable codes (LTCs) are error-correcting codes for which, given an input word,
one can verify whether the word belongs to or is far from the code by inspecting the
word in a few random locations. LTCs have been studied extensively in different contexts,
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including program checking, interactive proofs, and probabilistically checkable proofs (PCPs)
[17, 30, 5, 4, 28, 22]. Goldreich and Sudan [22] describe LTCs as “combinatorial counterparts
of the complexity theoretic notion of PCPs”, motivating the study of these objects separately.

LTC constructions

The first constructions of LTCs were algebraic in nature, and relied on multivariate polynomi-
als. Starting with the seminal work of Blum, Luby, and Rubinfeld [17], there has been much
work on such algebraic LTCs by way of results on linearity testing and low-degree testing in
numerous settings [17, 7, 12, 6, 1, 16]. Many other constructions [26, 33, 24] further optimize
parameters of these codes, including rate, distance, and the number of queries made by the
tester.

Ben-Sasson and Sudan [10] suggested a combinatorial approach to construct LTCs starting
from any linear code by
(i) applying the tensor product operation [34, 35] to the code, and
(ii) testing the resulting code via the axis-parallel hyperplane test.
We now discuss both.

The 2-wise tensor product of a linear code C ⊆ Fn, denoted C2, is the code in Fn2

consisting of all 2-dimensional matrices whose n rows and n columns are codewords in C;
similarly, the m-wise tensor product of C, denoted Cm, is the code in Fnm consisting of
all m-dimensional matrices M whose restrictions to any axis-parallel (m− 1)-dimensional
hyperplane is a codeword in Cm−1. For example, the code of evaluations of all m-variate
polynomials of individual degree at most r is the m-wise tensor product of the code of
evaluations of all univariate polynomials of degree at most r.

The axis-parallel hyperplane test for the code Cm works as follows: given a word M ,
sample a random axis-parallel hyperplane and check if the restriction of M to this hyperplane
is a codeword in Cm−1. This natural test extends ideas of axis-parallel line tests used in
early PCP constructions [5, 4, 2] to arbitrary tensor product codes.

We study two aspects of the axis-parallel hyperplane test for tensor product codes.

(1) Low-agreement regime

All of the aforementioned works study the axis-parallel hyperplane test in the “high-agreement
regime”, in which the given codeword is within the unique decoding radius of the tensor
product code. What can be said about the “low-agreement regime”, in which the given
codeword may be as far as the list-decoding radius? This setting is more challenging because
one wishes to deduce that a given word has some noticeable global correlation with a
codeword, or a short list of codewords, by only assuming that local views of the test have
some non-trivial agreement with accepting views (but may not necessarily be very close to
such views).

Results in the low-agreement regime are known for other tests, such as tests for the
Hadamard code [6] and the long code [23] as well as random non-axis-parallel hyperplane tests
in various dimensions [29, 3, 27]. Moreover, these have applications to PCP constructions
and hardness of approximation. However, to our knowledge prior to our work no results are
known for the low-agreement regime of axis-parallel tests.

(2) Robustness

Ben-Sasson and Sudan [10] analyze the axis-parallel hyperplane test via the notion of
robustness, a stronger notion of local testability borrowed from the PCP literature [9, 19].
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Informally, a test for a code is robust if, given any input that is far from the code, the local
view of the test is also far from an accepting view on average. For example, the axis-parallel
hyperplane test is robust if, given any M that is far from Cm, the restriction of M to a
random hyperplane is far from Cm−1 on average.

Robustness thus relates the global distance to the expected local view distance and, as
shown in [10], facilitates query reduction via a natural way to compose tests; this notion has
also found applications to proof composition in the setting of PCPs [9]. These works have
motivated the study of the robustness of the axis-parallel hyperplane test for tensor product
codes, establishing both positive results [20, 13, 14, 32] and limitations [31, 18, 21].

Despite significant progress, robustness results for the axis-parallel hyperplane test seem
to be far from tight. The best known relation between the global distance and the local
distance is due to Viderman [32], but no examples that come anywhere close to his proven
bound are known.

2 Main results

We present two main results about tests for tensor product codes. First, we prove an
analogue of the Bivariate Low-Degree Testing Theorem of Polishchuk and Spielman [28] in
the low-agreement regime, albeit with much larger field size. Second, we improve on the
robustness of the hyperplane test for testing the tensor product code Cm, for m ≥ 3. We
now discuss our results.

2.1 Bivariate low-degree testing in the low-agreement regime
One of the applications of locally testable codes is constructing PCPs, where it is often
desirable to reduce the number of queries made by the test. Typically this is done by increasing
the alphabet size so that each “large” symbol bundles together several “small” symbols from
different locations of the given word. This bundling now introduces a consistency problem,
because two large symbols may in principle disagree about the same location in the word.

For example, in [29, 3, 27, 15] the test has access to (alleged) restrictions of a low-degree
polynomial to all lines, planes, cubes, or other low-degree manifolds. The test samples several
queries that intersect, and checks that their answers are consistent on the intersection. These
works establish that if the test accepts with probability above a certain threshold, then the
restrictions are close to the restrictions of some low-degree polynomial.

We study this problem in a modified setting, where the test only has access to axis-parallel
restrictions. Restricting the test in this way makes its task more difficult, but doing so
provides other advantages. First, axis-parallel restrictions are sometimes the only natural
restrictions, such as when testing the m-wise tensor product of a general linear code C (one
may consider restrictions to all (m − 1)-dimensional hyperplanes). Second, having fewer
restrictions enables more efficiency, e.g., it facilitates the construction of short PCPs [28, 11].

Indeed, for this very reason, Polishchuk and Spielman [28] study the above problem for
bivariate polynomials, where m = 2 and C is the degree-r Reed–Solomon code. That is, the
test has access to a table of row polynomials and a table of column polynomials, and its goal
is to check if these are consistent with restrictions of a bivariate polynomial of individual
degree r. The test works by as follows: pick a random (x, y) ∈ F2, read the row and column
polynomials through this point, and accept if and only if the two polynomials are equal on
(x, y).

Clearly, if all the row polynomials and column polynomials are restrictions of a bivariate
polynomial of individual degree r, then the test always accepts. They prove that, conversely,

APPROX/RANDOM’17
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if the test accepts with probability close to 1, then the given polynomials are “close” to being
restrictions (to axis-parallel lines) of some low-degree bivariate polynomial, as written below.
In the statement, we say that a bivariate polynomial in variables x and y has degree (a, b) if
the degree in x is at most a and that in y is at most b. This means that the table of row
polynomials, R(x, y), has degree (r, n) and the table of column polynomials, C(x, y), has
degree (n, r), where n is the size of the table.

I Theorem 1 ([28]). Let F be a field and X,Y ⊆ F subsets of size n := |X| = |Y |. Let
R(x, y) be a polynomial of degree (r, n) and C(x, y) a polynomial of degree (n, r) such that

Pr
(x,y)∈X×Y

[C(x, y) = R(x, y)] = 1− γ2

for some γ > 0. If n > 2γn+ 2r, then there exists a polynomial Q(x, y) of degree (r, r) such
that

Pr
(x,y)∈X×Y

[C(x, y) = R(x, y) = Q(x, y)] ≥ 1− 2γ2 .

The theorem above assumes that n > 2γn+2r, which means that γ2 < (1/2−r/n)2 < 1/4.
In other words, it requires the row polynomials and column polynomials to agree on (at least)
more than three quarters of the points in X × Y . A slight improvement in the parameters of
this theorem is shown in [8]. However, their result still requires the polynomials to agree on
a large fraction of the points in X × Y . But what, if anything, can be said if we only assume
that they agree, for example, on more than a 0.1-fraction of those points?

There are several results on low-degree testing that show that, even if we only assume
that the test accepts with noticeable probability (for the row-vs-column test this probability
equals the agreement between row and column polynomials), one can still prove the existence
of a short list of polynomials that ‘explain’ most of this probability, and this in turn has
applications to constructing PCPs with small errors (see, e.g., [29, 3, 27]).

Our next result gives a positive answer to the question above, stating that even in the
low-agreement regime, we can still deduce some structure about the polynomials R and C,
assuming that the field size is sufficiently large.

I Theorem 2. Let F be a field of size n, r ∈ N, and δ, ε ∈ R be such that δ > ε > 6
√
r/n.

Let R(x, y) be a polynomial of degree (r, n) and C(x, y) a polynomial of degree (n, r) such that

Pr
(x,y)∈F2

[C(x, y) = R(x, y)] = δ .

If n > exp(Ω( r
ε log( 1

ε ))), then there exist t = O( 1
ε ) polynomials Q1(x, y), . . . , Qt(x, y) of

degree (r, r) such that

Pr
(x,y)∈F2

[∃i ∈ [t] C(x, y) = R(x, y) = Qi(x, y)] ≥ δ − ε .

We remark that Theorem 2 holds in general for the 2-wise tensor of any linear code
C ⊆ Fn with minimal distance ≥ n− r such that n > exp(Ω( r

ε log( 1
ε ))). In particular, this

means that the minimal distance of C is at least n−O(logn). See the paragraph Beyond
polynomials below for details.

Note that in the above theorem, δ is the agreement probability, while γ2 in Theorem 1 is
the disagreement probability. Also, since r = o(n), both δ and ε can be sub-constant. This is
the first result that analyzes the row-vs-column test in the low acceptance regime that we
are aware of.
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The row-vs-column test and its higher-dimensional analogues underly many known PCP
constructions [5, 4, 28, 11]. However, in all these constructions the low degree tests are
only analyzed in the high agreement regime. We believe that analyzing the test in the low-
agreement regime may imply short PCP constructions with small (sub-constant) soundness. A
weakness of the result stated in Theorem 2 is the requirement that the field size must be very
large, which restricts us from getting PCPs with polynomial-size proof length. Nonetheless,
we consider Theorem 2 as a promising first step in this direction. More generally, our result
suggests that the low-agreement regime for tensor product codes merits further study.

To prove the theorem we leverage a fundamental result in extremal graph theory by
Kövári, Sós, and Turán. To our knowledge, this is the first time this result is used in the
context of low-degree testing. See Section 3.1 below for a high-level description of our proof.

Beyond polynomials

While [28]’s proof relies on polynomials (a key step is Bézout’s Theorem), we rely on
combinatorial techniques, so that our Theorem 2 holds in general for the 2-wise tensor of
any linear code C ⊆ Fn with minimal distance ≥ n − r such that n > exp(Ω( r

ε log( 1
ε ))).

In particular, this means that the minimal distance of C is at least n − O(logn). The
row-vs-column test is now given two matrices R, C ∈ Fn×n such that every row of R is in
C, and every column of C is in C. If Pr(x,y)∈[n]2 [R(x, y) = C(x, y)] = δ, then there exist
t = O(1/ε) codewords Q1, . . . , Qt ∈ C2 such that Pr(x,y)∈[n]2 [∃i ∈ [t] s.t. R(x, y) = C(x, y) =
Qi(x, y)] > δ − ε.

In this context it is worth mentioning that there has been a lot of work on the robustness
of the axis-parallel line test for 2-wise tensor products, proving both positive results [10, 20]
and negative ones [31, 18, 21]. We find it quite remarkable that this result holds for general
pairwise tensor codes, albeit with very high distance, as the closely related notion of robustness
does not hold for general 2-wise tensor products.

Finally, in the high-agreement regime there is a correspondence between the robustness
of the axis-parallel line test and the soundness of the row-vs-column test (the matrix is given
as a collection of lines rather than explicitly).1 Yet this correspondence does not hold in the
low-agreement regime. Consider a matrix M whose rows are random independent codewords:
the tensor product test passes with probability at least 0.5 (when reading a row), but M is
typically far from a tensor codeword.

Open problems

We raise two questions on the low-agreement regime of axis-parallel line tests.
Smaller field size. Our result (Theorem 2) assumes that the field size n is exponential in
the degree r. Can one prove a similar result for smaller fields, such as n = poly(r)?
Higher dimensions. Polishchuk and Spielman [28] explain that their result (in the high-
acceptance regime) also holds in higher dimensions, where now the test is given a table
of low-degree polynomials for each axis-parallel line in Fm and works as follows: pick
a random p ∈ Fm, read the polynomials along the m axis-parallel lines through p, and
check that all polynomials agree on p. Can one prove a high-dimensional analogue of

1 Let M ∈ Fn×n be such that the average relative distance of a row/column of M to some codeword is
1− ε. One can verify that by considering the closest codewords in each row and in each column, the
obtained table of row/column codewords passes the row-vs-column test with probability at least 1− 2ε.
Therefore, there exists a tensor codeword that agrees with most of the rows and most of the columns,
which in turn implies its agreement with M .

APPROX/RANDOM’17
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Theorem 2? Namely, is it true that if this test accepts with probability δ > 0, then there
is a short list of low-degree polynomials that explain most of the agreements?

2.2 Improved robustness for the axis-parallel hyperplane test
We study the robustness of the axis-parallel hyperplane test for the tensor product code
Cm ⊆ Fnm , for an arbitrary linear code C with minimal distance d and block length n

over the field F. Let H be the test that, given a word M ∈ Fnm , samples a random
axis-parallel (m − 1)-dimensional hyperplane H and checks if M |H ∈ Cm−1. For a word
M ∈ Fnm , we define δ(M) to be the relative distance of the word M to the code Cm and
ρ(M) to be EH [δ(M |H , Cm−1)], the expected local distance of M . The test H is α-robust if
ρ(M) ≥ α · δ(M) for every word M ∈ Fnm . The ‘strength’ of the test increases with α, so
the goal is to establish the largest α for which this inequality holds.

What is known

There are two main prior works that study the robustness of the test H for general m. We
state the results of these works, starting with one of Ben-Sasson and Sudan [10].

I Theorem 3 ([10]). Let C ⊆ Fn be a linear code with minimal distance d. For m ≥ 3 and(
d−1

n

)m ≥ 7/8, the test H is α-robust for Cm with α = 2−16.

The above theorem is limited in that the proved robustness is small and, moreover, only
provides a guarantee when C has a very large distance. Viderman [32] shows that this
condition on the distance is not necessary in order to show some robustness guarantee.

I Theorem 4 ([32]). Let C ⊆ Fn be a linear code with minimal distance d. For m ≥ 3, the
test H is α-robust Cm with α = 1

2m2

(
d
n

)m.

The above theorem, the state of the art in this setting, improves on the previous one as
1. even if

(
d−1

n

)m ≥ 7/8, the robustness provided by Theorem 4 is larger than that provided
by Theorem 3 for m ≤ 169;

2. a robustness guarantee is provided for any choice of m, d, n (as long as m ≥ 3).

Our result

We present a simpler proof of Theorem 4, which also achieves a 1
m2 improvement in the

robustness by showing that the hyperplane test is Ω( dm

nm )-robust. This improved value for
the robustness appears more “natural”, because dm

nm is the distance of the code Cm.

I Theorem 5. Let C ⊆ Fn be a linear code with minimal distance d. For m ≥ 3, the test H
is α-robust for Cm with α = 1

12
(

d
n

)m.

Tight or not?

Several works have studied the test H and all resulting analyses have an exponential
dependence on m in the robustness. Yet, there is no evidence indicating that this dependence
is necessary. Perhaps a “dream” result of constant robustness, for all codes C and m ≥ 3,
is possible. Like previous results, we too incur the same exponential dependence in the
robustness. We present some observations that may suggest that this dependence is not
necessary.
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Under certain conditions on M , we can prove that ρ(M) ≥ max{ 1
m+c , c

′ dm

nm } · δ(M) for
constants c, c′ > 0. These two expressions are incomparable, as we can set the parameters
m, d, n to make either expression bigger than the other. (See Claim 25.)
The guarantees of Theorem 3, Theorem 4, and Theorem 5 all degrade as dm

nm decreases.
In particular, the proven value of α in all these cases tends to 0 as d

n tends to 0. However,
if C is the Reed–Solomon code (or any other code with a similar interpolation property),
then we can prove that δ(M) ≤ ρ(M) + d

n for all M . (See Claim 27.)
We, thus, think that determining the optimal robustness of H is an intriguing open problem:

What is the optimal robustness of the hyperplane test H?
Can one prove that α = Ω

(
max

( 1
m ,

dm

nm

))
, or even α = Ω(1), for all codes?

In [10], [32], and our result, the proof shows that when ρ(M) is below some threshold (related
to the code’s unique decoding radius), then δ(M) is also small. However, when ρ(M) is not
below this threshold, the analysis says nothing about δ(M), and naively uses δ(M) ≤ 1 to
prove robustness in this regime. We believe that progress on understanding the optimal
robustness of H hinges on understanding what techniques (if any) can be used to bound
δ(M) in terms of ρ(M) for a larger range of ρ(M).

Open problems

Several intriguing questions on testing tensor product codes remain open.
Optimal robustness of H. What is the optimal robustness of the hyperplane test H? Can
one prove that α = Ω

(
max

( 1
m ,

dm

nm

))
, or even α = Ω(1), for all codes?

Special cases. Can one simplify the proof and/or prove a higher robustness if one assumes
that C satisfies “nice” properties? For instance, what if C is the Reed–Solomon code (so
that Cm is a Reed–Muller code of bounded individual degree)?

3 Techniques

We give an overview of the proof techniques behind Theorem 2 and Theorem 5.

3.1 Theorem 2: bivariate testing in the low agreement regime
Polishchuk and Spielman [28] prove their result (Theorem 1) using the following approach.
Given R and C (as in the theorem) such that Prx,y[R(x, y) = C(x, y)] > 1− δ, they define
an “error polynomial” E that equals 0 for all (x, y) such that R(x, y) 6= C(x, y). Since the
fraction of points where R(x, y) 6= C(x, y) is small, E is a low-degree polynomial. However,
in the low-agreement regime that we consider, the degree of E is rather large, which seems
to preclude their approach. In particular, a key step based on Bézout’s Theorem in their
proof appears to break down.

We take a completely different approach, which relies on a combinatorial statement from
extremal graph theory. Given R and C such that Prx,y[R(x, y) = C(x, y)] = δ, we define
A ∈ {0, 1}n×n to be the ‘agreement matrix’: A(x, y) = 1 if and only if R(x, y) = C(x, y).
By the assumption it follows that A has at least δn2 ones. By invoking the Kövári-Sós-and
Turán Theorem (which may be thought of as an analogue of Ramsey’s Theorem for bipartite
graphs) it follows that there are some S, T ⊆ [n] such that |S| , |T | > Ω(log(n)) � r and
A|S×T ≡ 1. Since the rows of R and the columns of C are polynomials of degree r, we deduce
that there exists a unique polynomial Q of degree (r, r) such that for all (x, y) ∈ S × T it
holds that R(x, y) = C(x, y) = Q(x, y).

APPROX/RANDOM’17
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The argument above may appear to be good progress toward our goal. However, there is
a total of ≈ δn2 ones in A, and the rectangle S × T is of size O(log(n)), i.e., tiny compared
to n. This means that the progress is actually rather small!

Nevertheless, we can now set A|S×T to be zero, and repeat the same argument again,
thus covering all but a small fraction of ones of A with small rectangles. However, this raises
a new problem. Each rectangle S × T found in the previous step can be very small, and so
there are potentially many different polynomials Q that explain the agreements of R and C.
Our next goal is therefore to “stitch” these rectangles together to show that, in fact, there is
only a small number of distinct polynomials. We do so by “making the rectangles larger”, as
we now explain.

Consider a rectangle S × T from the first step, and let t′ ∈ F \ T . Note that if there
are r + 1 points s′ ∈ S such that A(s′, t′) = 1, then the row polynomial R(·, t′) is uniquely
defined by these r+ 1 points, and hence A(s, t′) = 1 for all s ∈ S. Therefore, we can increase
T by adding t′ to it. On the other hand, if there are less that r + 1 such points s′ ∈ S, then
we may disregard these points as they amount to only a small fraction of the points (since
|S| � r). Thus, on a typical rectangle S × T , we can go from size O(log(n))×O(log(n)) to
size roughly O(log(n))× Ω(n).

In the last step, we show that if we have many rectangles of size O(log(n))×Ω(n) then it
is possible to “stitch” them together using the fact that if we have two rectangles S1×T1 and
S2 × T2 with corresponding polynomials Q1 and Q2 such that |T1 ∩ T2| > r, then Q1 ≡ Q2.
Indeed, this follows by the fact that if two univariate polynomials of degree r agree on more
than r points, then they are equal. We then use the inclusion-exclusion principle to show
that for ε >

√
2r
n we cannot have more than 2

ε subsets Ti ⊆ [n] of size at least εn such that
|Ti ∩ Tj | ≤ r for all i 6= j.

The full proof of Theorem 2 is provided in Section 4.

3.2 Theorem 5: improved robustness for the hyperplane test

Our goal is to prove that the axis-parallel hyperplane test H is α-robust for α = 1
12
(

d
n

)m.
We prove this statement via a careful combination of the approaches taken by [10] and [32].
Specifically, we analyze ρ(M) and δ(M) by studying the following combinatorial object: the
inconsistency graph G of the hyperplane test H, which we now informally describe.

The test H has access to a word M ∈ Fnm , allegedly in Cm. For any axis-parallel
hyperplane H, we denote by gH the closest codeword to M |H in Cm−1 (breaking ties by
picking an arbitrary closest codeword). The vertex set of the graph G is the set of (m− 1)-
dimensional hyperplanes, which are the local views of the test. There is an edge between two
different hyperplanes H and H ′ if gH and gH′ disagree on the intersection of the hyperplanes,
H ∩H ′. (See Definition 10 for details.) In other words, the graph has an edge between two
planes if the local codewords assigned to the planes are inconsistent. The graph G that we
study is similar to the inconsistency graph analyzed in [10]. The difference is that, for some
threshold parameter τ , the graph used in [10] adds an edge from H to every other H ′ in the
graph if δ(M |H , gH) > τ .

First, we show that if G has a large independent set I, then there is a codeword f in Cm

that agrees with the local codewords gH on every hyperplane H in I. For an independent set
I, we define Ib to be the set of i ∈ [n] such that the hyperplane {p ∈ [n]m : pb = i} is in I. A
key property of tensor product codes is the unique extension property, which we formally
state later on as Claim 21. Using the unique extension property of tensor product codes,
we show that if there are two axes b1 and b2 where Ib1 and Ib2 both have at least n− d+ 1
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planes, then there is a word f in Cm where f |H = gH for every H in the independent set.
Without loss of generality assume b1 = 1 and b2 = 2. Intuitively, we fill in the restricted
hypercube in FI1×I2×nm−2 with the values of the closest codewords to M |H for each H in
the independent set. Since the independent set is large, the restricted hypercube is large
enough so that we can extend the partially filled-in hypercube to a unique codeword f in
Cm. The uniqueness of the extension implies that f |H = gH for every H in I.

Next, we analyze the structure of G to show that every edge is adjacent to a vertex of
degree at least (m−2)d/2. The key point is that two different Cm−2 codewords must disagree
on at least dm−2 points, and these points have a particular structure. For two distinct Cm−2

codewords, we prove that on each of the m−2 remaining axes there must be at least d planes,
parallel to that axis, that contain points of disagreement. If not, then using the unique
extension property we show that the two codewords must be equal, which is a contradiction.
For any edge (H,H ′), this gives us a total of (m− 2)d planes that disagree with at least one
of gH and gH′ on H ∩H ′, which shows that deg(H)+deg(H ′) is at least (m−2)d. Therefore,
at least one of H and H ′ has degree at least (m− 2)d/2. As an immediate consequence, the
set of planes with degree at least (m− 2)d/2, which we denote by L, is a vertex cover, and
the set of planes not in L is an independent set I.

With some algebraic manipulation, we relate the size of this vertex cover to the expected
local distance ρ(M). By expressing ρ(M) as a sum over pairs of intersecting planes, we show
that

ρ(M) ≥ 1
nmm(m− 1)

∑
(H,H′):H∩H′ 6=∅

∆|H∩H′(gH , gH′) .

This allows us to express the robustness of the test H in terms of the size of the vertex
cover L.

Similar to the analysis of [32], we break up the proof into two cases. If |L| is somewhat
large, then ρ(M) ≥ 1

12
(

d
n

)m, and the theorem follows immediately because δ(M) is anyways
at most 1. If |L| is small, then the corresponding independent set has two axes where
|Ib| ≥ n − d + 1. Therefore, there is a global codeword f that is consistent with all the
hyperplanes in the independent set. We use this fact to show that δ(M) must be small when
ρ(M) is small, which concludes the proof.

The full proof of Theorem 5 is provided in Section 5.

4 Proof of Theorem 2

The discussions below rely on notations and statements introduced in Section A. The key
step in the proof of Theorem 2 is the following lemma.

I Lemma 6 (Key lemma). Suppose that |F| > exp(Ω( r
ε log( 1

ε ))). Then, for any ε >
√

2r
|F| there

are t ≤ 2
ε polynomials Q1, . . . , Qt each of degree (r, r), and subsets S1, . . . , St, B1, . . . , Bt ⊆ F

such that
1. For all i ∈ [t] and (x, y) ∈ (Si, Bi) it holds that C(x, y) = R(x, y) = Qi(x, y).
2. All Si’s are pairwise disjoint.
3. |∪i∈[t]Si×Bi|

|F|2 ≥ δ − 3ε, where δ = Pr[C(x, y) = R(x, y)].

Before proving Lemma 6 let us see how it immediately implies Theorem 2.

APPROX/RANDOM’17
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Proof of Theorem 2 using Lemma 6. Let ε > 6
√

r
n , and apply Lemma 6 with ε/3 >

√
2r
n .

By Lemma 6 for some t ≤ 2
ε/3 = 6

ε there are disjoint subsets S1 × B1, . . . , St × Bt ⊆ F2

such that |∪i∈[t]Si×Bi|
|F|2 ≥ δ − ε, and for all i ∈ [t] and (x, y) ∈ (Si, Bi) it holds that

R(x, y) = C(x, y) = Qi(x, y). This implies that

Pr
(x,y)∈F2

[∃i ∈ [t] s.t. R(x, y) = C(x, y) = Qi(x, y)] ≥ Pr[(x, y) ∈ ∪i∈[t]Si ×Bi] ,

which is at least δ − ε, as required. J

We devote the rest of this section to proving Lemma 6.

4.1 Proof of Lemma 6
Let n = |F|, and define the binary matrix A ∈ {0, 1}n×n where A(x, y) = 1 if C(x, y) =
R(x, y) and A(x, y) = 0 otherwise. Note that by the assumption of Theorem 2, we have∑

x,y∈[n]
A(x,y)

n2 = δ, i.e., the matrix A is δ-dense.

4.1.1 Step 1
In the first step we apply Theorem 19 iteratively to show that there exists a collection of
disjoint sets S1, . . . , Su ⊆ [n] with |Si| ≥ r

ε such that for most points (x, y) it holds that if
A(x, y) = 1, then x ∈ ∪Si, and for each i ∈ [u] there exists Ti ⊆ [n] of size |Ti| ≥ r

ε such that
ASi×Ti ≡ 1.

I Claim 7. Let n, r ∈ N, δ > ε > 0, and let k = dr/εe. Let A ∈ {0, 1}n×n be a δ-dense
matrix as above, and suppose that n > 2k2 ( 1

ε

)k+1. Then, there exist u ∈ N and two sequences
Si ⊆ [n], Ti ⊆ [n] with i = 1, . . . , u satisfying the following conditions.
1. The Si’s are pairwise disjoint.
2. |Si| = |Ti| = k.
3. A(x, y) = 1 for every (x, y) ∈ (Si, Ti) and i ∈ [u].
4.
∑

(x,y)∈([n]\(∪Si),[n]) A(x, y) < εn2.

Proof. We will use Theorem 19 to find a submatrix of A of size k × k whose entries are
all 1s. By the choice of k and the assumption that n is sufficiently large we have that
(ε− k

n )k = εk(1− k
εn )k > εk(1− k2

εn ) > εk/2 > k−1
εn , and hence ε > k

√
k−1
εn + k

n . Hence, since

A is δ-dense, we have δ(A) ≥ δ ≥ ε > k

√
k−1

n + k
n . Therefore, by Theorem 19 there exist

S1 ⊆ [n], T1 ⊆ [n] each of size |S1| = |T1| = k such that A|S1×T1 ≡ 1.
Next, we remove the rows contained in S1 from A, and apply the same argument again.

Let M1 = [n] \ S1 and define A1 to be the (n − k) × n submatrix of A whose rows are
indexed by M1. Note that if

∑
x∈M1,y∈[n] A1(x, y) > εn2 then δ(A1) ≥ εn

|M1| , and thus we

have δ(A1) ≥ εn
n−k > ε > k

√
k−1
|M1| + k

n . Therefore, we can apply Theorem 19 again, and find
S2 ⊆M1 and T2 ⊆ [n] of size |S2| = |T2| = k such that A|S2×T2 ≡ 1.

We repeat the same argument again, for each i ≥ 2 defining the the subset Mi =
Mi−1 \ Si−1, and letting Ai = AMi×[n]. Note that if

∑
x∈Mi,y∈[n] A(x, y) ≥ εn2 then

|Mi| ≥ εn, and δ(Ai) ≥ εn
|Mi| ≥ ε > k

√
k−1
|Mi| + k

n . Therefore, by Theorem 19 there exist
Si ⊆Mi and Ti ⊆ [n] of size |Si| = |Ti| = k such that A|Si×Ti

≡ 1.
We stop the process after u iterations when

∑
x∈Mu,y∈[n] A(x, y) < εn2. By definition of

the Si’s and Ti’s, this gives us the subsets with the desired properties. J
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By the assumption |F| = n > exp(Ω( r
ε log( 1

ε ))) in Theorem 2 we have n > 2k2 ( 1
ε

)k+1.
Therefore, we can apply Claim 7 on A to get Si’s and Ti’s as in the claim.

4.1.2 Step 2
Next, we show that the sets Ti in the previous step can be chosen to be of size at least εn.

I Claim 8. Let {(Si, Ti)}u
i=1 be the sets from Claim 7. For each i ∈ [u] define Bi = {y0 ∈

[n] :
∑

x∈Si
A(x, y0) ≥ r + 1}. Then

1.
∑

i∈[u]
∑

x∈Si

y∈[n]\Bi

A(x, y) ≤ εn2.

2. For every i ∈ [u] if y0 ∈ Bi then A(x, y0) = 1 for all x ∈ Si.

Proof. The first item is by the choice of k ≥ r/ε. In each i ∈ [u] and y ∈ [n] \ Bi it holds
that less than ε fraction of the entries are ones, and hence the total number of ones in all
i ∈ [u] and y ∈ [n] \Bi is less that εn2. Formally, we have∑

i∈[u]

∑
x∈Si

y∈[n]\Bi

A(x, y) ≤
∑
i∈[u]

∑
y∈[n]\Bi

r ≤ u · n · r ≤ εn2 ,

where the last inequality uses the fact that u ≤ n/k, and k ≥ r/ε.
To prove the second item, we use Corollary 17. Suppose that A(x0, y0) = 0 for some

x0 ∈ Si and y0 ∈ Bi. By the assumption on Bi, it holds that |{x ∈ Si : A(x, y0) = 1}| ≥ r+1.
Let S = {x0} ∪ {x ∈ Si : A(x, y0) = 1}, and let T = {y0} ∪ Ti, so that A(x, y) = 1 for all
(x, y) ∈ S×T \{(x0, y0)}. Recall that, by definition of A, R(x, y) = C(x, y) for all such (x, y),
and hence, by Corollary 17 we also have R(x0, y0) = C(x0, y0), and thus A(x0, y0) = 1. J

Note that the ones not covered by ∪i(Si ×Bi) are the ≤ εn2 ones omitted in Claim 7 and
the ≤ εn2 ones disregarded in the proof of Claim 8 above. Let us also disregard all Si’s and
Bi’s such that |Bi| ≤ εn, and consider only the remaining subsets. Note that the set of Bi’s
with |Bi| ≤ εn can contain at most εn2 ones. Redefining u to be the number of remaining
sets, we get two collections of subsets {Si ⊆ [n], Bi ⊆ [n]}u

i=1 such that
1. the Si’s are pairwise disjoint.
2. |Bi| > εn for all i ∈ [u].
3.
∑

(x,y)∈∪u
i=1Si×Bi

≥ (δ − 3ε)n2.
4. A|Si×Bi

≡ 1 for all i ∈ [u].
In particular, by Lemma 16 for each i = 1, . . . , u there is a polynomial Pi of degree (r, r)
such that R(x, y) = C(x, y) = Pi(x, y) for all (x, y) ∈ Si ×Bi.

4.1.3 Step 3
Next, we observe that if two sets Bi, Bj from the previous step have large intersection, then
the corresponding polynomials Pi and Pj are equal.

I Claim 9. Suppose that |Bi ∩Bj | ≥ r+ 1 for some i 6= j ∈ [u]. Then Pi = Pj and Bi = Bj .

Proof. Denote B = Bi ∩ Bj . Note that, for each y ∈ B, Pi(x, y) = C(x, y) for all |Si| =
k > r + 1 values of x ∈ Si, and hence Pi(x, y) = C(x, y) for all x ∈ [n]. In particular,
Pi(x, y) = C(x, y) for all (x, y) ∈ Sj×B. Therefore, Pi|Sj×B ≡ Pj |Sj×B , and thus Pi ≡ Pj by
Lemma 15. Applying Corollary 17, we conclude that Pi(x, y) = Pj(x, y) = C(x, y) = R(x, y)
for all (x, y) ∈ (Si ∪ Sj)× (Bi ∪Bj). This implies that Bi = Bj , as required. J
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4.1.4 Completing the proof
In the last step we will show that there is a short list of t ≤ 2

ε polynomials Q1, . . . , Qt such
that each of the Pi’s is in fact equal to one of the Qj ’s. Indeed, denote the number of different
Bi’s by t. By Claim 9, if Bi 6= Bj then |Bi ∩ Bj | ≤ r, and thus by the inclusion-exclusion
principle we have

n ≥
∣∣∪t

i=1Bi

∣∣ ≥ t∑
i=1
|Bi| −

∑
i 6=j

|Bi ∩Bj | ≥ t · εn−
(
t

2

)
r ,

where in the last inequality we used the bound |Bi| > εn for all i. If t ≥ 2
ε , then n ≥

t · εn −
(

t
2
)
r ≥ 2n − 2

ε2 r, and thus ε <
√

2r
n , which contradicts the assumption on ε.

Therefore t < 2
ε , as required.

5 Proof of Theorem 5

We prove Theorem 5. The discussions below rely on notations and statements introduced in
Section B.

Let C be a linear code with distance d and block length n over F, and let Cm be the
m-wise tensor product of C, for some m ≥ 3. Let M be the input to the test H, which is an
evaluation table of a function from [n]m → F. Define gH to be the closest Cm−1 word to
M |H , where ties are broken by picking an arbitrary closest codeword. We will view M as
fixed throughout the analysis.

We need to show that ρ(M) ≥ α · δ(M), for α = 1
12
(

d
n

)m. The main idea in the proof is
to upper bound δ(M) by figuring out how to “stitch” together the gH ’s to make a global
codeword f . We begin by defining the inconsistency graph G. The graph G has each
hyperplane as a vertex, and has an edge between two hyperplanes H and H ′ if they have
nonzero intersection and their respective local codewords gH and gH′ are inconsistent, i.e.,
they disagree on some point p in their intersection H ∩H ′.

I Definition 10 (Inconsistency Graph). The inconsistency graph G of the test H is a graph
where V is the set of hyperplanes, and E = {(H,H ′) : ∃p ∈ H ∩H ′ s.t. gH(p) 6= gH′(p)}.

The proof will be divided into several steps. First, we will show that if G contains a large
independent set, namely a large set of planes which are all consistent with each other, then
there is a global codeword f that stitches together all of the local codewords gH for every
H in the independent set. Then, we will show that every edge in G is adjacent to a vertex
of (somewhat) large degree. This will imply that the set of vertices that have large degree
is a vertex cover, and its complement is an independent set. We will then show that ρ(M)
is lower bounded by some function that is linear in the number of vertices that have large
degree. Using these components, we will conclude the proof.

5.1 Step 1: the case of a large independent set
We will show that if G has a large independent set I, then there is an f in Cm that agrees
with gH on H for every H in I. In other words, f is the codeword of Cm that stitches
together all of the gH ’s in the independent set. The proof relies on Claim 21.

I Lemma 11 (Interpolation). If G has an independent set I of size |I| > (m− 1)(n− d) + n,
then there exists f in Cm such that f |H = gH for every H ∈ I.
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Our proof of this lemma is similar to the proof of a different lemma in [10].

Proof. Define Ib to be the set of i ∈ n such that the plane (b, i) is in I. Since |I| >
(m− 1)(n− d) +n, there must exist b1 6= b2 such that |Ib1 | and |Ib2 | are at least n− d+ 1, as
otherwise |I| =

∑m
b=1 |Ib| ≤ (m−1)(n−d) +n. Without loss of generality assume b1 = 1 and

b2 = 2. Let S = I1 × I2 × [n]m−2 and let g : S → F be a matrix in FS . Define g(p) = gH(p)
for every p ∈ S, where H is some plane in I1∪ I2 such that p ∈ H. Note that g is well-defined
since all the planes in I are consistent with each other, as I is an independent set.

We claim that g ∈ C|I1 ⊗ C|I2 ⊗ Cm−2. This is because for any H ∈ I1 it holds that
g|H ∈ C|I2 ⊗ Cm−2, as g|H = gH except that the second axis is now restricted to I2. This
means that for every axis b 6= 1, 2 and for every line `b parallel to the b-th axis it holds that
g|`b
∈ C. Also, for every line `2 parallel to the second axis we have that g|`2 ∈ C|I2 , because

we took a Cm−1 codeword and restricted it to the subset I2. However, by symmetry we can
repeat the same argument, swapping axis 1 and axis 2, and hence for every line `1 parallel to
the first axis it must hold that g`1 ∈ C|I1 . Thus, g ∈ C|I1 ⊗C|I2 ⊗Cm−2. Since |I1| and |I2|
are at least n− d+ 1, we can apply Claim 21 to the code C|I1 ⊗C|I2 ⊗Cm−2 to extend g to
a unique codeword f ∈ Cm.

We still need to show that f |H = gH for every H ∈ I. By definition of Cm we have
f |H ∈ Cm−1. There are three cases. If H ∈ I1, then f agrees with gH on a subset of H
of size I2 × [n]m−2, because gH |I2×[n]m−2 = g|I2×[n]m−2 = f |I2×[n]m−2 . Similarly, if H ∈ I2,
then f agrees with gH on a subset of size I1 × [n]m−2, and if H ∈ I \ (I1 ∪ I2), then f agrees
with gH on a subset of size I1 × I2 × [n]m−3. In all 3 of the cases, since |I1| and |I2| are at
least n− d+ 1, by Claim 21 there is a unique codeword w ∈ Cm−1 that equals f |H (or gH)
on that subset of H. But f |H is in Cm−1, so by the uniqueness of the extension it follows
that f |H = gH . J

5.2 Step 2: the structure of G
We will now show that every edge (H,H ′) in G is adjacent to a vertex of large degree. The
proof uses the structure of Cm to show that if two planes disagree on a point, they must
disagree on many points, and these points have a certain structure. Using the structure of
these points, we find (m− 2)d planes that intersect H ∩H ′ on at least one point that gH

and gH′ disagree, and therefore each of these new planes must be adjacent to at least one of
H and H ′.

I Lemma 12. If (H,H ′) ∈ E, then deg(H) + deg(H ′) ≥ (m− 2)d.

A similar lemma appears in [10], but the graph they consider is different from ours.

Proof. Without loss of generality assume that H = (1, i) and H ′ = (2, j). Fix k ∈ {3, . . . ,m}.
Let Ik be the set of l’s such that the plane (k, l) is not adjacent to both H and H ′. Suppose
|Ik| ≥ n − d + 1. Then gH |Ik×[n]m−3 = gH′ |Ik×[n]m−3 . Since |Ik| ≥ n − d + 1, by Claim 21
gH |Ik×[n]m−3 can be extended to a unique w ∈ Cm−2, and so w = gH |H∩H′ . Similarly,
gH′ |Ik×[n]m−3 can be extended to a unique v ∈ Cm−2, and so v = gH′ |H∩H′ . However, since
both gH |H∩H′ and gH′ |H∩H′ agree on Ik × [n]m−3, the uniqueness of the extension implies
that they are equal, contradicting the fact that (H,H ′) is an edge in the graph. Therefore,
|Ik| ≤ n− d for every k. This means that for a fixed k, there are at least d planes (k, l) such
that gH and gH′ disagree on the intersection of all 3 planes. Since gH and gH′ disagree, g(k,l)
can agree with at most one of them, so at least one of (H, (k, l)) and (H ′, (k, l)) is an edge.
This holds for at least d planes for every k, which is a total of (m− 2)d planes. Therefore,
deg(H) + deg(H ′) ≥ (m− 2)d. J
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Thus, for every edge (H,H ′) one of H and H ′ has degree ≥ (m− 2)d/2, so we deduce the
following corollary.

I Corollary 13 (Vertex Cover). The set L of vertices with degree ≥ (m− 2)d/2 is a vertex
cover.

5.3 Step 3: relating the expected local distance to the vertex cover
We now relate the set of vertices of large degree to the expected local view distance of the
test H. The main idea is to put the expression for ρ(M) into a particular form, and then
apply the triangle inequality to express ρ(M) as a sum over edges in the graph. Using a
simple relation between |L| and |E|, the lemma follows.

I Lemma 14. Let L be the set of vertices with large degree. Then ρ(M) ≥ m−2
4(m−1)

dm−1

nm−1
|L|
nm .

Proof. By definition, ρ(M) = 1
nmm

∑
H ∆(M |H , gH). For any H = (b, i),

∆(M |H , gH) = 1
m− 1

∑
c∈[m]\{b}

∑
j∈[n]

∆|H∩(c,j)(M, gH) = 1
m− 1

∑
H′:H∩H′ 6=∅

∆|H∩H′(M, gH) .

This is because for any point p ∈ H and for any axis c 6= b, the point p is in the intersection
H ∩ (c, j) for exactly one j. Therefore,

ρ(M) = 1
nmm

∑
H

∆(M |H , gH) = 1
nmm

∑
H

1
m− 1

∑
H′:H∩H′ 6=∅

∆|H∩H′(M, gH)

Every pair (H,H ′) with H ∩ H ′ 6= ∅ appears exactly twice in the sum, contributing
∆|H∩H′(M, gH) and ∆|H∩H′(M, gH′) to the sum. Therefore,

ρ(M) = 1
nmm(m− 1)

∑
(H,H′):H∩H′ 6=∅

∆|H∩H′(M, gH) + ∆|H∩H′(M, gH′)

≥ 1
nmm(m− 1)

∑
(H,H′):H∩H′ 6=∅

∆|H∩H′(gH , gH′) = 1
nmm(m− 1)

∑
(H,H′)∈E

∆|H∩H′(gH , gH′) .

as (H,H ′) /∈ E =⇒ ∆|H∩H′(gH , gH′) = 0 by definition. Fix (H,H ′) ∈ E. The local
codewords gH and gH′ are both in Cm−1, so gH |H∩H′ and gH′ |H∩H′ are both Cm−2 code-
words. In particular, since ∆|H∩H′(gH , gH′) > 0, they are distinct codewords, and so
∆|H∩H′(gH , gH′) ≥ dm−2. Therefore,

ρ(M) ≥ 1
nmm(m− 1)

∑
(H,H′)∈E

∆|H∩H′(gH , gH′) ≥
|E| dm−2

nmm(m− 1) .

Since L is the set of vertices of degree ≥ (m− 2)d/2,

2 |E| =
∑
H

deg(H) ≥
∑
H∈L

deg(H) ≥ |L| (m− 2)d
2 =⇒ |E| ≥ |L| (m− 2)d

4 .

Thus,

ρ(M) ≥ |E| dm−2

nmm(m− 1) ≥
(m− 2) |L| dm−1

4nmm(m− 1) = (m− 2)
4(m− 1)

dm−1

nm−1
|L|
nm

. J



A. Chiesa, P. Manohar, and I. Shinkar 39:15

5.4 Putting things together
We are now ready to prove Theorem 5. The result follows from straightforward applications
of the previous steps.

Proof of Theorem 5. If |L| ≥ (m− 1)d, then by Lemma 14 we have

ρ(M) ≥ (m− 2)
4(m− 1)

dm−1

nm−1
|L|
nm
≥ (m− 2)

4(m− 1)
dm−1

nm−1
(m− 1)d
nm

= m− 2
4m

dm

nm
≥ m− 2

4m
dm

nm
δ(M) ,

where the last inequality holds because δ(M) ≤ 1. Therefore, assume that |L| < (m− 1)d.
For every f in Cm, using triangle inequality we have

δ(M) ≤ δ(M,f) = 1
nm

∑
H

δ|H(M,f) ≤ 1
nm

∑
H

δ|H(M, gH) + 1
nm

∑
H

δ|H(gH , f) .

Recalling that ρ(M) = 1
nm

∑
H δ|H(M, gH) we get that

δ(M) ≤ ρ(M) + 1
nm

∑
H

δ|H(gH , f) .

Since L is a vertex cover, the set L = V \ L is an independent set. Since |L| < (m − 1)d,∣∣L∣∣ > nm− (m− 1)d = (m− 1)(n− d) + n. By Lemma 11, ∃f∗ ∈ Cm such that f∗|H = gH

for every H ∈ L. Thus,

δ(M) ≤ ρ(M) + 1
nm

∑
H

δ|H(gH , f
∗) = ρ(M) + 1

nm

∑
H∈L

δ|H(gH , f
∗) ≤ ρ(M) + |L|

nm
.

By Lemma 14, ρ(M) ≥ (m−2)
4(m−1)

dm−1

nm−1
|L|
nm . Therefore, |L|nm ≤

4(m−1)nm−1

(m−2)dm−1 ρ(M) and so

δ(M) ≤ ρ(M)+ |L|
nm
≤ ρ(M)

(
1 + 4(m− 1)nm−1

(m− 2)dm−1

)
=⇒ ρ(M) ≥ 1

1 + 4(m−1)nm−1

(m−2)dm−1

δ(M) .

Thus, ∀M , ρ(M) ≥ αδ(M), for α = min
(

1
1+ 4(m−1)nm−1

(m−2)dm−1

, m−2
4m

dm

nm

)
. Since m ≥ 3, we

have that 1
1+ 4(m−1)nm−1

(m−2)dm−1

≥ 1
1+8 nm−1

dm−1
≥ dm−1

9nm−1 and m−2
4m

dm

nm ≥ 1
12

dm

nm . Therefore, α ≥

min( dm−1

9nm−1 ,
1

12
dm

nm ) = 1
12

dm

nm . J
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A Preliminaries for Theorem 2

A.1 Low-degree polynomials
We will use the following lemmas about low-degree polynomials in the proof of Theorem 2.
These are standard interpolation lemmas, and direct proofs can be found in [28].

I Lemma 15. Let S, T ⊆ F be two sets each of size at least r + 1. Suppose that for
two polynomials Q1(x, y), Q2(x, y) of degree (r, r), if holds that Q1(x, y) = Q1(x, y) for all
(x, y) ∈ (S, T ). Then Q1 ≡ Q2.

I Lemma 16. Let S, T ⊆ F be two sets each of size at least r + 1. Suppose that there
is polynomial R(x, y) of degree (r, n), and a polynomial C(x, y) of degree (n, r) such that

APPROX/RANDOM’17
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R(x, y) = C(x, y) for all (x, y) ∈ (S, T ). Then, there exists a polynomial Q(x, y) of degree
(r, r) such that Q(x, y) = C(x, y) = R(x, y) for all (x, y) ∈ (S, T ).

I Corollary 17. Let S, T ⊆ F be two sets each of sizes |S| ≥ r + 2 and |T | ≥ r + 2, and let
(x0, y0) ∈ (S, T ). Suppose that there is a polynomial R(x, y) of degree (r, n), and a polynomial
C(x, y) of degree (n, r) such that R(x, y) = C(x, y) for all (x, y) ∈ (S, T ) \ {(x0, y0)}. Then
C(x0, y0) = R(x0, y0).

A.2 The Kövári–Sós–Turán theorem
We first define the density of a binary matrix.

I Definition 18. Let A ∈ {0, 1}k×` be a binary matrix. Define the density of A to be

δ(A) =
∑

i∈[k],j∈[`]
Ai,j

k·` . We say that A is τ -dense if δ(A) ≥ τ .

In the proof of Theorem 2 we will use a result due to Kövári, Sós, and Turán [25], which
states that any sufficiently dense binary matrix contains a large submatrix where every entry
is 1.

I Theorem 19 (Kövári, Sós, Turán). Let N,M, t, s be natural numbers that satisfy N ≥ s

and M ≥ t ≥ s, and let A ∈ {0, 1}N×M be a binary matrix. If A is
(

s

√
t−1
M + s

N

)
-dense,

then there are S ⊆ [N ] and T ⊆ [M ] of sizes |S| = s and |T | = t such that A|S×T ≡ 1.

I Remark. The Kövári–Sós–Turán theorem is usually stated as saying that any sufficiently
dense bipartite graph contains a large bipartite clique. It is clear, however, that the matrix
formulation above is equivalent by associating a bipartite graph with its adjacency matrix,
where the rows correspond to the vertices on the left, and the columns correspond to the
vertices on the right.

B Preliminaries for Theorem 5

B.1 Linear codes
A linear code C over a field F is a linear subspace C of the vector space Fn. Each codeword
w in C is a string of length n, which is the block length of the code. The dimension of the
code dim(C) is the dimension of C as a vector space in Fn. For any two words w and v in Fn,
the Hamming distance between w and v, denoted by ∆(w, v), is the number of indices where
i where wi 6= vi. Formally, ∆(w, v) = |{i ∈ [n] : wi 6= vi}|. The relative distance between
w and v is δ(w, v) = ∆(w, v)/n, which is the fraction of points where w and v disagree.
For any subset S of [n], we will define ∆|S(w, v) to be |{i ∈ S : wi 6= vi}|, which is the
Hamming distance between w and v on the subset S. Similarly, δ|S(w, v) = ∆|S(w, v)/ |S|.
The distance d of a code C is the minimum Hamming distance between any two distinct
codewords of C, i.e. d = d(C) = minw 6=v∈C ∆(w, v). For any w in Fn, the distance from w

to C is defined as ∆(w,C) = minv∈C ∆(w, v), and the relative distance is defined similarly.
For any subset S ⊆ [n], the distance from w to C on S is ∆|S(w,C) = minv∈C ∆|S(w, v).
We will write δ(w) instead of δ(w,C) when the code is clear from the context.

Linear codes have a unique extension property.

I Claim 20 (Unique Extension). Let I be a subset of [n] of size at least n− d+ 1. Let C ′ be
the restriction of the code C to the subset I. Then, for every codeword w ∈ C ′ there exists a
unique v ∈ C such that v|I = w.
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Proof. By definition, for every w in C ′ there must exist at least one v in C such that v|I = w.
Suppose there exists v1 and v2 such that v1|I = v2|I = w. Then v1 and v2 agree on S, so
∆(v1, v2) ≤ n − |I| ≤ d − 1. Since v1 and v2 are codewords, ∆(v1, v2) < d if and only if
v1 = v2. Therefore, the codeword w has a unique extension to C. J

B.2 Tensor product codes
For any linear code C, the 2-wise tensor product of C, denoted by C2 = C ⊗ C is the linear
code in Fn2 , where every codeword M ∈ Fn2 is an n× n matrix whose each row and column
is a codeword of C. The m-wise tensor of C, denoted by Cm, is defined recursively as
Cm−1 ⊗ C. The code Cm has block length nm and distance dm. Furthermore, each f ∈ Cm

can be written as an n× n× · · · × n (m times) matrix where the entries are values in F, and
each axis-parallel line is in C. It is easy to see that f is in Cm if and only if the restriction of
f to any (m− 1)-dimensional axis-parallel hyperplane H is in Cm−1. It is also worth noting
that the fractional distance of the code Cm is (d/n)m, so the fractional distance of the code
decays exponentially in m.

Tensor product codes have a unique extension property that will be used many times in
the proof of Theorem 5.

I Claim 21 (Unique Extension for Tensor Product Codes). Let {Cb}m
b=1 be codes with blocklength

nb and distance db. Let Ib ⊆ [nb] be a set of size at least nb − db + 1, and let C ′b be the
projection of Cb to Ib. Then for every w ∈ C ′ = C ′1 ⊗ · · · ⊗ C ′m, there exists a unique v in
C = C1 ⊗ · · · ⊗ Cm such that v|I1×···×Im = w.

Proof. By Claim 20, for all b ∈ [m] the projection map πb : Cb → C ′b is bijective. We can
extend πb to be a bijective map from the hybrid code C ′1 ⊗ · · · ⊗ C ′b−1 ⊗ Cb ⊗ · · · ⊗ Cm

to C ′1 ⊗ · · · ⊗ C ′b ⊗ Cb+1 ⊗ · · · ⊗ Cm. For any v in the first hybrid code, define πb(v) =
v|I1×···×Ib×nb+1×···×nm

, which is the projection of v to Ib along the bth axis, and the identity
map everywhere else. Clearly, πb is still a bijection, and so the composition of maps
π = πm ◦ πm−1 ◦ · · · ◦ π1 is therefore a bijection from C to C ′, which proves the claim. J

B.3 Locally testable codes and robust tests
A q-query test T for a code C ⊆ Fn is a probabilistic algorithm that, given oracle access to a
word w ∈ Fn, makes q (non-adaptive) queries to w and then accepts or rejects. Informally,
C is locally testable if there is a test T that accepts (with probability 1) whenever w is in C,
and rejects (say with probability at least 0.5) when w is far from C.

The expected local view distance ρT (w) of T on a word w is the average, over the local
views of T , of the distance of w to an accepting view. Instead of analyzing the local testability
of Cm, we will instead consider a stronger notion of local testability called robustness, that
was introduced in [10]. The test T is α-robust if ρT (w) ≥ α · δ(w,C) for every word w ∈ Fn.
The ‘strength’ of the test increases with α, so the goal is to establish the largest α for which
this inequality holds.

B.4 The axis-parallel hyperplane test
I Definition 22. Let C be a linear code, and let Cm be the m-wise tensor of C. The
axis-parallel hyperplane test H for Cm is the test that given a word M ∈ Fnm samples a
random axis-parallel (m− 1)-dimensional hyperplane H and checks if M |H ∈ Cm−1.
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39:20 On Axis-Parallel Tests for Tensor Product Codes

We introduce several observations about the test H that will be useful in the proof of
Theorem 5. Since the hyperplanes sampled by H are axis-parallel, each hyperplane H ⊆ [n]m
must be a set of the form H = {p ∈ [n]m : pb = i}, for some b ∈ [m] and i ∈ [n]. This means
that there are nm hyperplanes in total, and each hyperplane can be specified by the pair
(b, i). We will use (b, i) to refer to the hyperplane {p ∈ [n]m : pb = i}.

For M ∈ Fnm and an axis-parallel hyperplane H in [n]m, we define gH to be the closest
Cm−1 codeword to M |H . If this codeword is not unique, then we break ties by picking an
arbitrary closest codeword. Using this notation, the expected local view distance ρ(M) can
be expressed as

ρ(M) = EH [δ|H(M,Cm−1)] = EH [δ|H(M, gH)] ,

where the expectation is taken over all axis-parallel hyperplanes H.

I Definition 23. The test H is α-robust if ρ(M) ≥ α · δ(M,Cm) for every word M ∈ Fnm ,
where δ(M,Cm) is the relative distance of the word M to the code Cm, and ρ(M) is the
expected local distance of M .

Note that robustness α for the test H is at most 1.

I Lemma 24. The robustness of the axis-parallel hyperplane test H is α ≤ 1.

Proof. Let f be any Cm codeword such that δ(M) = δ(M,f). Then,

δ(M) = δ(M,f) = 1
nm

∑
H

δ|H(M,f) ≥ 1
nm

∑
H

δ|H(M, gH) = ρ(M)

since gH is closer to M |H than f |H , as f |H ∈ Cm−1. Thus α ≤ ρ(M)/δ(M) ≤ 1. J

C Other Results

Here we will prove other results that are incomparable to Theorem 5.
We have already shown in Theorem 5 that H is robust for α ≥ 1

12
(

d
n

)m. Most of the
proof was dedicated to analyzing the test when the set of large degree vertices, L, was less
than (m− 1)d. In this same regime, we can prove an incomparable value for α. Specifically,
we can show that for every M such that |L| < (m− 1)d it holds that ρ(M) ≥ 1

m+c · δ(M),
where c is a constant.

I Claim 25. If |L| < (m − 1)d, then ρ(M) ≥ 1
m+c · δ(M), for c = 32/9. Combining with

Theorem 5, this implies that ρ(M) ≥ max
(

1
m+c ,

1
12
(

d
n

)m
)
· δ(M) when |L| < (m− 1)d.

Proof. Let I be the set of planes that are not in L. By the assumption |L| < (m − 1)d,
we have |I| > (m − 1)(n − d) + n, and thus, by Lemma 11 there exists f ∈ Cm such that
f |H = gH for all H ∈ I.

Let K = {p : ∀H ∈ I, p /∈ H} be the set of points that are not contained in any plane in
I. Writing I = ∪m

b=1Ib, where Ib is the set of planes (b, i) that are in I, it is clear that we
can rewrite K as K = {p : pb /∈ Ib ∀b ∈ [m]}. Therefore,

|K| =
m∏

b=1
(n− |Ib|) ≤

(
n− 1

m

m∑
b=1
|Ib|

)m

= nm

(
1− 1

nm

m∑
b=1
|Ib|

)m

= nm

(
|L|
nm

)m

.

Now, we show that δ(M,f) ≤ (m+ c) · ρ(M). We start by writing δ(M,f) as follows.

δ(M,f) = 1
nm
|{p : M(p) 6= f(p)}| = 1

nm
|{p ∈ K : M(p) 6= f(p)}|+ 1

nm
|{p /∈ K : M(p) 6= f(p)}| .
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The first term is upper bounded by |K|nm , and so it is at most
(
|L|
nm

)m

. In order to bound the
second term, note that for all p /∈ K there exists a plane Hp ∈ I such that p ∈ Hp, and thus,
f(p) = gHp

(p). Therefore,

1
nm
|{p /∈ K : M(p) 6= f(p)}| = 1

nm

∣∣{p /∈ K : M(p) 6= gHp
(p)}

∣∣
≤ 1

nm

∣∣{p ∈ [n]m : M(p) 6= gHp
(p)}

∣∣
≤ 1

nm

∑
p∈[n]m

|{H : p ∈ H,M(p) 6= gH(p)}|

= m · ρ(M) .

This implies that

δ(M,f) ≤
(
|L|
nm

)m

+m · ρ(M)

Next, using the bound |L| < (m− 1)d in the assumption of the claim, as well as the bound
|L|
nm ≤ ρ(M) · 4(m−1)

m−2 ·
nm−1

dm−1 from Lemma 14, we get that

δ(M,f) ≤
(

(m− 1)d
nm

)m−1
·
(
ρ(M) · 4(m− 1)

m− 2 · n
m−1

dm−1

)
+m · ρ(M)

=
((

1− 1
m

)m

· 4m
m− 2 +m

)
· ρ(M) .

For m ≥ 3 we get that δ(M) ≤ (m+ 32/9)ρ(M), as required. J

I Remark. In fact, by a slightly modified argument (writing ρ(M) as the sum over the
intersections of k planes) we can prove that for |L| < (m − 1)d it holds that δ(M) ≤
ρ(M)

(
k + ck

nm−k

dm−k

)
, where ck is a constant for a fixed k ∈ [m]. The proof of Theorem 5

used k = 1.

We can also show that when |L| < (m−1)d, we get a robustness of α = 1 plus an additive
term of d/n. Note that d is the distance of the code, so when d = O(n), the additive term is
not small.

I Claim 26. If |L| < (m− 1)d, then δ(M) ≤ ρ(M) + d/n.

Proof. In the proof of Theorem 5, we showed that if |L| < (m− 1)d, then

δ(M) ≤ ρ(M) + |L|
nm
≤ ρ(M) + (m− 1)d

nm
≤ ρ(M) + d

n
. J

Next, we observe that if C is the Reed–Solomon code (or any code with a similar
interpolation property), then the above holds without the constraint on |L|.

I Claim 27. If C is the Reed–Solomon code, then δ(M) ≤ ρ(M) + d/n unconditionally.

Proof. Define vb =
∑

H=(b,i) ∆|H(M, gH), and without loss of generality assume that v1 ≤
v2 ≤ · · · ≤ vm. Observe that

ρ(M) = 1
nmm

m∑
b=1

vb .
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Let S be any subset of (1, i) planes of size exactly n − d + 1. By m-variate polynomial
interpolation, there exists f in Cm such that f |H = gH for every H in S. Therefore,

δ(M) ≤ δ(M,f) = 1
nm

∑
H=(1,i)

∆|H(M,f) ≤ 1
nm

∑
H∈S

∆|H(M,f) + 1
nm

(n− |S|)nm−1

= 1
nm

∑
H∈S

∆|H(M, gH) + d− 1
n
≤ 1
nm

v1 + d− 1
n

= 1
nmm

(mv1) + d− 1
n

≤ 1
nmm

m∑
b=1

vb + d− 1
n
≤ ρ(M) + d

n
. J
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