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Abstract
We generalize the “learning algorithms from natural properties” framework of [4] to get agnostic
learning algorithms from natural properties with extra features. We show that if a natural
property (in the sense of Razborov and Rudich [28]) is useful also against functions that are close
to the class of “easy” functions, rather than just against “easy” functions, then it can be used to
get an agnostic learning algorithm over the uniform distribution with membership queries.

For AC0[q], any prime q (constant-depth circuits of polynomial size, with AND, OR, NOT,
and MODq gates of unbounded fanin), which happens to have a natural property with the
requisite extra feature by [27, 31, 28], we obtain the first agnostic learning algorithm for
AC0[q], for every prime q. Our algorithm runs in randomized quasi-polynomial time, uses
membership queries, and outputs a circuit for a given boolean function f : {0, 1}n → {0, 1}
that agrees with f on all but at most (poly logn) · opt fraction of inputs, where opt is the
relative distance between f and the closest function h in the class AC0[q].
For the ideal case, a natural proof of strongly exponential correlation circuit lower bounds
against a circuit class C containing AC0[2] (i.e., circuits of size exp(Ω(n)) cannot compute
some n-variate function even with exp(−Ω(n)) advantage over random guessing) would yield
a polynomial-time query agnostic learning algorithm for C with the approximation error
O(opt).
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1 Introduction

Recently many new connections have been discovered between the two complementary
domains: proving circuit lower bounds and designing meta-algorithms for the corresponding
circuit classes (see, e.g., [30, 33, 34, 15, 16, 5, 4]). In particular, [4] shows that a natural
property (in the sense of Razborov and Rudich [28]) for a (sufficiently powerful) circuit class
Λ yields an efficient PAC learning algorithm for the same circuit class, under the uniform
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35:2 Agnostic Learning from Tolerant Natural Proofs

distribution, with membership queries; this approach led to a first learning algorithm for
the class AC0[q] (of constant-depth circuits with AND, OR, NOT, and modulo q gates), for
every prime q.

The “learning algorithms from natural proofs” technique of [4] applies only to realizable
case learning: if a function f is computed exactly by an appropriate circuit class Λ for which
there is a natural proof of a circuit lower bound, then we can learn f using membership
queries in time dependent on the strength of the circuit lower bound. A more realistic
learning model is agnostic learning, where we select some “touchstone” class Λ and attempt
to find a hypothesis that isn’t “too far off” from the best Λ-approximation to the target
function.

We show that, even in this agnostic setting, we can (somewhat generically) obtain
learning algorithms from natural proofs. We instantiate this framework to give the first
membership-query agnostic learning algorithm over the uniform distribution for AC0[q], the
class of constant-depth circuits of polynomial-size with unbounded fanin AND, OR, NOT,
and MODq gates. Previously, only the case of AC0 circuits was known (albeit for an agnostic
algorithm without membership queries, and with better approximation error) [19] (based on
the LMN algorithm of [23]).
I Theorem 1 (AC0[q] agnostic learning). Let q be any prime. There is a randomized quasi-
polynomial-time algorithm such that, given oracle access to a function f : {0, 1}n → {0, 1}
that agrees with some unknown function in AC0[q] on at least 1− β fraction of inputs (for
some non-negligible β > 0), the algorithm outputs a circuit that computes f on all but at
most poly(logn) · β fraction of inputs.

As an interesting special case, we get a quasipolynomial-time agnostic learning algorithm
for n-variate polynomials over GF(q) of low degree (say, at most poly(logn)), for prime q ≥ 2
(as every polynomial of degree d is computable by an AC0[q] circuit of size O(nd)). Before
our result, no such learning algorithm for polynomials was known.

For an algorithm with error c(n) · β, for some function c, we call the factor c(n) the
weakness parameter of the learning algorithm. It is desirable to have c(n) = 1. Our algorithm
for AC0[q] above has weakness poly(logn). In general, we have a trade-off between the quality
of a natural property for the circuit class, and the quality of the resulting agnostic learning
algorithm for the same class. For simplicity, we state here just the result for the best-case
scenario; see Theorem 11 below for the fully general statement.
I Theorem 2 (Ideal-case trade-off). Suppose there is a natural property for a circuit class
C ⊇ AC0[2] that is useful against functions that agree on 1/2 + exp(−Ω(n)) of inputs with
some function of C-circuit complexity exp(Ω(n)). Then, for some constant c > 0, there is a
polynomial-time query agnostic learning algorithm for C with weakness c.

Theorem 2 yields a “search-to-decision” reduction for a version of the Minimal Circuit
Size Problem (MCSP). Define the Minimal Approximate Circuit Size Problem (MACSP) as
follows: Given a truth table of an n-variate boolean function f , and parameters s ∈ N and
δ ∈ [0, 1], decide if there exists a boolean circuit C of size at most s that agrees with f on all
but at most δ fraction of inputs. (MCSP is a special case of MACSP for δ = 0.) Clearly, if
MACSP is easy (say, in P), then, for a given size bound s (our “budget”), we can determine
the best approximation parameter δ for every given truth table of a boolean function f .
But, since MACSP is an ideal-case tolerant natural property for general circuits, we get by
Theorem 2 that a polynomial-time algorithm for MACSP would yield a polynomial-time
algorithm to actually find a circuit of size poly(s), with an approximation guarantee O(δ).1

1 In [4], a similar “search-to-decision” reduction was given for MCSP: if a given boolean function f is
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Another way to interpret Theorem 2 is as follows. If MACSP is in P, then, given oracle
access to a boolean function f , and a budget s ∈ N, we can learn, in polynomial time, a
circuit of size poly(s) that agrees with f on all but at most O(δ) fraction of inputs, where δ
is the error of the best size s circuit for f . That is, we can learn essentially the best possible
circuit for f , given our budget s on the circuit size.

1.1 Our approach
The key observation in adapting to the agnostic setting is that many natural properties
contain even more useful distinguishers than required for realizable-case learning. As defined
by [28], the distinguisher from a natural property rejects truth tables that are exactly
computed by Λ-circuits. But existing natural properties give us something even stronger:
they reject truth tables which are just close to those computed by Λ-circuits. Using this
observation and the same “play to lose” distinguisher-to-predictor reduction as in [4], we
obtain agnostic learning algorithms from such natural properties.

More precisely, we show that if a natural property for a circuit class Λ (containing AC0[q])
is tolerant in the sense that it distinguishes from random the truth tables of functions
“close” to the class Λ (of “large” circuit complexity), then it can be used to get an agnostic
membership-query algorithm for learning Λ. We argue that such a tolerant natural property
exists for AC0[q] [27, 31, 28], which is then used to prove our Theorem 1. For AC0[2], we
need to dig inside the arguments of [27], and show that his original circuit lower bound proof
does yield a certain tolerant natural property. For AC0[q], for prime q > 2, we actually need
to re-do the “natural proof” argument of [28] by adapting it to the case of GF(q)-valued
functions (rather than boolean functions). Not only does it allow us to get tolerant natural
properties for AC0[q], but also simplifies and streamlines the analysis in [4] of the learning
algorithm for AC0[q].

By definition, tolerant natural properties can be used for proving average-case circuit
lower bounds (as opposed to the worst-case circuit lower bounds implied by standard natural
properties). Thus the main message of the present paper can be summarized as follows:

Natural proofs of average-case circuit lower bounds imply agnostic learning algorithms!

In contrast, the main result of [4] says that natural proofs of worst-case circuit lower bounds
imply standard (non-agnostic) learning algorithms.

1.2 Our techniques
We build upon the framework of [4] who use a natural property for a given circuit class Λ in
order to devise a learning algorithm for the same class. Recall that a natural property (in the
sense of [28]) is an efficient algorithm that tells apart truth tables of functions in the class Λ
(of some “large” circuit complexity u) from those of random functions. To learn a function
f ∈ Λ, for some circuit class Λ that has an associated natural property, the idea is to apply
(as only a thought experiment!) an appropriate “function generator” that maps f to a family
of functions all of which are “easy” (of small Λ circuit complexity) and so will be rejected by

exactly computable by a polynomial-size circuit, then one can find a polynomial-size circuit approximately
computing f , given a polynomial-time algorithm for MCSP. In contrast, here we say that if f can be
non-trivially approximated by a polynomial-size circuit, we can find another polynomial-size circuit that
achieves the same approximation error up to a constant factor, given a polynomial-time algorithm for
MACSP.

APPROX/RANDOM’17
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the natural property for the class. Thus an efficient algorithm from the natural property
acts as a distinguisher “breaking” the function generator. If the function generator has an
“efficient reconstruction” property, meaning that a distinguisher for the generator can be used
to build a small circuit approximately computing the original function f , we get a learning
algorithm for f . Thus, the actual learning algorithm is using the natural property algorithm
as a distinguisher, and applies the efficient reconstruction procedure (associated with the
given function generator) to build a circuit approximating f . Usually, such a reconstruction
procedure requires oracle access to the function generator; if, however, the function generator
is “local” in the sense that such oracle access to the generator can be efficiently reduced to
oracle access to the original function f , one gets a query learning algorithm for the concept
class Λ.

To adapt this approach to the case of agnostic learning, where a function f to be learned
is not in the class Λ, but rather just somewhat close to the class, we need to satisfy the
following requirements:
1. the outputs of the function generator applied to f must be close to the class Λ (of some

circuit size u), and
2. the natural property for Λ must reject not only functions in Λ (of size u), but also

functions that are close to those.
We call natural properties satisfying condition (2) above tolerant. We say that a natural
property has ρ-tolerant u-usefulness for the circuit class Λ if it rejects all truth tables of
functions that agree with some function in Λ[u] (computable by a Λ circuit of size u) on all
but at most ρ fraction of inputs. We show that the natural property for the circuit class
AC0[2] from [27] is in fact ρ-tolerant, for some small but nontrivial ρ > 0, and with large
(weakly-exponential) usefulness u.

With tolerant natural properties in hand, we turn to requirement (1) above: getting the
truth tables output by the function generator on a given function f to be close to those
from the circuit class Λ[u]. We need to take a closer look at the function generator used
in [4]. It comprises two components: (1) amplification, and (2) Nisan-Wigderson (NW)
generator [25] applied to the amplified version Amp(f) of the function f . The purpose of the
amplification component is to “error-correct” f so that even a circuit that computes Amp(f)
with small advantage over random guessing can be used to construct a circuit that computes
f almost everywhere. The NW generator applied to Amp(f) has the properties required of
the function generator: locality and efficient reconstruction.

In our case, suppose that f agrees with some function h ∈ Λ on a large fraction of inputs.
Once we apply amplification to both f and h, we get Amp(f) and Amp(h) that are pushed
further apart (as one would expect when using error-correcting codes). In order to keep the
amplified functions close to each other, we will tone down the amplification procedure, which
will adversely affect the approximation error of our learning algorithm, but the error can still
be kept relatively small.

Next we need to ensure that the NW generator when applied to Amp(f) generates a family
of functions such that most of them are sufficiently close to the family generated on Amp(h).
In other words, we would like the generator to almost preserve the relative distance between
the functions it is applied to. This can be achieved as follows. First, we observe that the
definition of the NW generator guarantees that on a random seed z, the functions generated
for Amp(f) and Amp(h) have the expected distance (over random z) equal to the actual
distance between Amp(f) and Amp(h). Thus we have distance preservation in expectation.
To make it concentrated around the expectation, we modify the NW construction by adding
a pairwise-independent generator inside the NW construction. This ensures that the truth
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tables output by the modified NW generator are evaluations of Amp(f) (or Amp(h)) on a
sequence of pairwise independent inputs. The required concentration then follows by the
Chebyshev bound. (A similar modification of the NW generator was done in [17], where an
expander-walk generator was used for even better concentration; we use a simple pairwise
generator as it can be easily implemented in AC0[2], and it provides sufficient concentration
for our purposes.)

1.3 Related work
The concept of agnostic learning was introduced by Kearns et al. [20], where it was also
shown that piecewise linear functions are agnostically learnable. Agnostic learning is also
known for certain geometric patterns [10], and restricted neural networks [21]. More results
are known for the restricted versions of agnostic learning, for instance, when the distribution
over examples is uniform. The class of AC0 functions was shown to be (weakly) agnostically
learnable under the uniform distribution by [20]. It was later shown by [19] that the well-
known LMN learning algorithm of [23] achieves a constant-factor approximation of the
optimal error (improved to the constant factor 2 in [18]), and that a modification of the
algorithm (using L1 regression) achieves the optimal error; the runtime of the algorithm is
quasipolynomial. In fact, the result of [19] is generic in the following sense: any concept class
of functions with certain “Fourier concentration” (as is the case, e.g., for AC0 functions by
the results of [23]) admits an agnostic learning algorithm under the uniform distribution,
with an optimal error, whose runtime depends on the strength of the Fourier concentration
for the concept class.

In distribution-independent setting, allowing membership queries does not give extra power
to agnostic learning, yet membership queries can help when the distribution is uniform [6]. In
particular, under the uniform distribution, Gopalan, Kalai and Klivans [12] and Feldman [7]
give polynomial-time agnostic learning algorithms with membership queries for decision trees.

Agnostic learning of parities is closely related to the well-studied problem of learning
noisy parities, which has a number of applications beyond learning theory, from decoding
random linear codes to cryptography[2, 9, 1, 24, 26].

Under the uniform distribution, agnostic learning of parities (that is, learning parities
with adversarial noise) reduces to learning parities with random noise [8]. Blum, Kalai
and Wasserman [3] give an algorithm that properly learns length k parities with random
noise under uniform distribution in time and sample size poly((1/(1 − 2η))2a , 2b), where
η < 1/2 is the noise probability, and ab ≥ k. This is in contrast to the NP-hardness of
properly learning noisy parities under arbitrary distributions, which follows from [13]. Later,
Lyubashevsky [24] improved query complexity of the [3] algorithm to n1+ε, at the expense of
bringing the running time up to 2O(n/ log logn), for η < 1/2− 2−(logn)δ for a constant δ. A
corollary of the latter result is a subexponential algorithm for decoding n× n1+ε random
binary linear codes, in the random noise setting.

Regev [29] considered an extension of learning parity with noise to mod p, which he called
LWE (learning with error). He has shown that an efficient solution to LWE (for some range
of parameters) implies an efficient quantum approximation of two variants of the shortest
vector problem (GapSVP and the shortest independent vectors problem) and presented a
public-key cryptosystem based on its hardness.

Remainder of the paper

We start with some basic definitions in Section 2. In Section 3, we prove our main result, The-
orem 1, by instantiating the “agnostic learning from tolerant natural properties” framework

APPROX/RANDOM’17



35:6 Agnostic Learning from Tolerant Natural Proofs

to the case of AC0[q] circuits, for any prime q. We present this framework in full generality in
Section 4, where, in particular, we prove Theorem 2. In Section 5, we discuss the difficulty of
removing membership queries from our agnostic learning algorithms for AC0[2] (as it would
have consequences for learning noisy parities). We conclude with some open questions in
Section 6. The appendix contains some proofs omitted from the main body of the paper.

2 Preliminaries

For n-variate boolean functions f and g, we define the distance between them, denoted
DIST(f, g), to be the number of inputs x where f(x) 6= g(x). We denote by dist(f, g) the
relative distance DIST(f, g)/2n. For a class F of n-variate boolean functions, and an n-variate
boolean function f , we define the distance of f from the class F , denoted DIST(f,F), as
minh∈F DIST(f, h). The relative distance of f from F is dist(f,F) = DIST(f,F)/2n.

I Definition 3 (Distinguishers). Let L : N → N be a stretch function, let 0 < ε < 1 be
an error bound, and let G = {gm : {0, 1}m → {0, 1}L(m)} be a sequence of functions.
Define DIS(G, ε) to be the set of all Boolean circuits D on L(m)-bit inputs satisfying:
Prz∈{0,1}m [D(gm(z))]−Pry∈{0,1}L(m) [D(y)] > ε. We say that D ∈ DIS(G, ε) is a distinguisher
for G with the distinguishing probability ε.

2.1 Learning algorithms
The concept of agnostic learning was introduced by [20]. As in the PAC model of Valiant
[32], we have a distribution over labeled examples (x, f(x)) for some function f , and we wish
to learn f up to a small additive error over the given distribution. However, unlike in the
PAC model, we don’t assume that f belongs to some concept class C, but rather that f is
“close” to C. More precisely, setting opt to be the disagreement probability between f and
the best (closest) function h ∈ C, the agnostic learning algorithm is supposed to output, with
high probability 1− δ, a hypothesis that disagrees with f with probability at most opt + ε,
for given ε, δ ∈ [0, 1]. If the underlying distribution over examples is uniform, we say that
the concept class C is agnostically learnable under the uniform distribution.

In the special case where we allow membership oracle, i.e., our learning algorithm has
oracle access to the function f it is trying to learn, we call it a (membership) query agnostic
learning algorithm. If, in addition, the hypothesis error is measure under the uniform
distribution, we call it a query agnostic learning algorithm under the uniform distribution.

The learning algorithms considered in our paper are query algorithms under the uniform
distribution. However, they don’t achieve the ideal error opt + ε. Rather, we get the error
of the form c(n) · opt, for some function c, which we call the weakness parameter of the
agnostic learning algorithm; we also assume that opt is non-negligible and so we can drop
the additive error ε to simplify the notation. For example, in the case of C = AC0[2], our
learning algorithm has weakness poly(logn).

2.2 Tolerant natural properties
We extend the definition of a natural property [28] to the case of a tolerant one, which
intuitively says that not only all “easy” functions are rejected by the property, but also all
functions “sufficiently close” to the “easy ones” are rejected. Such tolerant properties yield
not just worst-case, but also average-case circuit lower bounds.

Let Fn be the collection of all Boolean functions on n variables. Λ and Γ denote complexity
classes. A combinatorial property is a sequence of subsets of Fn for each n.
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I Definition 4 (Tolerant Natural Property). A combinatorial property {Rn}n≥0 is Γ-natural
with density δ and τ -tolerant u-usefulness, for some functions δ, τ : N→ [0, 1] and u : N→ N,
if it satisfies the following conditions:
Γ-Constructivity: Given the truth table of fn, a Γ-algorithm decides if fn∈Rn.
δ-Largeness: |Rn| ≥ δ(n) · |Fn|.
τ -Tolerant u-Usefulness: For all fn ∈ Fn (for large n), if dist(fn,Λ[u(n)]) ≤ τ(n), then

fn 6∈ Rn.

The standard natural property [28] is 0-tolerant in our language. For a number of
complexity classes, including AC0[q] for primes q, 0-tolerant natural properties were given in
[28]. We prove that the natural property of [27] has in fact (1/n3)-tolerant usefulness against
d-depth AC0[2] circuits of size exp(Ω(n1/(2d))); see Section A of the appendix for the proof
of the following.

I Lemma 5 (Tolerant natural property for AC0[2]). There is a P-natural property {Rn}n≥0
with largeness 1/2, and (1/n3)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[2]
circuits.

3 Agnostic learning from tolerant natural properties for AC0[2]

3.1 The CIKK framework
Recall the way non-agnostic learning algorithms follow from natural properties in the
framework of [4]. Suppose we want to learn a function f in some circuit class Λ; for simplicity,
assume f has polynomial-size circuits of type Λ.

As a thought experiment, imagine the following transformations applied to f . First, we
amplify f , getting a new function F = Amp(f), on polynomially larger inputs, with the
property:

If we are given a small circuit computing F on at least 1/2 + ε fraction of inputs, then
we can construct a circuit computing the original function f on at least 1− 1/poly(n)
fraction of inputs, in randomized time poly(n, 1/ε), using membership queries to f .

Then F is used as a “hard function” for the NW generator G. For each seed z of the NW
generator, we view the output binary string G(z) of length L as the truth table of an `-variate
boolean function, for ` = logL. The crucial observation in [4] is that the circuit complexity
of this `-variate boolean function is polynomial in the circuit size of the original function f ,
which is poly(n).

We need to express this circuit complexity poly(n) as the function of the input size
`. Note that if the stretch L is small, for example, if L = poly(n), then ` = O(logn),
and so the `-variate function (whose truth table is) output by G(z) has circuit complexity
exponential in its input size `. Thus, to reduce the circuit complexity of the function output
by G(z), we need to increase the stretch L of the NW generator. For example, by taking
L = exp(poly logn), we can ensure that the circuit complexity of G(z) (for each seed z) is
only weakly exponential in the input size `.

The point of using the NW generator to produce truth tables of relatively easy functions
G(z) is that we assumed the existence of an efficient natural property (with sufficient
usefulness) which will accept many random truth tables, but will reject all truth tables of
easy functions. In other words, this natural property provides an efficient (polynomial-time)
algorithm that distinguishes the outputs of the NW generator G from truly random strings.

APPROX/RANDOM’17
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But then, the analysis of the NW generator construction implies that we get from this
distinguisher a new algorithm that computes F (the function upon which the NW generator
was based) on at least 1/2 + Ω(1/L) fraction of inputs; where the reconstruction algorithm
requires membership oracle for f . The latter implies (by the aforementioned properties of
F = Amp(f)) that we can construct a circuit computing f on almost all inputs, in time
poly(n,L) (again, using membership oracle for f). Thus we get a learning algorithm from
the natural property, using the efficient reconstruction algorithm for the NW generator and
the amplification procedure.

For example, using natural properties against AC0[2] that are useful against circuits
of weakly-exponential size [28], the above framework yields a learning algorithm, with
membership queries, for functions computable by polynomial-size AC0[2] circuits, running in
quasipolynomial time.

3.2 Extension to the agnostic learning case
We wish to apply the same framework to the task of agnostic learning. Suppose we wish to
learn a function f which is only somewhat close to a function h in some circuit class Λ (of
polynomial-size circuits). Suppose that dist(f,Λ) ≤ β, and that h ∈ Λ is the closest function
to f . Assume we are given a membership oracle for f .

To apply the [4] approach to learn f , we need to ensure the following:

For most seeds z, the function G(z) (for the NW generator based on F = Amp(f)) is
rejected by the appropriate natural property for our circuit class Λ.

If so, then we have a distinguisher for the NW generator based on F , and, as before, can
efficiently construct a circuit for computing f almost everywhere.

As f is not in the class Λ, but rather just close to it, the best we can hope for is that the
amplified function F = Amp(f) is also somewhat close to Λ, and that the outputs of the
NW generator G(z) based on F are also somewhat close to the class Λ (of larger circuit size).
If we can guarantee that (most of) the strings G(z) are at the relative distance at most τ
from Λ[u], then our natural property with τ -tolerant u-usefulness will be a distinguisher for
the NW generator, and we can reconstruct a circuit approximately computing f .

We need to balance the opposing constraints. On the one hand, to keep F = Amp(f)
close to Λ, we cannot amplify f too much, as the amplification, like an error-correcting
encoding, pushes the originally close functions far apart. On the other hand, the stronger
the amplification applied to f , the smaller the approximation error we get from a circuit for
f constructed by the learning algorithm. As we are restricted by the tolerance parameter τ
of our natural property, we are forced to keep the amplification relatively weak, which in
turn implies a weak approximation error for the learned circuit for f .

Suppose that f : {0, 1}n → {0, 1} is at the relative distance β from some n-variate function
h ∈ Λ[poly]. We will fine-tune the amplification procedure of [4] so that F = Amp(f) and
H = Amp(h) are at the relative distance at most µ(n), for some µ : N → [0, 1] to be
determined. Then we need to ensure that the outputs of the NW generator on F and on H,
for most random seeds z, produce truth tables of length L that are at the relative distance
at most τ(`) from each other, where ` = logL is the input size of such a function output by
G(z).

To ensure that the NW generator based on close functions F and H produces strings that
are close (for most seeds z), we modify the NW generator by adding a pairwise-independent
generator as an extra component. (Similar modification to the NW generator, using an
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expander-walk generator, was done in [17], for a different purpose.) We will show that such
a modified NW generator, when run on functions F and H that are at the relative distance
µ(n) from each other, indeed outputs, for most seeds z, strings GF (z) and GH(z) of length
L each, which are at the relative distance at most 2µ(n) from each other. Expressing 2µ(n)
as a function of the input length ` = logL, we get an upper bound on the relative distance
between GF (z) and Λ[u] (as GH(z) ∈ Λ[u] by our assumption that h ∈ Λ[poly]), for most
seeds z. Here we choose the stretch L long enough so that the circuit complexity of the
functions GH(z) is at most u, where u is usefulness of our natural property. For example,
for AC0[2], we have usefulness against weakly-exponential circuit size exp(n1/(2d)) for depth
d circuits, and so we can make L to be quasi-polynomial, exp(poly logn).

3.3 Outline of the general method
In converting a tolerant natural property to an agnostic learning algorithm, we go through
the following steps, mostly analogous to the steps in [4].

Initial assumptions. We start with access via membership queries to a Boolean function f .
We are promised that there is a function h ∈ C so that dist(f, h) ≤ β, for some parameter
β. We do not have any access to h, but can refer to it in the analysis.

Amplification. The first step is to perform an amplification construction, Amp(f), to obtain
a function F . Similarly, we can (conceptually) apply Amp(h) to obtain a function H. We
need the following properties:
1. We can simulate membership queries to F via membership queries to f
2. H ∈ C
3. We can bound dist(F,H) away from 1/2. The exact bound we will require will depend

on the tolerance of the natural property.
Pseudo-random Function Generator. We next convert F to a pseudo-random function gen-

erator, GFs (I) (and, conceptually, convert H into GHs (I). For each seed s, GFs is a Boolean
function on ` bits, producing a truth table of size L = 2`. We call L the stretch of the
generator. We need the following properties:
1. Given s, the truth table for GFs can be computed via membership queries to F (and

hence, f).
2. For each s, GHs (I) has small C circuit complexity (as a function of ` bit input I)
3. With good probability over s, dist(GFs , GHs ) is small
Again, the exact quantitative requirements will depend on the quality of the tolerant
natural property. The stronger the circuit lower bound the property is useful against, the
smaller we can make the stretch and so the larger the relative circuit complexity of GHs
in (2) can be. The more tolerant the property is, the larger the allowed distance in (3)
can be. The greater the density, the smaller the probability over seeds of small distance
between GFs and GHs in (3) can be.

Apply tolerant natural property to get a distinguisher. Now we use the tolerant natural
property as a distinguisher, telling the difference between GFs and a random function
of the same size. The second and third conditions above imply that, for many seeds s,
GFs is close to a function with small C complexity. Thus, the property will not hold
for many such functions (as long as close is within the tolerance, and small within the
usefulness of the property). On the other hand, largeness implies that it will hold for
many random functions. A gap between these two probabilities implies a distinguishing
probability. The size of the distinguisher we obtain will depend on the stretch L and the
constructivity of the property.
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Convert distinguisher to a predictor. We use the contrapositive of the correctness proof of
the PRFG construction to obtain a predictor that non-trivially predicts F . Note that
non-trivially usually means with advantage at most 1/L over random guessing, so the
smaller the stretch, the better the predictor will be.

Reverse the amplification. Finally, we apply the converse of the hardness amplification
correctness proof to obtain a circuit that computes the original function f with good
probability. Note that the agreement of the circuit for f will depend on the strength
of the hardness amplifier we can use (which is largely determined by the tolerance) but
also on the prediction advantage (largely determined by the stretch, itself determined
by the usefulness of the property). Thus, the strongest results will only apply when the
tolerance is exponentially close to 1/2 and the usefulness is exponential.

3.4 The case of AC0[2]
We first consider the case of amplification for AC0[2]. The case of AC0[q] for primes q > 2 can
be done in a similar way, where we work with GF(q)-valued rather than Boolean functions;
we sketch the argument in Section 3.5 below.

Given a boolean function f : {0, 1}n → {0, 1}, and a parameter k = k(n) ∈ N, the
amplification Ampk(f) is defined as the Goldreich-Levin (Hadamard code) encoding of the
k-wise direct product of f :

Ampk(f) = F (x1, . . . , xk, b1, . . . , bk) =
k∑
i=1

bi · f(xi),

where x1, . . . , xk ∈ {0, 1}n, b1, . . . , bk ∈ {0, 1}, and the summation is modulo 2.
It is shown in [4] that the error parameter of the learning algorithm for f is a function of

k and the stretch L of the generator.

I Theorem 6 ([4]). Suppose the NW generator based on the function F = Ampk(f), with
output strings of length L, is broken with a constant distinguishing probability. Then, using
the distinguisher and membership queries to f , one can construct a circuit computing f
on at least 1 − ε fraction of inputs, for ε ≤ O((lnL)/k). The construction algorithm is a
randomized poly(n, k, L)-time algorithm.

Suppose there is a function h ∈ AC0[2] such that dist(f, h) = β. As observed in [4],
the function H = Ampk(h) ∈ AC0[2] for any k = k(n) ≤ poly(n). It is also easy to argue
that dist(F,H) = 1/2 − (1 − β)k/2. For a given τ = τ(`), we want to choose k so that
dist(F,H) ≤ τ/4. That is, we want (1− β)k ≥ 1− τ/2. Using the inequalities 1 + x ≤ ex

(true for all x), and 1−x ≥ e−2x (true for all 0 ≤ x ≤ 0.7), we are allowed to take k = τ/(4β).
Then the NW generator based on F outputs a truth table of an `-variate function that

has the expected (over random seeds z to the generator) relative distance at most τ/4
from the class of AC0[2] circuits of size u, for weakly-exponential circuit size u (for which
we have a tolerant natural property given by Theorem 5). By Markov’s inequality, we
get that the actual distance is at most τ for at least 3/4 fraction of the random seeds z
to the generator.2 Thus, for AC0[2], we can make the stretch L of our generator to be
quasipolynomial, L = exp(poly(logn)). Then ` = logL = poly(logn).

2 Here, and for the case of AC0[q] for primes q > 2 later, we can use a simple averaging argument and keep
the NW generator as is, because we have natural properties for these classes with very poor tolerance
parameters. However, for the general case, when we may have better tolerance parameters, we achieve
better concentration by combining the NW generator with a pairwise-independent generator.
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As we have (1/`3)-tolerant natural property for AC0[2] circuits of size u computing `-input
boolean functions (Theorem 5), we set τ = (1/`3), and get that k = (4β`3)−1. As the
τ -tolerant natural property breaks the NW generator based on F , we get by Theorem 6 that
f can be learned up to the error O((logL)/k) ≤ O(β · `4) ≤ poly(logn) · β.

Thus we have proved the following.

I Theorem 7 (Agnostic learning of AC0[2]). There is a randomized quasipolynomial-time
algorithm for agnostically learning, with membership queries, a function f : {0, 1}n → {0, 1}
with dist(f,AC0[2]) ≤ β (for a non-negligible β > 0), producing a circuit that computes f on
all but at most poly(logn) · β fraction of inputs.

3.5 The case of AC0[q] for prime q > 2
Next, we consider the case of agnostic learning for AC0[q] for prime q > 2. While this follows
the general outline of the AC0[2] case, there are some differences. In particular, to keep
the function generators close to functions in AC0[q], we need to consider them as producing
functions which take Boolean {1,−1} inputs to outputs in the range {0, . . . , q−1} of integers
modulo q. We need to adjust the natural property from [28] to handle such functions. This
turns out to actually simplify the argument from [28] and to eliminate one step (the von
Neumann construction) from the PRFG construction in [4].

Our learning algorithm follows the general outline.

Preconditions. We assume membership query access to a Boolean function f : {0, 1}n →
{0, 1}, and a value β and integer d so that we are promised that there is an h in AC0[q]
computable by a depth d circuit and dist(f, h) ≤ β.

Amplification. Given a parameter k = k(n), the mod q amplification Ampk,q(f) is defined as
the mod q Goldreich-Levin (Hadamard code) encoding of the k-wise direct product of f :

Ampk,q(f) = F (x1, . . . , xk, b1, . . . , bk) =
k∑
i=1

bi · f(xi),

where x1, . . . , xk ∈ {1,−1}n, b1, . . . , bk ∈ {0, . . . , q − 1}, and the summation is modulo q.
Note that this function takes on values in {0, . . . , q− 1}. We will extend the class AC0[q]
to include such functions in any of several obvious ways, e.g., by having q output gates
with the one true one selecting the output. We can code inputs taking on such values
similarly.
In our construction, we will set k = 1/(10 · β). Let the functions H and F be defined by
H = Ampk,q(h) ∈ AC0[q] and F = Ampk,q(f). Then dist(F,H) = (1−(1−β)k)(1−1/q) ≤
kβ = .01, since if f and h agree on all k inputs, the functions F and H will agree, and
otherwise, they agree with conditional probability 1/q. Also, H is computable by a depth
d+ 2 AC0[q] circuit of polynomial size, and a query to F can be simulated with k queries
to f .

Pseudo-random function generator. As in [4], we use a version of the NW generator with
a design based on polynomials over GF(q). We are applying this to the function F

with non-Boolean outputs from GF(q), so the resulting truth table will be, for each
seed s, a vector of values mod q. We will set the stretch L to be quasi-polynomial in n,
L = exp(C · logqd+c n) for some constants C and c, where we need the q in the exponent
of the polylog because of the overhead of GL reconstruction for circuits with outputs in
GF(2). Note that we can construct such a truth table with L queries to F . A subtlety is
that, while we look at the sets in the design as determined by polynomials over GF(q),

APPROX/RANDOM’17



35:12 Agnostic Learning from Tolerant Natural Proofs

we only consider those L polynomials of degree `− 1, where ` = log2 L, with co-efficients
in {1,−1}.
Call this pseudo-random function generator using F and H respectively, and seed s, GFs
and GHs . As noted in [4], for each seed s, GHs can be computed by poly(n) sized circuits
of depth d+O(1).
Since for a random seed s and random position I, the value F is queried at is uniform,
Es
[
dist(GFs , GHs )

]
= dist(F,H) ≤ .01. By Markov, we get Pr

[
dist(GFs , GHs ) ≥ .1

]
≤ .1.

Apply natural property. At this point, we apply a tolerant natural property. We need a
variant of natural property that applies to functions with Boolean inputs and outputs in
GF(q). It turns out that the Razborov-Rudich [28] natural property for AC0[q] is actually
simpler in this case. We prove the following in Section B of the appendix.

I Lemma 8 (Tolerant natural property for AC0[q]). There is a P-natural property {Rn}n≥0 with
largeness 1/2, and (.15)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[q] circuits
computing functions f : {1,−1}n → GF(q).

We get that at most 1/10 of the functions GFs will be of high complexity, whereas a
random function will be of high complexity with probability 1/2. So testing whether a
function has high complexity gives us a poly(L) size distinguisher with constant advantage
for distinguishing GFs from a random function.

Converting to a predictor. Using the standard hybrid argument and proof of correctness
for the NW generator, we can convert this distinguisher into a predictor circuit of size
poly(L) and advantage Ω(1/L) of predicting F (z) over random guessing. (To compute
this predictor, we need to query F and hence f at poly(L) positions; see [4]. This is the
main step that requires membership queries.)

Converse of amplification. Applying the converse of the generalized GL construction and
the direct product theorems, we can convert this predictor circuit into one that computes
f on 1−γ inputs, where (1−γ)Ωk = Ω(1/L). Thus, e−C1γk = C2/L, or γ = O(logL/k) =
O(β · logL) = O(β · logqd+c n). So we get an agnostic learner that works in time and
queries quasi-polynomial in n, and with error at most O(logqd+c n) · β. (Note that this
assumes β is non-negligible; otherwise, the time and circuit size depend on 1/β as well).

Combining all these pieces, we have the following.

I Theorem 9 (Agnostic learning of AC0[q]). Let q > 2 be any prime. There is a randomized
quasipolynomial-time algorithm for agnostically learning, with membership queries, a function
f : {0, 1}n → {0, 1} with dist(f,AC0[q]) ≤ β (for a non-negligible β > 0), producing a circuit
that computes f on all but at most poly(logn) · β fraction of inputs.

4 Agnostic learning from tolerant natural properties

Next, we consider the case of agnostic learning for any Λ closed under AC0[2]-reductions for
any natural property against Λ with super-constant tolerance and usefulness. This follows
the general outline of the AC0[2] case, but we need to use a variant of the NW pseudorandom
generator to take advantage of (potentially) better tolerance. We will use Chebyshev instead
of Markov to bound the probability, over random seeds z, that the functions mapped to by
the generator have small distance. Our generic learning algorithm also follows the outline.

Preconditions. Let Λ be some complexity class closed under AC0[2]-reductions. Let R be
a BPP-constructive, τ -tolerant, u-useful natural property against Λ, for super-constant
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τ with largeness δ > (1/2). Write τ = (1/2) − τ ′, because it will sometimes be easier
to work with τ as an “advantage.” We assume membership query access to a Boolean
function f : {0, 1}n → {0, 1}, and a value β so that we are promised that there is an h in
Λ with dist(f, h) ≤ β.

Amplification. We use Ampk identically to the specific case of AC0[2], except that we
set k later based on abstract τ and u. Let F = Ampk(f), H = Ampk(h), as before
dist(F,H) = (1/2)− (1/2)(1− β)k, which we call µ.

Pseudo-random function generator. As in [4], we use a version of the NW generator with
a design based on polynomials over GF(2). Recall that the NW design for parameters
n,m,L ∈ N is a family of sets S1, . . . , SL ⊆ [m], of size |Si| = n, for all 1 ≤ i ≤ L, and
small overlap |Si ∩ Sj | ≤ logL = ` for all 1 ≤ i 6= j ≤ L. It was shown in [4] that such
designs can be efficiently locally computed by AC0[q] circuits, for any prime q.

I Lemma 10 (NW design in AC0[q] [25, 4]). Let q be any prime. There is a constant d0 ∈ N
such that, for any n and L < 2n, there exists an NW design S1, . . . , SL with parameters
as defined above, so that the function MXNW : {0, 1}` × {0, 1}m → {0, 1}n, defined by
MXNW (i, z) = z|Si , where z|Si denotes the substring of z indexed by Si, is computable by
an AC0[q] circuit of depth d0 and size poly(`, n).

The NW generator [25] based on a boolean function F : {0, 1}n → {0, 1} is GF : {0, 1}m →
{0, 1}L defined as GF (z) = F (z|S1) ◦ · · · ◦F (z|SL), where S1, . . . , SL is the NW design as
above. Lemma 10 implies that if F ∈ AC0[2], then, for each seed z, the output GF (z) is
the truth table of an (` = logL)-variate Boolean function of AC0[2] circuit complexity at
most poly(`, n).
Let H : {0, 1}n → {0, 1} be another boolean function such that dist(F,H) ≤ µ, for
some µ ∈ [0, 1]. By the definition of the NW generator, we have that the expected
hamming distance between the L-bit strings GF (z) and GH(z), over random seeds z, is
dist(F,H) · L ≤ µ · L. For our agnostic learning framework, it is important (as explained
in the previous section) that the NW generator have the concentration property: for
most seeds z, the hamming distance between GF (z) and GH(z) is close to the expected
distance µ · L.
We achieve this concentration property by adding a pairwise-independent string generator
as a component of the NW generator. Let PI : {0, 1}` × {0, 1}m′ → {0, 1}n be a pairwise
independent generator such that
1. for each i ∈ [L], the distribution PI(i, z) over uniformly random z ∈ {0, 1}m′ is uniform

over {0, 1}n, and
2. for all i 6= j ∈ [L], the distribution of PI(i, z) and PI(j, z), over uniformly random

seeds z ∈ {0, 1}m′ , is uniform over {0, 1}n × {0, 1}n.
Such generators exist for m′ ≤ n(` + 1); for example, pick a random 0/1 matrix A of
dimension n × ` and a random 0/1 vector v of dimension n. Let z = (A, v). Define
P (i, (A, v)) = A · i + v, where A · i denotes the matrix-vector multiplication, and all
operations are over GF(2). It is easy to see that this generator PI(i, z) is computable by
an AC0[2] circuit of polynomial size.
Define the modified NW generator G′F : {0, 1}m × {0, 1}m′ → {0, 1}L, based on the
n-variate boolean function F , as follows:

G′F (z1, z2) = F (z1|S1 ⊕ PI(1, z2)) ◦ · · · ◦ F (z1|SL ⊕ PI(L, z2)),

where Si’s form the NW design, and PI is the pairwise-independent generator as above,
and ⊕ denotes the bit-wise XOR of the corresponding n-bit strings.
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Observe that since the generator PI is efficiently locally computable in AC0[2], we still
get (by Lemma 10) that the `-bit function output by G′F , for F ∈ AC0[2], has AC0[2]
circuit complexity at most poly(`, n). Next, the generator G′ allows the same kind of
reconstruction as the original NW generator: given a distinguisher for G′ with a constant
distinguishing probability, one can efficiently construct (using membership queries to F )
a small circuit computing F on at least 1/2 + Ω(1/L) fraction of inputs. Finally, the
generator G′F (z1, z2), for uniformly random seeds z1 and z2, outputs L values of F on
pairwise-independent uniformly random n-bit inputs.
From pairwise independence we get that the hamming distance between G′F (z1, z2)
and G′H(z1, z2), over random z1 and z2, is concentrated around the expectation, by
the Chebyshev bound. More precisely, for F and H with dist(F,H) ≤ µ, we have by
Chebyshev that

Prz
[∣∣DIST(G′F (z), G′H(z))− µ · L

∣∣ > ζ · L
]
<

1
ζ2 · L

,

which we will require to be less than 1/4. We parameterize the bound with ζ =
(1/4)(1− β)k. For the selected ζ, and the stretch L we are forced to pick later, this is
immediate.

Apply natural property. At this point, we apply a tolerant natural property to produce
a distinguisher circuit for the generator above. This induces the following system of
constraints, which relate the usefulness, tolerance, and density of the property to the
stretch and concentration of the generator. Let Λ-SIZE(G′H(z)) = sH . We require
that sH ≤ u(`), to respect the size lower bound. We re-arrange the Chebyshev bound
above and see that we should require µ + ζ < τ(`), respect tolerance, and ensure a
good distinguishing gap from the property. We satisfy the first requirement by setting
` ≥ u−1(sH). The second one is equivalent to (1/4)(1 − β)k > τ ′(`). In this case, the
tolerant property can only accept GF (z) with probability (1/4) but accepts a random
function with probability at least (1/2), giving us a (1/4) distinguishing gap. We can
satisfy both constraints by setting k = Θ(log(τ ′(`))/β).

Converting to a predictor. Using a small modification of the standard hybrid argument
and proof of correctness for the NW generator, we can convert this distinguisher into a
predictor circuit of size poly(L) and advantage Ω(1/L) of predicting F (z) over random
guessing. The modified predictor just embeds a construction of PI and shifts/unshifts
inputs to the distinguisher circuit as necessary. (To compute this predictor, we need to
query F and hence f at poly(L) positions; see [4]. This is the main step that requires
membership queries.) From this step we know that our runtime is at most poly(L), and
the circuit output at this stage is already size poly(L).

Converse of amplification. Identical to the case of AC0[q], but with the additional con-
straints mentioned above. Note that the runtime of these algorithms is randomized time
in the size of the input circuit, so runtime, number of queries, and output circuit size of this
stage will also be dominated by L. Use of this algorithm imposes the following constraint
from the direct product reconstruction stage: poly(1/L) > e−kε/c. So ε > Θ(log(L)/k).
Substituting in our value for k, this gives us ε = Θ(`β/ log(τ ′(`))) for ` = u−1(sH).

Summarizing, we get a generic reduction from tolerant natural properties to agnostic
learning.

I Theorem 11 (Tolerant natural properties imply agnostic learning algorithms). Let R be a natu-
ral property against Λ closed under AC0[2] reductions with (1/2−τ ′)-tolerant u-usefulness and
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largeness δ ≥ 1/2. Then there is a randomized algorithm such that, for any n-ary boolean func-
tions f and h with dist(f, h) < β and sh = Λ-SIZE(h), the algorithm, given oracle access to
f , produces a circuit ε-approximating f , for any ε > β ·u−1(poly(sh))/ log(τ ′(u−1(poly(sh)))),
in time poly(max{2u−1(poly(sh)), 1/ε}).

In particular, this means if we have a “perfect” natural property, with exponential
usefulness u and inverse exponential tolerance τ ′, we have a polynomial-time learning
algorithm with error bound Θ(β). Thus Theorem 2 is a special case of Theorem 11.

5 Hardness of removing membership queries

Is it possible to eliminate membership queries from our algorithm, learning just from random
examples? We note that removing membership queries would give us quasipolynomial-time
algorithms for two notoriously difficult problems: learning parities with noise (LPN) for the
case of AC0[2] and a variant of learning with errors (LWE) for AC0[q].

Though learning parities with noise under uniform distribution can be done in polynomial
time with membership queries (by the Goldreich-Levin algorithm [11]), without membership
queries this problem is believed to be hard. Learning parities with noise efficiently under
uniform distribution would give learning algorithms for DNFs and k-juntas (and in general,
for any problem reducible to finding a heavy Fourier coefficient of a function) [8].

In the worst case, LPN is known to be NP-hard (and MAX-SNP-hard). The average-case
hardness of LPN has been considered as early as 1993, when Blum, Furst, Kearns and Lipton
have given a simple construction of a pseudorandom bit generator based on the assumption
that learning parities with constant noise rate is hard [2]. In practical cryptography, average-
case hardness of LPN is the basis for Hopper and Blum authentication protocol [14]. There,
the noise rate is usually set to a constant η ∈ (0, 1/2), in particular η = 1/8 has been used in
applications [22]. Though for AC0[2] our algorithm works for noise up to 1/polylog(n), we
can tolerate constant noise for AC0[q].

Hardness of LWE problem follows from worst-case hardness of variants of the lattice
shortest vector problem [29]. Whereas LPN has been used to build "minicrypt" cryptographic
primitives, LWE has been used for public-key cryptosystems [1, 29].

6 Open questions

While there are correlation bounds for AC0[q] circuits that say that some explicit functions
cannot be computed by “small” circuits on significantly more that 1/2 + 1/

√
n fraction of

inputs, we do not know how to get natural properties with tolerance close to 1/2. Getting
natural properties with better tolerance parameters would immediately imply improved
parameters for our agnostic learning algorithms for the corresponding circuit classes. (Of
course, getting stronger correlation bounds for AC0[q], whether obtained by natural proofs or
not, is in itself a very important problem in circuit complexity.)

Can one get a query agnostic learning algorithm for AC0[q] with the optimal error opt + ε?
It seems that, even with ideal tolerance and usefulness, our approach of getting learning
algorithms from natural properties will at best achieve the error O(opt) + ε. So one needs a
new approach, perhaps inspired by the learning algorithm in this paper.

In fact, probably the main open problem is to get a more “natural” (understandable)
learning algorithm for AC0[q] than our construction, which combines the NW-style generator
analysis with circuit lower bound proofs. As a possible first step, it would be interesting to
get an alternative agnostic learning algorithm for low-degree polynomials over GF(2).
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35:18 Agnostic Learning from Tolerant Natural Proofs

A Tolerant natural property for AC0[2]

Razborov [27] showed the following natural property for AC0[2]:

Given an n-variate boolean function f , construct certain matrices A1, . . . , Ab, for
b = n/2−

√
n, of dimensions at most 2n× 2n, and check if at least one of the matrices

has rank at least 2n/(140 · n2) over GF(2).

More precisely, for a = n/2−
√
n and all i ≤ a, define Ai to be the matrix whose rows

are labeled by size a subsets of [n], and whose columns are labeled by size i subsets of [n].
For K ⊆ [n], let Z(K) = {x ∈ {0, 1}n | x|K = ~0}. For a row I ⊆ [n] and a column J ⊆ [n],
define (Ai)I,J = ⊕x∈Z(I∪J)f(x).

It is possible to show that at least 1/2 of all n-variate boolean functions satisfy this
property; so we have largeness (see [4]). The usefulness of this property is due to the following
two lemmas. Below we denote by P(D) the linear space of all n-variate degree D multilinear
polynomials over GF(2).

I Lemma 12 ([27]). For an n-variate boolean function f and the corresponding matrices
A1, . . . , Ab, for b = n/2−

√
n, we have for all 1 ≤ i ≤ b that

DIST(f,P(
√
n)) ≥ rank(Ai).

I Lemma 13 ([27]). For an n-variate boolean function f , if f is computable by a d-depth
AC0[2] circuit of size s, then

dist(f,P((O(log(s/ε))d)) ≤ ε.

So for ε = 1/n3 and size s < exp(Ω(n1/(2d)))/n3, we get by Lemma 13 that any f

computable by a d-depth AC0[2] circuit of size s is such that DIST(f,P(
√
n)) ≤ 2n/n3. Hence,

by Lemma 12, all the corresponding matrices Ai for f have rank at most 2n/n3 ≤ 2n/(140·n2)
(for all sufficiently large n), and so f is rejected by the natural property.

Now suppose that h is an n-variate boolean function that is close to f , i.e., for some
0 ≤ β ≤ 1,

dist(h, f) ≤ β,

where f is as above. Then we get by the triangle inequality that

DIST(h,P(
√
n)) ≤ (β + n−3) · 2n,

which, in particular, means that for any β ≤ 1/n3, such a function h will also be rejected by
the natural property above.

Thus we have proved the following.

I Lemma 14 (Tolerant natural property for AC0[2]). There is a P-natural property {Rn}n≥0
with largeness 1/2, and (1/n3)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[2]
circuits.

B Tolerant natural property for AC0[q] for prime q > 2

Here we prove the following.
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I Lemma 15 (Tolerant natural property for AC0[q]). There is a P-natural property {Rn}n≥0
with largeness 1/2, and (.15)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[q]
circuits computing functions f : {1,−1}n → GF(q).

Proof. LetM be the vector space of all n-variate multilinear polynomials over GF (q), and
let L be the subspace of those polynomials of degree at most n/2. Given such a multilinear
polynomial f (and any truth table indexed by {1,−1}n over GF (q) defines such a polynomial),
we say that f is high complexity if the dimension dim(L+ f · L) ≥ 3/4 ·N , where N = 2n.

Note that, for any function f of degree d, L + f · L is contained within the space of
multilinear polynomials of degree l/2 + d, which has dimension at most N(1/2 +O(d/

√
n)).

Changing any D values can increase this dimension by at most D (since adding the dimension
D vector space of all functions on these D points to the subspace for the original function
includes the subspace functions for the changed function). So in particular, any high
complexity function must have distance at least 1/5 from any function of degree c

√
n for

some c > 0. Since by work by Razborov [27] and Smolensky [31], any function in AC0[q] of
depth d and size s is within ε distance of a multilinear polynomial over GF(q) of degree
O(log(s/ε)d), any high complexity function must be distance .15 from any function computed
by size exp(Ω(n1/(2d+C))) depth d+ C circuits with mod q gates.

At least half of such functions have high complexity. From [31], for p the product of all l
inputs (i.e., the parity of the number of -1 inputs), L+ p · L =M. Then for f any function,
either f has high complexity or p− f does. Because if both have low complexity, then

dim(L+ f · L) = dimL+ dim((f · L)/L) < 3
4 ·N,

so dim((f · L)/L) < (1/4) ·N , and similarly for p− f . Then

dimM = dim(L+ p · L)
≤ dim(L+ f · L+ (p− f) · L)
≤ dimL+ dim((f · L)/L) + dim(((p− f) · L)/L)
< N/2 +N/4 +N/4
= N,

a contradiction. Since all functions can be paired up into f, p − f pairs, at least half the
functions have high complexity. Clearly, we can test whether a function has high complexity
in poly(N) time. J
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