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—— Abstract

We study matrix sketching methods for regularized variants of linear regression, low rank approx-
imation, and canonical correlation analysis. Our main focus is on sketching techniques which
preserve the objective function value for regularized problems, which is an area that has re-
mained largely unexplored. We study regularization both in a fairly broad setting, and in the

specific context of the popular and widely used technique of ridge regularization; for the lat-
ter, as applied to each of these problems, we show algorithmic resource bounds in which the
statistical dimension appears in places where in previous bounds the rank would appear. The
statistical dimension is always smaller than the rank, and decreases as the amount of regulariza-
tion increases. In particular, for the ridge low-rank approximation problem miny x||Y X — A||% +
MY[[Z + M| X ||%, where Y € R"** and X € R**?| we give an approximation algorithm needing
O(nnz(A)) + O((n + d)e~ kmin{k, e sdx(Y*)}) + poly(sdr(Y*)e™ 1) time, where sy(Y*) < k
is the statistical dimension of Y*, Y* is an optimal Y, € is an error parameter, and nnz(A) is
the number of nonzero entries of A. This is faster than prior work, even when A = 0. We also
study regularization in a much more general setting. For example, we obtain sketching-based al-
gorithms for the low-rank approximation problem miny y ||V X — A||% + f(Y, X) where f(-,-) is a
regularizing function satisfying some very general conditions (chiefly, invariance under orthogonal
transformations).
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1 Introduction

The technique of matrix sketching, such as the use of random projections, has been shown
in recent years to be a powerful tool for accelerating many important statistical learning
techniques. Indeed, recent work has proposed highly efficient algorithms for, among other
problems, linear regression, low-rank approximation [22, 30] and canonical correlation anal-
ysis [3]. In addition to being a powerful theoretical tool, sketching is also an applied one;
see [31] for a discussion of state-of-the-art performance for important techniques in statistical
learning.

Many statistical learning techniques can benefit substantially, in their quality of results,
by using some form of regularization. Regularization can also help by reducing the computing
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resources needed for these techniques. While there has been some prior exploration in this
area, as discussed in §1.1, commonly it has featured sampling-based techniques, often focused
on regression, and often with analyses using distributional assumptions about the input
(though such assumptions are not always necessary). Our study considers fast (linear-time)
sketching methods, a breadth of problems, and makes no distributional assumptions. Also,
where most prior work studied the distance of an approximate solution to the optimum, our
guarantees are concerning approximation with respect to a relevant loss function - see below
for more discussion.

It is a long-standing theme in the study of randomized algorithms that structures that
aid statistical inference can also aid algorithm design, so that for example, VC dimension and
sample compression have been applied in both areas, and more recently, in cluster analysis
the algorithmic advantages of natural statistical assumptions have been explored. This work
is another contribution to this theme. Our high-level goal in this work is to study generic
conditions on sketching matrices that can be applied to a wide array of regularized problems
in linear algebra, preserving their objective function values, and exploiting the power of
regularization.

1.1 Results

We study regularization both in a fairly broad setting, and in the specific context of the
popular and widely used technique of ridge regularization. We discuss the latter in sections 2, 3
and B; our main results for ridge regularization, Theorem 15, on linear regression, Theorem 26,
on low-rank approximation, and Theorem 33, on canonical correlation analysis, show that
for ridge regularization, the sketch size need only be a function of the statistical dimension
of the input matrix, as opposed to its rank, as is common in the analysis of sketching-based
methods. Thus, ridge regularization improves the performance of sketching-based methods.
Next, we consider regularizers under rather general assumptions involving invariance
under left and/or right multiplication by orthogonal matrices, and show that sketching-based
methods can be applied, to regularized multiple-response regression in §C and to regularized
low-rank approximation, in §D. Here we obtain running times in terms of the statistical
dimension. Along the way, in §D.1, we give a “base case” algorithm for reducing low-rank
approximation, via singular value decomposition, to the special case of diagonal matrices.
Throughout we rely on sketching matrix constructions involving sparse embeddings
[10, 24, 23, 6, 12], and on Sampled Randomized Hadamard Transforms (SRHT) [1, 26, 14,
15, 28, 7, 16, 33]. Here for matrix A, its sketch is SA, where S is a sketching matrix. The
sketching constructions mentioned can be combined to yield a sketching matrix S such that
the sketch of matrix A, which is simply SA, can be computed in time O(nnz(A)), which is
proportional to the number of nonzero entries of A. Moreover, the number of rows of S is
small. Corollary 14 summarizes our use of these constructions as applied to ridge regression.
A key property of a sketching matrix S is that it be a subspace embedding, so that
|SAz|2 ~ ||Az||2 for all z. Definition 20 gives the technical definition, and Definition 22
gives the definition of the related property of an affine embedding that we also use. Lemma 23
summarizes the use of sparse embeddings and SRHT for subspace and affine embeddings.
In the following we give our main results in more detail. However, before doing so, we
need the formal definition of the statistical dimension.

» Definition 1 (Statistical Dimension). For real value A > 0 and rank-k matrix A with singular
values 03, i € [k], the quantity sdx(A) =3 ;. 1/(1+ A\/o?) is the statistical dimension (or
effective dimension, or “hat matrix trace”) of the ridge regression problem with regularizing
weight A.
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Note that sd(A) is decreasing in A, with maximum sdg(A) equal to the rank of A. Thus
a dependence of resources on sdy(A) instead of the rank is never worse, and will be much
better for large A.

In §A, we give an algorithm for estimating sdj(A) to within a constant factor, in
O(nnz(A)) time, for sdy(A) < (n+d)/3. Knowing sdy(A) to within a constant factor allows
us to set various parameters of our algorithms.

1.1.1 Ridge Regression

In §2 we apply sketching to reduce from one ridge regression problem to another one with
fewer rows.

» Theorem 2 (Less detailed version of Thm. 15). Given ¢ € (0,1] and A € R"*?, there
is a sketching distribution over S € R™ " where m = O(e~'sdx(A)), such that SA
can be computed in O(nnz(A)) + d - poly(sdx(A)/e) time, and with constant probability
T = argmingcpa||S(Az — b)||2 + A||z|? satisfies

1A% = b” + Al2* < (1 + &) min | Az = b]* + All]*

Here poly(k) denotes some polynomial function of the value k.

In our analysis (Lemma 10), we map ridge regression to ordinary least squares (by using
a matrix with vAI adjoined), and then apply prior analysis of sketching algorithms, but
with the novel use of a sketching matrix that is “partly exact”; this latter step is important
to obtain our overall bounds. We also show that sketching matrices can be usefully composed
in our regularized setting; this is straightforward in the non-regularized case, but requires
some work here.

As noted, the statistical dimension of a data matrix in the context of ridge regression is
also referred to as the effective degrees of freedom of the regression problem in the statistics
literature, and the statistical dimension features, as the name suggests, in the statistical
analysis of the method. Our results show that the statistical dimension affects not only the
statistical capacity of ridge regression, but also its computational complexity.

The reduction of the above theorem is mainly of interest when n >> sd(A), which holds
in particular when n > d, since d > rank(A4) > sdy(A4). We also give a reduction using
sketching when d is large, discussed in §2.2. Here algorithmic resources depend on a power
of 02/, where o7 is the leading singular value of A. This result falls within our theme of
improved efficiency as A increases, but in contrast to our other results, performance does not
degrade gracefully as A — 0. The difficulty is that we use the product of sketches ASTSAT
to estimate the product AAT in the expression ||AATy — b||. Since that expression can be
zero, and since we seek a strong notion of relative error, the error of our overall estimate is
harder to control, and impossible when A = 0.

As for related work on ridge regression, Lu et al. [21] apply the SRHT to ridge regression,
analyzing the statistical risk under the distributional assumption on the input data that b is a
random variable, and not giving bounds in terms of sdy. El Alaoui et al. [17] apply sampling
techniques based on the leverage scores of a matrix derived from the input, with a different
error measure than ours, namely, the statistical risk; here for their error analysis they consider
the case when the noise in their ridge regression problem is i.i.d. Gaussian. They give results
in terms of sd(A), which arises naturally for them as the sum of the leverage scores. Here
we show that this quantity arises also in the context of oblivious subspace embeddings, and
with the goal being to obtain a worst-case relative-error guarantee in objective function value
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rather than for minimizing statistical risk. Chen et al. [9] apply sparse embeddings to ridge
regression, obtaining solutions & with ||z — z*||2 small, where z* is optimal, and do this in
O(nnz(A) + d®/e?) time. They also analyze the statistical risk of their output. Yang et
al. [32] consider slower sketching methods than those here, and analyze their error under
distributional assumptions using an incomparable notion of statistical dimension. Frostig et
al. [18] make distributional assumptions, in particular a kurtosis property. Frostig et al. [19]
give bounds in terms of a convex condition number that can be much larger than sdy(A).
Another related work is that of Pilanci et al. [25] which we dicuss below.

1.1.2 Ridge Low-rank Approximation

In §3 we consider the following problem: for given A € R"*? integer k, and weight A > 0,
find:
min_ [V X — AlF + MY |5 + MIX[F, (1)
YEeR™X
XeRrFx4

where, as is well known (and discussed in detail later), this regularization term is equivalent
to 2M||Y X||., where |-||. is the trace (nuclear) norm, the Schatten 1-norm. We show the
following.

» Theorem 3 (Less detailed Thm. 26). Given input A € R"*<  there is a sketching-based
algorithm returning Y € R™* X € R*¥*? sych that with constant probability, Y and X form
a (1 + €)-approzimate minimizer to (1), that is,

VX — A%+ M[Y[[5 + A X7 (2)
< (I+e) min |YX —Alf + MY [F + M X3 (3)

Y eR™*F

XeRkXd

The matrices Y and X can be found in O(nnz(A)) + O((n + d)e~ 'k min{k,e ' sdx(Y*)}) +
poly(e =t sdx(Y™)) time, where Y* is an optimum Y in (1) such that sdy(X*) = sdy(Y*) <
rank(Y*) < k.

This algorithm follows other algorithms for A = 0 with running times of the form
O(nnz(A)) + (n+ d)poly(k/e) (e.g. [10]), and has the best known dependence on k and ¢ for
algorithms of this type, even when A = 0.

Our approach is to first extend our ridge regression results to the multiple-response case
ming||AZ — B||% + A|| Z||%, and then reduce the multiple-response problem to a smaller one
by showing that up to a cost in solution quality, we can assume that each row of Z lies in
the rowspace of SA, for S a suitable sketching matrix. We apply this observation twice to
the low-rank approximation problem, so that Y can be assumed to be of the form ARY, and
X of the form XSA, for sketching matrix S and (right) sketching matrix R. Another round
of sketching then reduces to a low-rank approximation problem of size independent of n and
d, and finally an SVD-based method is applied to that small problem.

Regarding related work: the regularization “encourages” the rank of Y X to be small,
even when there is no rank constraint (k is large), and this unconstrained problem has
been extensively studied; even so, the rank constraint can reduce the computational cost
and improve the output quality, as discussed by [8], who also give further background, and
who give experimental results on an iterative algorithm. Pilanci et al. [25] consider only
algorithms where the sketching time is at least Q(nd), which can be much slower than our
nnz(A) for sparse matrices, and it is not clear if their techniques can be extended. In the
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case of low-rank approximation with a nuclear norm constraint (the closest to our work), as
the authors note, their paper gives no improvement in running time. While their framework
might imply analyses for ridge regression, they did not consider it specifically, and such an
analysis may not follow directly.

1.1.3 Regularized Canonical Correlation Analysis

Canonical correlation analysis (CCA) is an important statistical technique whose input is a
pair of matrices, and whose solution depends on the Gram matrices AT A and B B. If these
Gram matrices are ill-conditioned it is useful to regularize them by instead using AT A+ \ Iy
and BT B + M1y, for weights A\;, Ao > 0. Thus, in this paper we consider a regularized
version of CCA, defined as follows (our definition is in the same spirit as the one used by [3]).

» Definition 4. Let A € R"*% and B € R"*? | and let
q= min(rank(ATA + A\iIy),rank(B' B + Aolyr)).

Let Ay > 0 and Ay > 0. The (A1, \2) canonical correlations 05/\1”\2) > .0 > a,(;’\l’)‘Z) and

(A1, X2) canonical weights uq,...,u, € RY and vy,...,v, € RY are ones that maximize
tr(UTATBV)
subject to
U'(ATA+ MU = 1,
VB "B+ X\Iy)V = 1,
UTATBY = diag(0§>‘1’)‘2)7 e 7Ulg)‘l)""))
where U = [uy, ..., u,] € R™C and V = [v1, ..., v,] € RY >4

One classical way to solve non-regularized CCA (A\; = Ay = 0) is the Bjorck-Golub
algorithm [5]. In §B we show that regularized CCA can be solved using a variant of the
Bjorck-Golub algorithm.

Avron et al. [3] showed how to use sketching to compute an approximate CCA. In §B we
show how to use sketching to compute an approximate regularized CCA.

» Theorem 5 (Loose version of Thm. 33). There is a distribution over matrices S € R™*"
with m = O(max(sdy, (A), sdy,(B))?/e?) such that with constant probability, the reqularized
CCA of (SA,SB) is an e-approximate CCA of (A, B). The matrices SA and SB can be
computed in O(nnz(A) + nnz(B)) time.

Our generalization of the classical Bjorck-Golub algorithm shows that regularized canonical
correlation analysis can be computed via the product of two matrices whose columns are
non-orthogonal regularized bases of A and B. We then show that these two matrices are
easier to sketch than the orthogonal bases that arise in non-regularized CCA. This in turn
can be tied to approximation bounds of sketched regularized CCA versus exact CCA.

1.1.4 General Regularization

A key property of the Frobenius norm ||-|| ¢ is that it is invariant under rotations; for example,
it satisfies the right orthogonal invariance condition ||AQ| r = ||A||F, for any orthogonal
matrix @ (assuming, of course, that A and @ having dimensions so that AQ is defined). In
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§C and §D, we study conditions under which such an invariance property, and little else, is
enough to allow fast sketching-based approximation algorithms.

For regularized multiple-response regression, we have the following.

» Theorem 6 (Implied by Thm. 39). Let f(-) be a real-valued function on matrices that is
right orthogonally invariant, subadditive, and invariant under padding the input matriz by
rows or columns of zeros. Let A € R B ¢ Rxd Suppose that for r = rank A, there is
an algorithm that for general n,d,d’,r and € > 0, in time 7(d,n,d’,r,€) finds X with

|AX — B|% + f(X) < (1+4¢) min |[AX — B|3 + f(X).

X eRdxd’
Then there is another algorithm that with constant probability finds such an X, taking time
O(nnz(A) +nnz(B) + (n + d + d')poly(r/e)) + 7(d, poly(r/e), poly(r/e), r, €).

That is, sketching can be used to reduce to a problem in which the only remaining large
matrix dimension is d, the number of columns of A.

This reduction is a building block for our results for regularized low-rank approximation.
Here the regularizer is a real-valued function f(Y, X) on matrices Y € R"** X € RF*4, We
show that under broad conditions on f(,-), sketching can be applied to

min [|[YX — A||%Z + f(Y, X). (4)
Yy erm Xk
Xekad

Our conditions imply fast algorithms when, for example, f(Y,X) = ||[Y X||,y, where ||-||()
is a Schatten p-norm, or when f(Y, X) = min{A{||Y X||(1), Ao[|[Y X||(2)}, for weights A1, Ao,
and more. Of course, there are norms, such as the entriwise ¢; norm, that do not satisfy
these orthogonal invariance conditions.

» Theorem 7 (Implied by Thm. 44). Let (Y, X) be a real-valued function on matrices that
in each argument is subadditive and invariant under padding by rows or columns of zeros,
and also right orthogonally invariant in its right argument and left orthogonally invariant in
its left argument.

Suppose there is a procedure that solves (4) when A, Y, and X are k x k matrices, and
A is diagonal, and Y X is constrained to be diagonal, taking time 7(k) for a function 7(-).

Then for general A, there is an algorithm that finds a (1 + ¢)-approzimate solution (Y, X)
in time O(nnz(A)) + O(n + d)poly(k/e) + (k).

The proof involves a reduction to small matrices, followed by a reduction, discussed in
§D.1, that uses the SVD to reduce to the diagonal case. This result, Corollary 43, generalizes
results of [29], who gave such a reduction for f(Y,X) = || X|% + ||Y|%; also, we give a very
different proof.

As for related work, [29] survey and extend work in this setting, and propose iterative algo-
rithms for this problem. The regularizers f(Y, X) they consider, and evaluate experimentally,
are more general than we can analyze.

The conditions on f(Y, X) are quite general; it may be that for some instances, the
resulting problem is NP-hard. Here our reduction would be especially interesting, because
the size of the reduced NP-hard problem depends only on k.
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1.2 Basic Definitions and Notation

We denote scalars using Greek letters. Vectors are denoted by x,y,... and matrices by
A, B,.... We use the convention that vectors are column-vectors. We use nnz(-) to denote
the number of nonzeros in a vector or matrix. We denote by [n] the set {1,...,n}. The
notation @ = (1 &+ v)f means that (1 —v)8 < a < (1 + «v)8. Throughout the paper, A
denotes an n x d matrix, and 01 > 03 > -+ > Opin(n,q) its singular values.

» Definition 8 (Schatten p-norm). The Schatten p-norm of Ais ||Alp) = [>2, af]l/p. Note
that the trace (nuclear) norm ||A|. = [|Al|(1), the Frobenius norm ||A||r = [[Al|(2), and the
spectral norm || All2 = || Alf (s0)-

The notation ||| without a subscript denotes the ¢2 norm for vectors, and the spectral
norm for matrices. We use a subscript for other norms. We use range(A) to denote the
subspace spanned by the columns of A, i.e. range(A) = {Ax | z € R%}. I; denotes the d x d
identity matrix, 04 denotes the column vector comprising d entries of zero, and 0qx, € R**?
denotes a zero matrix.

The rank rank(A) of a matrix A is the dimension of the subspace range(A) spanned by
its columns (equivalently, the number of its non-zero singular values). Bounds on sketch
sizes are often written in terms of the rank of the matrices involved.

» Definition 9 (Stable Rank). The stable rank sr(A) = || A||%/||Al|3. The stable rank satisfies
sT(A) < rank(A).

Paper Outline: Due to space constraints, most proofs are omitted, and all results except

our results for ridge regression and ridge low-rank approximation are deferred to the appendix.

The missing proofs and results can also be found in the full version of our paper on arXiv
under the same title: https://arxiv.org/abs/1611.03225.

2 Ridge Regression
Let A € R"¥4 b e R™, and A > 0. In this section we consider the ridge regression problem:

min || Az — b]|* + A%, (5)
z€ERY

Let 2* = argmingcpal|Az — b[|* + A||z||* and A, = ||Az* — b]|* + A||lz*||>. In general
v = (ATA+ M) TATb = AT(AAT + AI,,)~1b, so 2* can be found in O(nnz(A) min(n, d))
time using an iterative method (e.g., LSQR). Our goal in this section is to design faster
algorithms that find an approximate # in the following sense:

IAZ — BII* + AllZ]* < (1 + ) A . (6)

In our analysis, we distinguish between two cases: n > d and d > n.

» Remark. In this paper we consider only approximations of the form (6). Although we
do not explore it in this paper, our techniques can also be used to derive preconditioned
methods. Analysis of preconditioned kernel ridge regression, which is related to the d > n
case, is explored in [4].
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2.1 Largen

In this subsection we design an algorithm that is aimed at the case when n > d. However,
the results themselves are correct even when n < d. The general strategy is to design a
distribution on matrices of size m-by-n (m is a parameter), sample an S from that distribution,
and solve & = argmin,cpa||S(Az — b)[* + A||z||?.

The following lemma defines conditions on the distribution that guarantee that (6) holds
with constant probability (which can be boosted to high probability by repetition and taking
the solution with minimum objective value).

» Lemma 10. Let z* € R%, A and b as above. Let U; € R™*¢ comprise the first n rows of
an orthogonal basis for |:\/§Id:|' Let sketching matriz S € R™*"™ have a distribution such

that with constant probability
[0 ST SUy = U Uh[|l2 < 1/4, (7)
and

|UTSTS(b— Az*) — U (b— Az*)|| < VeA, /2. (8)
Then with constant probability, & = argmin,cpa||S(Az—b)|*+\||z||? has ||AZ—b||*+ X[ Z[]? <
(1+e)A..

Proof. Omitted in this version. <

» Lemma 11. For U; as in Lemma 10, |Uy||% = sd\(A) = Y, 1/(1 + X/o?), where A has
singular values o;. Also ||Ui]le = 1/\/1+ \/o2.

This follows from (3.47) of [20]; for completeness, a proof is given here.

Proof. Suppose A = ULV T, the full SVD, so that U € R™*", ¥ € R"*?¢ and V € R%*4,
Let D = (27X 4 M)~Y/2. Then A= {J]\%%} has ATA = I,, and for given z, there is
y =D Wz with Ay = [ﬁ‘]} . We have |Uy |2 = [USD|[% = |SD|2 = 3, 1/(1+M/o?)

as claimed. Also |Ui|l2 = [[UED|2 = ||ED||2 = 1/4/1+ A/c?, and the lemma follows. <

» Definition 12 (large \). Say that X is large for A with largest singular value oy, and error
parameter ¢, if \/o} > 1/e.

The following lemma implies that if A is large, then x = 0 is a good approximate solution,
and so long as we include a check that a proposed solution is no worse than x = 0, we can
assume that X is not large.

» Lemma 13. Fore € (0,1], large \, and all x, || Az — b||? + X||=||* > ||b]|2/(1 +¢). If X is
not large then ||Uy]|3 > /2.

Proof. If oq||z| > ||b]|, then X||z||? > o?||z|* > ||b]|?>. Suppose oy|z| < ||b]|. Then:

[ Az = b||* + All2l|* = [[Az|® + [[b]]* — 267 Az + Al2||?

> (|16l = [|Az])? + Az |2 Cauchy-Schwartz
> ([[oll = aull]))? + All||? assumption
> [[bl1?/ (1 + 0t /A) calculus
= ||b||2/(1—|—5), large A

as claimed. The last statement follows from Lemma 11. ]
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Below we discuss possibilities for choosing the sketching matrix S. We want to emphasize
that the first condition in Lemma 10 is not a subspace embedding guarantee, despite having
superficial similarity. Indeed, notice that the columns of U; are not orthonormal, since we
only take the first n rows of an orthogonal basis of [ \/éld, } Rather, the first condition is
an instance of approximate matrix product with a spectral norm guarantee with constant
error, for which optimal bounds in terms of the stable rank sr(U;) were recently obtained
[13]. As we discuss in the proof of part (i) of Corollary 14 below, sr(U;) is upper bounded
by sdx(4)/e.

We only mention a few possibilities of sketching matrix S below, though others are
possible with different tradeoffs and compositions.

» Corollary 14. Suppose A is not large (Def. 12). There is a constant K > 0 such that

for

(i) m > K(e 1 sdy(A) + sdr(A4)?) and S € R™*" q sparse embedding matriz (see [10, 23,
24]) with SA computable in O(nnz(A)) time, or one can choose m > K(e71sdy(A) +
min((sdy(A4)/€)177,8dr(A4)?)) an OSNAP (see [24, 6, 12]) with SA computable in
O(nnz(A)) time, where v > 0 is an arbitrarily small constant, or

(i) m > Ke~!(sdx(A) + log(1/¢))log(sdr(A)/e) and S € R™*" a Subsampled Randomized
Hadamard Transform (SRHT) embedding matriz (see, e.g., [7]), with SA computable in
O(ndlogn) time, or

(i) m > Ke 'sdy(A) and S € R™ " a matriz of i.i.d. subgaussian values with SA
computable in O(ndm) time,

the conditions (7) and (8) of Lemma 10 apply, and with constant probability the corresponding

& = argmin, cpa||S(Az — b)|| + A||z||? is an e-approzimate solution to min,ega||b — Ax||* +

All[f?.

Proof. Recall that sdy(A) = ||U1]|%. For (i): sparse embedding distributions satisfy the
bound for matrix multiplication

IW'STSH —W " H||p <C|W|rl|H|r/vVm,

for a constant C' [10, 23, 24]; this is also true of OSNAP matrices. We set W = H = U; and
use || X||2 < || X||F for all X and m > K||U1||% to obtain (7), and set W = Uy, H = b — Azx*
and use m > K||Uy||% /¢ to obtain (8). (Here the bound is slightly stronger than (8), holding
for A = 0.) With (7) and (8), the claim for # from a sparse embedding follows using
Lemma 10.

For OSNAP, Theorem 1 in [13] together with [24] imply that for m = O(szx(U;)'*7),
condition (7) holds. Here sr(U;) = ‘||\UU11‘|I\%’ and by Lemma 11 and Lemma 13, sr(U;) <
sdy(A)/e. We note that (8) continues to hold as in the previous paragraph. Thus, m is at
most the min of O((sdx(A)/e)**7) and O(sdr(A)/e + sdr(A)?).

For (ii): Theorems 1 and 9 of [13] imply that for v < 1, with constant probability

IWTSTSH —WTH|ly <~|Wll2[|H]|l2 (9)
for SRHT S, when

m > C(st(W) + sr(H) +log(1/7)) log(sx (W) + sr(H))/~*
for a constant C. We let W = H = U; and v = min{1,1/4||U1||?}. We have

10y STSUL — UL Unl < min{1, 1/4|UL [} U1 |13 = min{||U4][3,1/4} < 1/4,

27:9
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and

SI'(Ul)/’72 _ ”UlH%'

BRGAE max{1,4)|U1[3} = |UL[|3 max{1/||U1]3,4} < 2|U1|%/e
2

using Lemma 13 and the assumption that A is large. (And assuming ¢ < 1/2.) Noting that
log(1/) = O(log(1/¢)) and log(sr(Uy)) = O(log||U1||r/e) using Lemma 13, we have that m
as claimed suffices for (7).

For (8), we use (9) with W = Uy, H = Az* — b, and v = /2/2/|[U1||2; note that using
Lemma 13 and by the assumption that A is large, v < 1 and so (9) can be applied. We have

U, STS(Az* = b)|| < (ve/2/||Unll2) |Un]l2]| Az* — b]| < /A, /2,
and

U113
10113

st(Ur) log(sr(Uh)) /% < [210g(|U1[l/2)]121U113/2] = 41U |17 log (|| Ul /) /e

Noting that since Az* — b is a vector, its stable rank is one, we have that m as claimed
suffices for (8). With (7) and (8), the claim for & from an SRHT follows using Lemma 10.
The claim for (iii) follows as (ii), with a slightly simpler expression for m. <

Here we mention the specific case of composing a sparse embedding matrix with an
SRHT.

» Theorem 15. Given A € R"¥4, there are dimensions within constant factors of those
giwven in Cor. 14 such that for S1 a sparse embedding and So an SRHT with those dimensions,

# = argmin|| Sy S1 (Az — b)||2 + A|z||?,
z€R4
satisfies | AZ — b]|? + A||Z]|? < (1 + &) mingepa||Az — b||* + \||z||* with constant probability.
Therefore in O(nnz(A)) + O(d sd(A)/e + sdy(A)?) time, a ridge regression problem with
n rows can be reduced to one with O(e~*(sdx(A) + log(1/e))log(sdx(A)/e)) rows, whose
solution is a (1 + €)-approzimate solution.

Proof. This follows from Corollary 14 and the general comments of Appendix A.3 of [13];
the results there imply that ||S;U:||r = O(||Uy||r) and ||S;Uy |2 = ©(||U1]|2) for i € [3] with
constant probability, which implies that sr(S1U7) and sr(S251U1) are O(sx(Uy)). Moreover,
the approximate multiplication bounds of (7) and (8) have versions when using S2S1U; and
5251 (Ax* — b) to estimate products involving S1U; and Sy (Axz* —b), so that for example,
using the triangle inequality,

U ST 85 S251U1 — Uy Us|l2 < ||UY' ST Sy $251U1 — Uy Sy S1U |2
+ U 8] S1Uy — U Un ||
<1/8+41/8=1/4.
We have that S = 535 satisfies (7) and (8), as desired. <

Similar arguments imply that a reduction also using a sketching matrix S3 with sub-
gaussian entries could be used, to reduce to a ridge regression problem with O(e~! sdy(A))
rOwsS.
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2.2 Larged

If the number of columns is larger than the number of rows, it is more attractive to sketch the
rows, i.e., to use AST. In general, we can express (5) as mingcga||Az||2—2b" Az+|b]| 2+ z|2.
We can assume z has the form z = ATy, yielding the equivalent problem

AATY|? = 20T AATy + [[o]* + A ATyl (10)

min
yER”
Sketching AT with S in the first two terms yields

g =argmin \||SATy||® + ||ASTSATy||> — 26T AATy + |b]|2 (11)
yeR?

Now let ¢" =b" AAT. Note that we can compute ¢ in O(nnz(A)) time. The solution to (11)
is, for B=SA" with BT B invertible, j = (AB" B+ B" BB B)*¢/2.

In the main result of this subsection, we show that provided A > 0 then a sufficiently
tight subspace embedding to range(AT) suffices.

» Theorem 16. Suppose A has rank k, and its SVD is A = ULV, with U € R"*F,

Y e RFF and V € R>¥F. If S € R™*? has

1. (Subspace Embedding) E =V T STSV — I}, with || E|l2 < &/2

2. (Spectral Norm Approzimate Matriz Product) for any fized matrices C, D, each with d
Tows,

ICTSTSD — C"' Dy < &'||C| 2] D2,

where €' = (¢/2)/(1 + 303/)).
Then (11) has & = AT§ approzimately solving (5), that is, | AZ — b||? + M[|Z]? < (1 + &)A..

Proof. To compare the sketched with the unsketched formulations, let A have full SVD
A=UXVT, and let w= XU Ty. Using ||Uz|| = ||z| and ||Vw]|| = ||w|| yields the unsketched
problem

min || Swl||* = 267 AVw + ||b]|* + \||w|)?, (12)
weRE

equivalent to (10). The corresponding sketched version is

mﬁnszsTs‘/wn? — 20T AVaw + ||b]|2 + || SVw]2.
we

Now suppose S has F satisfying the first property in the theorem statement. This implies
S is an e/2-embedding for V:

1SVw|* —[lwl*| = [w" (VT STSV — I)w| < (¢/2)|lw]|?,

and, using the second property in the theorem statement with C7 = XV7 and D = V (which
do not depend on w),

|ZVTSTSV — %, = f,
where f satisfies |f| < &’cy. It follows by the triangle inequality for any w that

IV STSVw| € [|8w]| — flluwl, [Sw] + fllwl].

27:11
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Hence,

ISV TSTSVw|? — [[Swlf?| € [([IZw] £ fllw])® — [Sw]?]
< 2f B lwl + f2w]?

< 30 |w]|?

The value of (12) is at least A|jw]|?, so the relative error of the sketch is at most

Ae/2)||wlf? + 3of |Jw]?

<e.
Allw]|? -

The statement of the theorem follows. <

We now discuss which matrices S can be used in Theorem 16. Note that the first property
is just the oblivious subspace embedding property, and we can use CountSketch, Subsampled
Randomized Hadamard Transform, or Gaussian matrices to achieve this. One can also use
OSNAP matrices [24]; note that here, unlike for Corollary 14, the running time will be
O(nnz(A)/¢€) (see, e.g., [30] for a survey). For the second property, we use the recent work of
[13], where tight bounds for a number of oblivious subspace embeddings S were shown.

In particular, applying the result in Appendix A.3 of [13], it is shown that the composition
of matrices each satisfying the second property, results in a matrix also satisfying the second
property. It follows that we can let S be of the form IT-II’, where I’ is an r x d CountSketch
matrix, where r = O(n?/(€')?), and I is an O(n/(¢')?) xr Subsampled Randomized Hadamard
Transform. By standard results on oblivious subspace embeddings, the first property of
Theorem 16 holds provided r = ©(n?/e?) and II has O(n/e?) rows. Note that € < ¢, so in
total we have O(n/(€')?) rows.

Thus, we can compute B = IT - I'AT in O(nnz(A)) + O(n?/(¢)?) time, and B has
O(n/(€')?) rows and n columns. We can thus compute § as above in O(n?/(¢e')?) additional
time. Therefore in O(nnz(A)) + O(n?/(€')?) time, we can solve the problem of (5).

We note that, using our results in Section 2.1, in particular Theorem 15, we can first
replace n in the above time complexities with a function of sdy(A) and e, which can further
reduce the overall time complexity.

2.3 Multiple-response Ridge Regression

In multiple-response ridge regression one is interested in finding X* = argmin y cgaxar [|AX —
B||% + )| X%, where B € R™*?, Tt is straightforward to extend the results and algorithms
for large n to multiple regression. Since we use these results when we consider regularized
low-rank approximation, we state them next. The proofs are omitted as they are entirely
analogous to the proofs in subsection 2.1.

» Lemma 17. Let A, Uy, Us as in Lemma 10, B € R"*?,

X* = argmin ||[AX — B||% + M| X||%,
X eRdxd’

and A, = [|[AX* — B||% + M| X*||%. Let sketching matriz S € R™*™ have a distribution such
that with constant probability,

|UTSTSU, — U U2 < 1/4, (13)
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and
JUTSTS(B — AX*) = UJ (B — AX")||r < V/EA.. (14)
Then with constant probability,
X = argmin||S(AX - B)|% + A|X[2 (15)
X eRdxd’

has |AX — B|]? + M| X% < (1 +¢)A..

» Theorem 18. There are dimensions within a constant factor of those given in Thm. 15,
such that for S1 a sparse embedding and So SRHT with those dimensions, S = S951 satisfies
the conditions of Lemma 17, therefore the corresponding X does as well. That is, in time

O(nnz(A) + nnz(B)) + O((d + d')(sdx(A) /e + sdx(A)?)
time, a multiple-response ridge regression problem with n rows can be reduced to one with
O(e 1 sdx(A)) rows, whose solution is a (1 4 €)-approzimate solution.

» Remark. Note that the solution to (15), that is, the solution to miny|S(AX — B)||%,
where S and A are as defined in the proof of Lemma 10, and B = { ] is X = (SA)T8B;

B
Oaxar |
that is, the matrix AX = A(SA)TSB whose distance to B is within 1 + ¢ of optimal has
rows in the rowspace of B , which is the rowspace of B. This property will be helpful building
low-rank approximations.

3 Ridge Low-Rank Approximation

For an integer k we consider the problem

min [[YX — Al + MY[E + M X (16)

From [29] (see also Corollary 43 below), this has the solution
Y* = Up(Se — M)y
X* = (S — ALYV

= 8d)\(Y") =sda(X") = Z(l—)\/ai) (17)
i€[k]
ai>A
where UkEkaT is the best rank-k approximation to A, and for a matrix W, W, has entries
that are equal to the corresponding entries of W that are nonnegative, and zero otherwise.
While [29] gives a general argument, it was also known (see for example [27]) that when
the rank k is large enough not to be an active constraint (say, k = rank(A)), then Y*X* for
Y™, X* from (17) solves

in ||Z — A||% +2)|Z]|.,
jmin (17— Allf + 2] 2]

where || Z]|« is the nuclear norm of X (also called the trace norm).
It is also well-known that

_ 1 : 2 2
1211 = 5(in VI3 + 1X]3),

so that the optimality of (17) follows for large k.

APPROX/RANDOM’17
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» Lemma 19. Given integer k> 1 and £ > 0, Y* and X* as in (17), there are
m=0(e tsdx(Y*)) = O(e k) and m’ = O(e ' min{k, e~ sdr(Y™)}),
such that there is a distribution on S € R™*" and R € R¥™" so that for

74, Z5 = argmin |ARZrZsSA — A||% + N|ARZg||% + M| ZsSA||%,
Zsekam
ZRGR'm/Xk

with constant probability Y = ARZ3, and X = ZESA satisfy
VX = A%+ AYIE + MXE < Q+e)([Y* X" = A7+ MY |5+ MIX|7).

The products SA and AR take altogether O(nnz(A))+O((n+d)(e~? sdx(Y*) +e 1 sdr(Y*)?)
to compute.

Proof. Omitted in this version. <

We can reduce to an even yet smaller problem, using affine embeddings, which are built
using subspace embeddings. These are defined next.

» Definition 20 (subspace embedding). Matrix S € R™s*™ is a subspace e-embedding for A
with respect to the Euclidean norm if ||SAz|js = (1 £ ¢)|Az||2 for all z.

» Lemma 21. There are sparse embedding distributions on matrices S € R™*™ with
m = O(e~?rank(A)?) so that SA can be computed in nnz(A) time, and with constant
probability S is a subspace e-embedding. The SRHT (of Corollary 14) is a distribution on
S € R™" with m = O(e~2rank(A)) such that S is a subspace embedding with constant
probability.

Proof. The sparse embedding claim is from [10], sharpened by [24, 23]; the SRHT claim is
from for example [7]. <

» Definition 22 (Affine Embedding). For A as usual and B € R"*% | matrix S is an affine
e-embedding for A, B if |S(AX — B)||% = (1+¢)||AX — B||% for all X € R¥*4". A distribution
over R™s*™ ig a poly-sized affine embedding distribution if there is mg = poly(d/e) such that
constant probability, S from the distribution is an affine e-embedding.

» Lemma 23. For A as usual, B € R"*% suppose there is a distribution over S € R"™*"
so that with constant probability, S is a subspace embedding for A with parameter ¢, and
for X* = argminy cpaxa [|[AX — B||% and B* = AX* — B, ||SB*|3 = (1 +¢)||B*||% and
\UTSTSB* —UTB*|| < ¢||B*||%. Then S is an affine embedding for A, B. A sparse
embedding with m = O(rank(A)?/e?) has the needed properties. By first applying a sparse
embedding 1, and then a Subsampled Randomized Hadamard Transform (SHRT) T, there is
an affine e-embedding S = TTI with m = O(rank(A)/e?) taking time O(nnz(A) + nnz(B)) +
O((d + d') rank(A)'+* /e2) time to apply to A and B, that is, to compute SA = TTIA and
SB. Here k > 0 is any fived value.

Proof. Shown in [10], sharpened with [24, 23]. <
» Theorem 24. With notation as in Lemma 19, there are

(72m) = O(e 2 sdx(Y™)) = O(¢%k) and

i €
p=0(2m') = O(e 3 min{k, e sdr(Y™)}),

I
S
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such that there is a distribution on So € RPX™ Ry € RYXP" 50 that for
Zs,Zp = argmin ||S,ARZpZsSARy — S2ARy i + N|S2ARZ || + M| Zs SAR: |7,
Zrcn
with constant probability Y = ARZr and X = ZgSA satisfy
IYX = Al + MY IE + AXNE < @ +e)(IY"X* = AlE + MY (|F + X 7).

The matrices SoAR, SAR, and SARy can be computed in O(nnz(A)) + poly(sdr(Y™*)/e)
time.

Proof. Omitted in this version. <
» Lemma 25. For C € RP*™ D e R™*P' | G € RP*P' | the problem of finding

i ICZrZsD - G|% + MCZr|% + A Zs D%, (18)
s€ m
ZReRm/Xk

and the minimizing CZr and ZsD, can be solved in
O(pm'rc +p'mrp +rpp(p’ +7¢))
time, where r¢ = rank(C) < min{m/, p}, and rp = rank(D) < min{m, p’}.
Proof. Please see §E. |
» Theorem 26. The matrices Zg, Zr of Theorem 24 can be found in
O(nnz(A)) + poly(sdx(Y™)/e)

time, in particular O(nnz(A)) + O(e~" sdn(Y*)? min{k,e ' sd\(Y™*)}) time, such that with
constant probability, ARZ g, ZsSA is an e-approzimate minimizer to (16), that s,

I(ARZR)(ZsSA) = Allf: + MARZR|% + M| Zs SA|l (19)
< (L+e) min [[YX = AlF + AY[E + X E. (20)

Y eR™ %

Xekad

With an additional O(n + d)poly(sdx(Y™)/e) time, and in particular
O(e 'k sdn(Y*)(n + d + min{n, d} min{k/ sdr(Y*),e'}))

time, the solution matrices Y = ARZp, X = ZgSA can be computed and output.
An expression for sdy(Y™) is given at (17).

Proof. Follows from Theorem 24 and Lemma 25, noting that for efficiency’s sake we can use
the transpose of A instead of A. <
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M = min{n, d, | (n+ d)*/?/poly(log(n + d))|},

it can be estimated to within a constant factor in O(nnz(A)) time, with constant probability.

Proof. From Lemma 18 of [11], generalizing the machinery of [2], the first z squared singular
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where A_, = A — A, denotes the residual error of the best rank-z approximation A, to A.
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implies that for small enough constant e, ||A_;||% can be estimated up to constant relative
error, using the same procedure.

Thus in O(nnz(A)) time, the first 6 singular values of A can be estimated up to additive
a7 llA—6ar||% error, and there is an estimator 4. of [[A_.[|% up to relative error 1/3, for
z € [6M].

Since 1/(1+ A/o?) < min{1,0?/\}, for any 2 the summands of sdy(A) for i < z are at
most 1, while those for i > z are at most 02/, and so sdy(A4) < z + ||[A_.||%/\.

2

When o2 < A, the summands of sd(A) for i > z are at least 3%, and so sdy(A) >
1[JA_.||%2/X. When o2 > X, the summands of sdy(A) for i < z are at least 1/2. Therefore
sdx(4) > L min{z, [ A_[3/A}.

Under the constant-probability assumption that 4, = (1 £ 1/3)||A—.||%, we have
3 3
 minfz,5:/A} < 5x(4) < 5 (2 +42/). (21)

Let 2’ be the smallest z of the form 27 for j = 0,1,2,..., with 2/ < 6M, such that 2’ >
Ay /A, Since M > sdy(A) > %z for 2 < 4, /A, there must be such a 2’. Then by considering the
lower bound of (21) for z’ and for 2’ /2, we have sdx(A) > 2 max{z/2,4.//A} > 1= (z/+7.//N),
which combined with the upper bound of (21) implies that 2z’ + 4., /) is an estimator of

sdx(A) up to a constant factor. <

B Regularized Canonical Correlation Analysis

First, we show how to compute regularized CCA using a modified Bjorck-Golub algorithm.

» Definition 28. Let A € R"¥¢ with n > d and let A > 0. A = QR is a \-QR factorization
if Q is full rank, R is upper triangular and RTR = AT A + \I,.

» Remark. A M\-QR factorization always exists, and R will be invertible for A > 0. @ has
orthonormal columns for A = 0.

» Fact 29. For a \-QR factorization A = QR we have QTQ +AR™TR™! = I,.

Proof. A direct consequence of RTR = AT A + \; (multiply from the right by R~! and the
left by R=T). |

» Fact 30. For a A\-QR factorization A = QR we have sdy(A) = ||Q||§,
Proof. Omitted in this version. |

» Theorem 31 (Regularized Bjorck-Golub). Let A = QaR4 be a \1-QR factorization of A,
and B = QgRp be a \a-QR factorization of B. Assume that Ay > 0 and Ao > 0. The
(A1, X2) canonical correlations are evactly the singular values of Q)Qp. Furthermore, if
Q1Qp = MXNT is a thin SVD of Q\Qp, then the columns of R;‘lM and RglN are
canonical weights.

Proof. Omitted in this version. |

We now consider how to approximate the computation using sketching. The basic idea
is similar to the one used in [3] to accelerate the computation of non-regularized CCA:
compute the regularized canonical correlations and canonical weights of the pair (SA, SB)
for a sufficiently large subspace embedding matrix S. Similarly to [3], we define the notion
of approximate regularized CCA, and show that for large enough S we find an approximate
CCA with high probability.
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» Definition 32 (Approximate (A1, A2) regularized CCA)). For 0 < n < 1, an n-approximate
(A1, A2) regularized CCA of (4, B) is a set of positive numbers 61 > -+ > 6, and vectors
Q1,..., 0, € R and 0y,...,0, € R such that

(a) For every i,

A ()\1,)\2)

0; —0; <n.

(b) Let U = [ay,...,0, € R™ % and V = [0y,...,0,] € RY 9. We have,

0T (AT A+ ML) - 1] <1

and

‘VT(BTB Fdala)Ws — 1] <.

In the above, the notation |X| < « should be understood as entry-wise inequality.
(c) For every i,

. . ALA
o, AT Bo; — O'Z( 1)

<n
» Theorem 33. If S is a sparse embedding matriz with m = Q(max(sdy, (4), sdx, (B))?/e?)
rows, then with high probability the (A1, A2) canonical correlations and canonical weights of
(SA, SB) form an e-approximate (A1, A2) reqularized CCA for (A, B).

Proof. Omitted in this version. <

Taking an optimization point of view, the following Corollary shows that the suboptimality
in the objective is not too big (the fact that the constraints are approximately held is
established in the previous theorem).

» Corollary 34. Let Ur, and Vi, (respectively, UL and VL) denote the first L columns of U
and V' (respectively, U and V. Then,

tr(U] ATBV) < tr(U] ATBVy) + €L.

C General Regularization: Multiple-response Regression
In this section we consider the problem

X* = argmin ||[AX — B||% + f(X)

X eRdxd’

for a real-valued function f on matrices. We show that under certain assumptions on f
(generalizing from f(X) = || X||; for some orthogonally invariant norm ||-||,), if we have an
approximation algorithm for the problem, then via sketching the running time dependence
of the algorithm on n can be improved.

» Definition 35 ((left/right) orthogonal invariance(loi/roi)). A matrix measure f() is left
orthogonally invariant (or loi for short) if f(UA) = f(A) for all A and orthogonal U.
Similarly define right orthogonal invariance (roi). Note that f() is orthogonally invariant if
it is both left and right orthogonally invariant.

27:19
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When norm ||-||4 is orthogonally invariant, it can be expressed as ||A| 4 = g(o1,02,...,0,),
where the o; are the singular values of A, and g() is a symmetric gauge function: a function
that is even in each argument, and symmetric, meaning that its value depends only on the
set of input values and not their order.

» Definition 36 (padding invariance). Say that a matrix measure f() is padding invariant if it
is preserved by padding A with rows or columns of zeroes: f( [OA ]) =f (A0 )= f(A).

zxd

» Lemma 37. Unitarily invariant norms and v-norms are padding invariant.

Proof. Omitted in this version. <

» Definition 38 (piloi, piroi). Say that a matrix measure is piloi if it is padding invariant
and left orthogonally invariant, and piroi if it is padding invariant and right orthogonally
invariant.

The following is the main theorem of this section.

» Theorem 39. Let f() be a real-valued function on matrices that is piroi and subadditive.
Let B € R™4. Let

X* = argmin||AX — B||%2 + f(X), (22)
XeRdxd'

and A, = [|[AX* — B||%. + f(X*). Suppose that for r = rank A, there is an algorithm that
for general n,d,d’,r and ¢ > 0, finds X with ||[AX — B||% + f(X) < (1 4+ ¢)A, in time
7(d,n,d’,r,€). Then there is an algorithm that with constant probability finds such a X,
taking time

O(nnz(A) +nnz(B) + (n + d + d')poly(r/e)) + 7(d, poly(r/e), poly(r/e), r, €).

Although earlier results for constrained least squares (e.g. [10]) can be applied to obtain
approximation algorithms for regularized multiple-response least squares, via the solution
of min y cgaxa || AX — BJ|%, subject to f(X) < C for a chosen constant C, such a reduction
yields a slower algorithm if properties of f(X) are not exploited, as here.

Proof. Omitted in this version. <

D General Regularization: Low-rank Approximation
For an integer k we consider the problem

min [|YX — A} + f(Y, X), (23)
YeRnXk

where f(-,-) is a real-valued function that is piloi in the left argument, piroi in the
right argument, and left and right reduced by contraction in its left and right arguments,
respectively.

For example f(||Y ¢, | X]|,) for piloi ||-||¢ and piroi |||, would satisfy these conditions,
as would ||Y' X, for orthogonally invariant norm |-||;. The function f could be zero for
arguments whose maximum is less than some pu, and infinity otherwise.
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D.1 Via the SVD

First, a solution method relying on the singular value decomposition for a slightly more
general problem than (23).

» Theorem 40. Let k be a positive integer, fi : R — R increasing, and f : R"*F x RF*d 5 R,
where f is piloi and subadditive in its left argument, and piroi and subadditive in in its
right argument.

Let A have full SVD A =UXV T, £, € R¥¥F the diagonal matriz of top k singular values
of A. Let matrices W*, Z* € R¥** solve

min  A(WZ = Sill) + (W, 2), 2
WeR
ZeRka

W Z diagonal

and suppose there is a procedure taking T(k) time to find W* and Z*. Then the solution to

min  f1(J|]YX —A||(p)) + f(Y, X) (25)
Y eR™ Xk
X eRkxd

isY*=U [ w* } and X* = [ 2" Oxx-x) |V ". Thus for general A, (25) can be solved in

O(n—k)xk

time O(ndmin{n,d}) + 7(k).

Proof. Omitted in this version. |

We sharpen this result for the case that the regularization term comes from orthogonally
invariant norms.

» Theorem 41. Consider (25) when f(-,-) has the form f(|Y ¢, | X |l»), where ||-|¢ and ||-||,
are orthogonally invariant, and f : R x R +— R increasing in each argument. Suppose in that
setting there is a procedure that solves (25) when A, Y, and X are diagonal matrices, taking
time 7(r) for a function 7(-), with r = rank(A). Then for general A, (25) can be solved by
finding the SVD of A, and applying the given procedure to k X k diagonal matrices, taking
altogether time O(ndmin{n,d}) + 7(k).

Proof. Omitted in this version. <

» Definition 42 (clipping to nonnegative (-)1). For real number a, let (a)4 denote a, if a > 0,
and zero otherwise. For matrix A, let (4); denote coordinatewise application.

» Corollary 43. If the objective function in (25) is [|[Y X — A[|% + 2\[|Y X || 1) or [V X —
Al|% + M|[Y]|% + | X||%), then the diagonal matrices W* and Z* from Theorem 41 yielding
the solution are W* = Z* = \/(Z — M)+, where S is the k x k diagonal matriz of top k
singular values of A [29].

If the objective function is [|[Y X — Al| ) + MY X||q)y for p € [1,00], then W* = Z* =
V(Zk — alg) 4, for an appropriate value c.

If the objective function is ||[Y X — A||% + A|Y X ||%, then W* = Z* = /3, /(1 + A).

Proof. Omitted in this version. |
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D.2 Reduction to a small problem via sketching

» Theorem 44. Suppose there is a procedure that solves (23) when A, Y, and X are k x k
matrices, and A is diagonal, and Y X is constrained to be diagonal, taking time 7(k) for
a function 7(-). Let f also inherit a sketching distribution on the left in its left argument,
and on the right in its right argument. Then for general A, there is an algorithm that finds
e-approzimate solution (Y, X) in time

O(nnz(A)) + O(n + d)poly(k/e) + (k).

Proof. Omitted in this version. |

E Proof of Lemma 25

Proof. Let Ug be an orthogonal basis for colspace(C), so that every matrix of the form
CZpg is equal to Uc Z}, for some Zj,. Similarly let U}, be an orthogonal basis for rowspan(D),
so that every matrix of the form ZgD is equal to one of the form Z{Up. Let Po = UcUér
and Pp = UpU},. Then using Po(I — Pc) =0, Pp(I — Pp) = 0, and matrix Pythagoras,

|CZrZsD — G||% + MCZr|% + M| ZsD| %
= |PcUcZp ZsUp Po — G| % + MUc Zg|1% + M ZsU I3
= |PoUcZp Z5U L Pp — PoGPpl% + ||(I — Po)G|%
+ |PeG(I = Pp)|l5 + M Zgll% + M Zs | -

So minimizing (18) is equivalent to minimizing

|PcUc Zn ZUD Pp — PoGPp||% + M| Z5|1% + M| Z4]|%
= |UcZr 25U}, — UcUS GURUR I3 + M ZR 1% + Al Zs | %
= Z3Zs — UL GUp |3 + M| Zkl17 + Al Zs |7

This has the form of (16), mapping Y of (16) to Zk, X to Z%, and A to UJGUp, from
which a solution of the form (17) can be obtained.
To recover Zg from Zj: we have C' = Ug [ Tc T( ], for matrices T and T¢., where upper

triangular T € R™¢*"¢. We recover Zp as [ofélf;:k }, since then UcZp = CZpR. A similar
back-substitution allows recovery of Zg from Z.

Running times: to compute Uc and Up, O(pm'rc + mp'rp); to compute UL GUp,
O(rpp(p' + 7¢)); to compute and use the SVD of ULGUp to to solve (16) via (17),
O(rerp min{rc,rp}); to recover Z and Zs, O(k(rZ +r%)). Thus, assuming k < min{p, p'}
and using r¢ < min{p,m’} and rp < min{m,p'}, the total running time is O(pm'rc +
p'mrp +pp’(rc +1p)), as claimed. <



	Introduction
	Results
	Ridge Regression
	Ridge Low-rank Approximation
	Regularized Canonical Correlation Analysis
	General Regularization

	Basic Definitions and Notation

	Ridge Regression
	Large n
	Large d
	Multiple-response Ridge Regression

	Ridge Low-Rank Approximation
	Estimation of statistical dimension
	Regularized Canonical Correlation Analysis
	General Regularization: Multiple-response Regression
	General Regularization: Low-rank Approximation
	Via the SVD
	Reduction to a small problem via sketching

	Proof of Lemma 25

