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Abstract
For a rumor spreading protocol, the spread time is defined as the first time that everyone learns
the rumor. We compare the synchronous push&pull rumor spreading protocol with its asyn-
chronous variant, and show that for any n-vertex graph and any starting vertex, the ratio between
their expected spread times is bounded by O

(
n1/3log2/3 n

)
. This improves the O(

√
n) upper

bound of Giakkoupis, Nazari, and Woelfel (in Proceedings of ACM Symposium on Principles of
Distributed Computing, 2016). Our bound is tight up to a factor of O(logn), as illustrated by
the string of diamonds graph.
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1 Introduction

Randomized rumor spreading is an important paradigm for information dissemination in
networks with numerous applications in network science, ranging from spreading information
in the WWW and Twitter to spreading viruses and diffusion of ideas in human communities.
A well studied rumor spreading protocol is the (synchronous) push&pull protocol, introduced
by Demers, Greene, Hauser, Irish, Larson, Shenker, Sturgis, Swinehart, and Terry [4] and
popularized by Karp, Schindelhauer, Shenker, and Vöcking [11].

I Definition 1 (Synchronous push&pull protocol). Suppose that one node s in a network
G is aware of a piece of information, the ‘rumor’, and wants to spread it to all nodes
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quickly. The protocol proceeds in rounds; in each round 1, 2, . . . , all vertices perform actions
simultaneously. That is, each vertex x calls a random neighbor y, and the two share any
information they may have: If x knows the rumor and y does not, then x tells y the rumor
(a push operation), and if x does not know the rumor and y knows it, y tells x the rumor (a
pull operation). Note that this is a synchronous protocol, e.g. a vertex that receives a rumor
in a certain round cannot send it on in the same round. The synchronous spread time of
G, denoted by S(G, s), is the first time that everyone knows the rumor. Note that this is a
discrete random variable.

A point to point communication network can be modeled as an undirected graph: the
nodes represent the processors and the links represent communication channels between
them. Studying rumor spreading has several applications to distributed computing in such
networks, of which we mention just two (see [7] also). The first is in broadcasting algorithms:
a single processor wants to broadcast a piece of information to all other processors in the
network. The push&pull protocol has several advantages over other protocols: it puts less
load on the edges than the naive flooding protocol; it is simple and naturally distributed
(each node makes a simple local decision in each round; no knowledge of the global state
or topology is needed; no internal states are maintained); it is scalable (the protocol is
independent of the size of network: it does not grow more complex as the network grows)
and it is robust (the protocol tolerates random node/link failures without the need for error
recovery mechanisms).

A second application comes from the maintenance of databases replicated at many sites,
e.g., yellow pages, name servers, or server directories. Updates to the database may be
injected at various nodes, and these updates must propagate to all nodes in the network.
In each round, a processor communicates with a random neighbor and they share any new
information, so that eventually all copies of the database converge to the same contents.
See [4] for details.

The above protocol assumed a synchronized model, i.e. all nodes take action simultaneously
at discrete time steps. In many applications and certainly for modeling information diffusion
in social networks, this assumption is not realistic. Boyd, Ghosh, Prabhakar, Shah [3]
proposed an asynchronous time model with a continuous time line. This too is a randomized
distributed algorithm for spreading a rumor in a graph, defined as follows. An exponential
clock with rate λ is a clock that, once turned on, rings at times of a Poisson process with
rate λ.

I Definition 2 (Asynchronous push&pull protocol). Given a graph G, independent exponential
clocks of rate 1 are associated with the vertices of G, one to each vertex. Initially, one vertex
s of G knows the rumor, and we turn on all clocks. Whenever the clock of a vertex x rings,
it calls a random neighbor y: if x knows the rumor and y does not, then x tells y the rumor
(a push operation); if x does not know the rumor and y knows it, y tells x the rumor (a pull
operation). The asynchronous spread time of G, denoted by A(G, s), is the first time that
everyone knows the rumor.

Rumor spreading protocols in this model turn out to be closely related to Richardson’s
model for the spread of a disease [12, 6]. For a single rumor, the push&pull protocol is
almost equivalent to the first passage percolation model introduced by Hammersley and
Welsh [9] with edges having independent exponential weights (see also the survey [2]). The
difference between the push&pull model and first passage percolation stems from the fact
that in the rumor spreading models each vertex contacts one neighbor at a time, and so the
rate at which x pushes the rumor to y is inversely proportional to the degree of x. A rumor
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Figure 1 The string of diamonds graph.

can also be pulled from x to y at rate determined by the degree of y. On regular graphs,
the asynchronous push&pull protocol, Richardson’s model, and first passage percolation
are essentially the same process, assuming appropriate parameters are chosen. For general
graphs, the equivalence is to first passage percolation with exponential edge weights that are
independent, but have different means. Hence, the degrees of vertices play a different role
here than they do in Richardson’s model or first passage percolation. A collection of known
bounds for the average spread times of many graph classes is given in [1, Table 1].

Doerr, Fouz, and Friedrich [5] experimentally compared the spread time in the two time
models. They state that ‘Our experiments show that the asynchronous model is faster on all
graph classes [considered here].’ The first general relationship between the spread times of
the two variants was given in [1], where it was proved using a coupling argument that

E [S(G, s)]
E [A(G, s)] = Õ

(
n2/3

)
.

Here Õ (and Ω̃ below) allow for poly-logarithmic factors. Building on the ideas of [1] and
using more involved couplings, Giakkoupis, Nazari and Woelfel [8] improved this bound to
O
(
n1/2). In this note we improve the bound to Õ(n1/3). A graph was given in [1] with

E [S(G, s)]
E [A(G, s)] = Ω̃

(
n1/3

)
,

known as the string of diamonds (see Figure 1), which shows the exponent 1/3 is optimal.
We use a rather different coupling than previous ones. Our coupling is motivated by

viewing rumor spreading as a special case of first passage percolation. This novel approach
involves carefully intertwined Poisson processes. Our proof also yields a natural interpretation
for the exponent 1/3: using non-trivial counting arguments, we prove that the longest distance
the rumor can traverse during a unit time interval in the asynchronous protocol is O(n1/3)
(see the proof of Lemma 6), which is tight.

Regarding lower bounds, it is proved in [8] that E [A(G, s)] ≤ E [S(G, s)] +O(logn). We
will use the following bounds that hold for all G and s (see [1, Theorem 1.3]):

logn/5 ≤ E [A(G, s)] ≤ 4n .

In this paper n always denotes the number of vertices of the graph, and all logarithms are in
natural base.

1.1 Our results
For an n-vertex graph G and a starting vertex s, recall A(G, s) and S(G, s) denote the
asynchronous and synchronous spread times, respectively. Our main theorem is the following.

APPROX/RANDOM’17



26:4 The String of Diamonds Is Tight for Rumor Spreading

I Theorem 3. Given any K > 0, there is a C > 0 such that for any (G, s) and any t ≥ 1
we have

P
[
S(G, s) > C(t+ t2/3n1/3 logn)

]
≤ P

[
A(G, s) > t

]
+ Cn−K .

I Corollary 4. For any (G, s), we have E [S(G, s)] = O
(
E [A(G, s)]2/3 n1/3 logn

)
.

Proof. Apply Theorem 3 with K = 1 and t = 3E [A(G, s)] ≤ 12n. By Markov’s inequality,
P
[
S(G, s) > C(t+ t2/3n1/3 logn)

]
≤ 1/3 + C/n ≤ 1/2 for n large enough. Since t = O(n),

this implies the median of S(G, s), denoted by M , is O(t2/3n1/3 logn). To complete the
proof we need only show that E [S(G, s)] = O(M).

Consider the protocol which is the same as synchronous push&pull except that, if the rumor
has not spread to all vertices by time M , then the new process reinitializes. Coupling the
new process with push&pull, we obtain for any i ∈ {0, 1, 2, . . . } that P [S(G, s) > iM ] ≤ 2−i.
Thus,

E [S(G, s)] =
∞∑
i=0

P [S(G, s) > i] ≤
∞∑
i=0

M × P [S(G, s) > iM ] ≤M ×
∞∑
i=0

2−i = 2M. J

Since for all G and s, E [A(G, s)] = Ω(logn), we also obtain:

I Corollary 5. For any (G, s) we have

E [S(G, s)]
E [A(G, s)] = O

(
n1/3log2/3 n

)
.

This corollary is tight up to logarithmic factors. Indeed, let G be the string of diamonds
(see Figure 1) with m diamonds, each consisting of k paths of length 2, and let s be an
end vertex of it. Then, S(G, s) ≥ 2m deterministically and E [A(G, s)] = O(logn+m/

√
k)

(see [1] for the proof). If we let m = Θ(n1/3(logn)2/3) and k = Θ((n/ logn)2/3), we obtain a
graph with

E [S(G, s)]
E [A(G, s)] = Ω (n/logn)1/3

,

which means Corollary 5 is tight up to an O(logn) factor.

2 Proof of Theorem 3

For the rest of the paper we fix the graph G and the starting vertex s. Let Γ(s, v) be the
set of all simple paths in G from s to v. For a path γ, let E(γ) be its set of edges and
|γ| := |E(γ)| denote its length. Let deg(u) denote the degree of a vertex u.

For any ordered pair (u, v) of adjacent vertices, let Yu,v be an exponential random
variable with rate 1/deg(u). Assume these random variables are mutually independent. In
the asynchronous protocol, since each vertex u calls any adjacent v at a rate of 1/ deg(u), we
can write:

A := A(G, s) = max
v∈V

min
γ∈Γ(s,v)

∑
xy∈E(Γ)

min{Yx,y, Yy,x}. (1)

Here Yx,y is the time it takes after one of x, y learns the rumor before x calls y.
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For any positive integer L, consider the restriction to short paths

AL := max
v∈V

min
γ∈Γ(s,v)
|γ|≤L

∑
xy∈E(Γ)

min{Yx,y, Yy,x}.

For any L we have AL ≥ A. To bound A from below, we have the following “with high
probability” stochastic domination result.

I Lemma 6. There exists a C > 0 such that for any t ≥ 1 and L ≥ Ct2/3n1/3 we have

P [AL > t] ≤ P [A > t] + e−L .

Proof. We show that, in the asynchronous protocol, with probability 1− e−L, during the
interval [0, t], the rumor does not travel along any simple path of length L. We prove this by
taking a union bound over all paths of length L. As there is no simple path of length n or
more, we will assume L < n.

Consider a path γ with vertices γ0, γ1, . . . , γL. In order for the rumor to travel along γ,
it is necessary that there are calls along the edges of γ in order, at some sequence of times
0 ≤ t1 < · · · < tL ≤ t. Since along each edge the rumor can travel via a push or a pull, the
rate of calls along an edge xy is 1/ deg(x) + 1/ deg(y). Since the volume of the L-dimensional
simplex of possible sequences (ti) is tL/L!, the probability of such a sequence of calls along
the path γ is at most

tL

L!

L∏
i=1

(
1

deg(γi−1) + 1
deg(γi)

)
≤
(

2et
L

)L L∏
i=1

1
min(deg(γi−1), deg(γi))

. (2)

In light of this, define

Q(γ) :=
|γ|∏
i=1

1
min(deg(γi−1), deg(γi))

.

Our objective is therefore a bound for
∑
|γ|=LQ(γ).

For a path γ of length L, consider the sequence of degrees (deg(γi))Li=0. We say the
sequence has a local minimum at i if deg(γi−1) > deg(γi) ≤ deg(γi+1), and a local maximum
at i if deg(γi−1) ≤ deg(γi) > deg(γi+1). In both of these definitions we use the convention
that inequalities involving γ−1 or γL+1 always hold. The edge set of γ can be partitioned
into segments starting and ending at local maxima. For example, suppose L = 7 and the
degree sequence is

(deg(γ0), deg(γ1),deg(γ2), deg(γ3), deg(γ4), deg(γ5), deg(γ6),deg(γ7)) = (5, 5, 7,3, 4, 4,2, 5).

Then the segments are (γγγ0, γ1, γ2), (γ2,γγγ3, γ4, γ5), and (γ5,γγγ6, γ7). Thus, in each segment
the degrees strictly decrease to a local minimum (bolded in the example), then weakly
increase up to the local maximum at the end of the segment. (The first and last segments
are special in that the local minimum could be at the beginning and end of the segment,
respectively.) Henceforth, we use the term segment for a path with this property.

Each path gives rise to an ordered sequence of segments. Denote the segments of γ by
σ1, . . . , σs, and note that s ≤ L/2 + 1, since each segment except possibly the first and the
last one contains at least two edges. The next observation is that we have Q(γ) =

∏
Q(σi);

that is, the Q value of a path equals the product of Q values of its segments (this is true for
any partition of a path into sub-paths). Note that not every sequence of segments can arise

APPROX/RANDOM’17
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in this way: each segment must start at the last vertex of the previous segment. Since we are
interested only in simple paths, the segments are otherwise disjoint. Thus for a collection of
segments there is at most one order in which it could arise. Therefore,

∑
|γ|=L

Q(γ) ≤
L/2+1∑
s=1

∑
|σ1|+···+|σs|=L

1
s!

s∏
i=1

Q(σi) , (3)

where the last sum is over s-tuples of segments whose lengths add up to L, but without the
condition that they form a path (that is why we have an inequality rather than an equality).

We now bound the right-hand-side of (3). We say a segment has type (x, `−, `+) ∈
V (G)× Z× Z if the local minimum is at a vertex x (called the center of the segment), and
the segment has `− edges before x and `+ edges after x. (The example path above had s = 3
segments, of types (γ0, 0, 2), (γ3, 1, 2), and (γ6, 1, 1) respectively.) For a segment σ, let π(σ)
denote its type, and let T denote the set of all possible types.

For bounding the right-hand-side of (3), we first fix s and bound the number of options
for the sequence (π(σ1), . . . , π(σs)). There are n!/(n− s)! choices for the centers (the number
of ways to choose s ordered distinct vertices), and at most 2L choices for the lengths `±
(the number of ways to write L as an ordered sum of natural numbers). Thus there are at
most 2Ln!/(n − s)! options for (π(σ1), . . . , π(σs)). Enumerate these s-vectors of types by
T1, . . . , Tm ∈ T s with m ≤ 2Ln!/(n− s)!, and let Tj,k denote the kth component of Tj , i.e.
the type specified for σk in Tj . Thus,

∑
|σ1|+···+|σs|=L

s∏
i=1

Q(σi) =
m∑
j=1

∑
(π(σ1),...,π(σs))=Tj

s∏
i=1

Q(σi)

≤
m∑
j=1

s∏
k=1

 ∑
π(σk)=Tj,k

Q(σk)


Next, we claim that each of the brackets, which is the sum of Q values of segments of

a given type can be bounded by 1. Fix some type (x, `−, `+), and let ` = `− + `+. Then
the constraints on the degrees along a segment σ = v0, v1, · · · , v`− , · · · , v` of this type imply
x = v`− and

Q(σ) =
`−∏
i=1

1
deg(vi)

`−1∏
i=`−

1
deg(vi)

.

If we sum this up over all walks of length `− + `+ whose `−th vertex is x, we get 1 (since the
number of choices for the neighbors cancel out the degree reciprocals). Restricting to simple
paths with piecewise monotone degrees only decreases this. Thus we obtain

∑
|σ1|+···+|σs|=L

s∏
i=1

Q(σi) ≤ m× 1 ≤ 2Ln!/(n− s)! .

Plugging this back into (3) yields

∑
|γ|=L

Q(γ) ≤
L/2+1∑
s=1

2Ln!/(n− s)!s! = 2L
L/2+1∑
s=1

(
n

s

)
≤ 2L(2en/L)L/2+1,

where we used the standard bound
∑k
i=0
(
n
i

)
≤ (en/k)k valid for all 0 ≤ k ≤ n.
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Therefore, by (2), the probability that the rumor travels along some path of length L is
bounded by∑
|γ|=L

(
2et
L

)L
Q(γ) ≤

(
2et
L

)L
2L(2en/L)L/2+1 ≤ c1n(c2nt2/L3)L/2,

which is at most e−L for L ≥ Ct2/3n1/3, completing the proof. J

In (1) we wrote A(G, s) in a max-min form. We would like to write S(G, s) in a similar
way. To achieve this, let quv = qvu be the first (discrete) round at which one of u or v
is informed. Suppose the first round strictly after quv that u calls v is Fuv. Then define
Tu,v = Fuv − quv. Note that Tu,v is a positive integer, and it is a geometric random variable:
P [Tu,v ≥ k] = (1− 1/ deg(u))k−1 for any k = 1, 2, . . . . Moreover, observe that, both u and v
are informed by round quv + min{Tu,v, Tv,u} hence, we have

S := S(G, s) ≤ max
v∈V

min
γ∈Γ(s,v)

∑
xy∈E(Γ)

min{Tx,y, Ty,x}. (4)

Now we have a max-min expression for S(G, s). However, the major trouble here is that
the {Tx,y} are not independent. We will stochastically dominate them by another collection
{Xx,y} of random variables, which are independent. To prove their independence, we first
define the synchronous protocol in an equivalent but more convenient way.

Consider for each ordered pair u ∼ v a pair of exponential clocks Zu,v, Z ′u,v, both with
rate 1/ deg(u). All these clocks are independent. We say the clocks Zu,v, Z ′u,v are located at
vertex u. Initially, the clocks Zu,v are turned on, and the clocks Z ′u,v are off. For each round
1, 2, . . . , we visit the vertices one by one. For each vertex u, we wait for the next clock at u
to ring. If that ring comes from clock Zu,v or Z ′u,v, we say that u calls v in that round. Once
the choice of calls at every vertex has been made, we use these to perform the push&pull
operations in a round of the protocol. (Note that the time of the clocks is separate from
the discrete rounds of the synchronous protocol: in each vertex, a different amount of time
is elapsed on the clocks.) Moreover, whenever a vertex u gets informed of the rumor, for
each adjacent v we turn off the clocks Zu,v and Zv,u, and turn on Z ′u,v and Z ′v,u. (If v was
already informed, these status changes had already taken place.) Observe that, because of
memorylessness of the exponential distribution, for each vertex u, this process generates a
random sequence of independent uniform neighbors, so it is equivalent to the synchronous
protocol.

Now let us see what are the random variables Tu,v in this setup. For each ordered pair u, v,
observe that the collection of ringing times of clocks Zu,v, Z ′u,v forms a Poisson process Pu,v
with rate 1/ deg(u). (It does not matter that the initial rings come from Z and subsequent
rings from Z ′.) Let

Pu :=
⋃
v∼u

Pu,v,

and note that Pu is a Poisson process with rate 1.
For a pair u, v, suppose the quvth point in Pu is at α, and suppose the first point of

Pu,v strictly larger than α is at β. Then, Tu,v is precisely the number of points of Pu in the
interval (α, β]. Define Xu,v = β − α. By construction, Xu,v is the first time that clock Z ′u,v
rung from the time it was turned on, hence it is exponential with rate 1/ deg(u). Since these
clocks are independent, the random variables Xu,v are also independent. (Only the times at
which the clocks are turned on depend on other clocks in a non-trivial manner.) Thus we
have proven:

APPROX/RANDOM’17
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I Lemma 7. The random variables {Xx,y} defined above are mutually independent.

On the other hand, we can use these to control the Tx,y:

I Lemma 8. For any fixed K there is a fixed C such that with probability at least 1− n−K ,
for all adjacent pairs x, y we have Tx,y ≤ C logn+ CXx,y.

Proof. We show that for any adjacent pair x, y, we have Tx,y > C logn + CXx,y with
probability at most n−K−2, and then apply the union bound over all edges.

Observe that, conditioned on Xx,y = t, the random variable Tx,y − 1 is Poisson with
rate t × (deg(u) − 1)/ deg(u) ≤ t. We will use a standard tail inequality for the Poisson
distribution, which follows from Theorem 5.1(iii) in [10]. Let Po(t) denote a Poisson random
variable with mean t > 0. Then for any α ≥ 1 we have P [Po(t) ≥ αt] ≤ (eα−1α−α)t. This
gives

P [Tx,y − 1 > C logn+ CXx,y|Xx,y = t] ≤ P [Po(t) > C logn+ Ct]
≤ (e/C)C logn ≤ n−K−2

for C ≥ max(e2,K + 2). J

Our main result now follows easily from our lemmas.

Proof of Theorem 3. Given K, pick C sufficiently large so that Lemmas 6 and 8 hold. Fix
t ≥ 1 and let L = Ct2/3n1/3. We have

P [S > Ct+ CL logn]

≤ P

[(
max
v∈V

min
γ∈Γ(s,v)

∑
xy∈E(γ)

min{Tx,y, Ty,x}
)
> Ct+ CL logn

]

≤ P

[(
max
v∈V

min
γ∈Γ(s,v)
|γ|≤L

∑
xy∈E(γ)

min{Tx,y, Ty,x}
)
> Ct+ CL logn

]

≤ P

[(
max
v∈V

min
γ∈Γ(s,v)
|γ|≤L

∑
xy∈E(γ)

C logn+ C min{Xx,y, Xy,x}

)
> Ct+ CL logn

]
+ n−K

≤ P

[(
max
v∈V

min
γ∈Γ(s,v)
|γ|≤L

∑
xy∈E(γ)

C min{Xx,y, Xy,x}

)
> Ct

]
+ n−K

= P [AL > t] + n−K

≤ P [A > t] + n−K + e−Cn
1/3
.

Here, the first inequality is copied from (4). The second inequality is because restricting
the feasible region of a minimization problem can only increase its optimal value. The third
inequality follows from Lemma 8. The fourth inequality is straightforward. The equality
follows from the definition of AL and noting that {Xx,y} have the same joint distribution
as {Yx,y}, and the last inequality follows from Lemma 6. This completes the proof of
Theorem 3. J
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