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Abstract
We consider the problem of embedding a finite set of points {x1, . . . , xn} ∈ Rd that satisfy
`2

2 triangle inequalities into `1, when the points are approximately low-dimensional. Goemans
(unpublished, appears in [20]) showed that such points residing in exactly d dimensions can be
embedded into `1 with distortion at most

√
d. We prove the following robust analogue of this

statement: if there exists a r-dimensional subspace Π such that the projections onto this sub-
space satisfy

∑
i,j∈[n] ‖Πxi −Πxj‖2

2 ≥ Ω(1)
∑

i,j∈[n] ‖xi − xj‖
2
2, then there is an embedding of

the points into `1 with O(
√
r) average distortion. A consequence of this result is that the in-

tegrality gap of the well-known Goemans-Linial SDP relaxation for the Uniform Sparsest Cut
problem is O(

√
r) on graphs G whose r-th smallest normalized eigenvalue of the Laplacian sat-

isfies λr(G)/n ≥ Ω(1)ΦSDP (G). Our result improves upon the previously known bound of O(r)
on the average distortion, and the integrality gap of the Goemans-Linial SDP under the same
preconditions, proven in [7, 6].
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1 Introduction

A finite metric space consists of a pair (X , d), where X is a finite set of points, and d :
X×X → R≥0 is a distance function on pairs of points in X . Many combinatorial optimization
problems can be naturally formulated as a maximization or minimization problem over metric
spaces (X , d) of some target class. However, since it might be computationally difficult to
optimize over this class, one considers a relaxation that finds a solution (Y, d′) amongst a
class of computationally ‘easy’ metrics, and then looks to produce an embedding Y ↪→ X
into the target space, while minimizing some measure of distortion between the distance
functions d and d′ incurred by the embedding. There has been much work that investigates
various measures and costs of distortion incurred by embeddings between metric spaces, and
applications thereof (see the surveys [12, 21, 18] and references therein).

In this work, we look at embeddings from `2
2 metrics to `1 metrics, motivated by appli-

cations to the Sparsest Cut problem. A `1 metric (or a `1 space) consists of a finite set of
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21:2 Sparsest Cut and Embeddings from Approximately Low Dimensional Spaces

points represented in Rd with the distance given by the `1 distance between them. It is a
natural target space that can be viewed as an non-negative combination of ‘cut-metrics’ on
the underlying point set, and hence arises frequently in graph-cut based problems. A `2

2
space, on the other hand, is easy to optimize over, and consists of a finite set of points, say
X = {x1, . . . , xn} ⊂ Rd, that satisfy triangle inequalities on the squares of distances:

‖xi − xj‖2
2 + ‖xj − xk‖2

2 ≥ ‖xi − xk‖
2
2 ∀ i, j, k ∈ [n]. (1.1)

The Sparsest Cut problem is a fundamental NP-hard graph optimization problem that
serves as a striking example of the utility of the metric embedding approach. In the (Uniform)
Sparsest Cut problem, we are given a graph G = (V, c), with a symmetric weight function cij
on pairs {i, j}. The goal is to find a cut (S, S) of minimum sparsity Φ(S), defined as follows
(here, IS(i) is 1, if i ∈ S, and 0 otherwise).

Φ(S) ..=
∑
i<j cij |IS(i)− IS(j)|∑
i<j |IS(i)− IS(j)| .

The best known approximation for the Sparsest Cut problem is due to Arora, Rao and
Vazirani [3] (henceforth called the ARV algorithm), who considered the following semidefinite
programming relaxation (SDP) introduced by Goemans and Linial (see [9] and [18]).

SDP-1: ΦSDP (G) ..= min
{xi}i∈[n]

1
n2

∑
ij

cij ‖xi − xj‖2
2

s.t
{
‖xi − xj‖2

2 + ‖xj − xk‖2
2 ≥ ‖xi − xk‖

2
2 ∀i, j, k ∈ [n].∑

kl ‖xk − xl‖
2
2 = n2.

Clearly, ΦSDP (G) ≤ Φ(G). Notice that any feasible solution to the above SDP constitutes
a `2

2 space. The ARV algorithm works by producing an embedding of the solutions of the
above SDP into a `1 space, with average distortion (see Section 2 for a definition) O(

√
logn).

It was shown in [19, 4] that producing an embedding of the SDP solutions into a `1 space
with average distortion D suffices to get a O(D) approximation to the Uniform Sparsest Cut
problem.

Though the solutions to SDP-1 can lie in up to n dimensions, for certain graph classes,
they are more structured. In particular, if the r-th smallest eigenvalue of the graph Laplacian
satisfies λr(G)/n � ΦSDP (G), then it turns out that the solutions are approximately r-
dimensional (see Definition 1.2 and Section 3.4). Graphs whose r-th smallest eigenvalue
is bounded away from 0 for a typically small r are called low threshold-rank graphs; note
that spectral expanders are a special case of these for r = 2. The work of Guruswami and
Sinop [11] exploited higher levels of the Lasserre SDP hierarchy [16], along with the above
structure, to give constant-factor guarantees for Sparsest Cut on these graphs. However,
this involved partially solving a SDP of size nO(r)1, and did not say anything about the
behaviour of the Goemans-Linial SDP on these graphs.

Goemans showed that if the points satisfying `2
2 triangle inequalities lie in d dimensions,

then they can be embedded into `2 (and hence into `1, since there is an isometry from `2
to `1 [21]) with

√
d distortion (unpublished, appears in [20], see also [6, Section 4] for an

alternative proof).

1 In a separate work, Guruswami and Sinop [10] give an algorithm that solves the SDP partially, running
in 2O(r)poly(n) time, and suffices for their algorithm.
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I Theorem 1.1 (Goemans [20, Appendix B]). Let x1, x2, . . . , xn ∈ Rd be n points satisfying
`2

2 triangle inequalities. Then there exists an embedding of these points into `2, xi 7→ f(xi),
with distortion

√
d, that is,

1√
d
‖xi − xj‖2

2 ≤ ‖f(xi)− f(xj)‖2 ≤ ‖xi − xj‖
2
2 , ∀ i, j ∈ V.

The immediate question that this raises is the following: can one reduce the dimension
of `2

2 metrics, while preserving pairwise distances, and the `2
2 triangle inequalities? The

Johnson-Lindenstrauss lemma [13] reduces the dimension to O(logn), while preserving
pairwise distances approximately. However, this procedure does not preserve the `2

2 triangle
inequalities, if the original points satisfied them. In fact, Magen and Moharammi [20] prove
a strong lower bound against dimension reduction for `2

2 metrics.
It is interesting to note that the Johnson-Lindenstrauss lemma, while not preserving the

`2
2 triangle inequalities exactly, does preserve them approximately, that is, every sequence of
k ≤ n points xi1 , . . . , xik satisfies

∑k−1
j=1

∥∥xij − xij+1

∥∥2
2 ≥ β · ‖xi1 − xik‖

2
2, for some β = Ω(1).

An observation by Luca Trevisan (personal communication) shows that, in fact, Goemans’
theorem is also true for points satisfying approximate triangle inequalities, and the proof
uses the ARV algorithm and analysis. However, even this does not yield anything better
than O(

√
logn) for approximately r-dimensional points, when r is small.

The above discussion motivates one to ask if there is a more ‘robust’ analogue of Goemans’
theorem that can be applied to low threshold-rank graphs. Deshpande, Harsha and Venkat [6]
considered this question, and showed that one can prove a similar theorem for the case where
the points are in approximately r dimensions, albeit giving a bound of O(r) on the average
distortion (which suffices for Sparsest Cut). One would expect an exact analogue to have a
bound of O(

√
r), and it was left open if one could find such an embedding.

We show that there is, indeed, an embedding into `1 (in fact, into `2, since all our embed-
dings are one-dimensional) with O(

√
r) average distortion when the points are approximately

r-dimensional.

1.1 Our Results
In order to state our main result, we use the following definition to quantify the notion of
approximate rank of a set of points:

I Definition 1.2. (η-Subspace rank) For any η ∈ (0, 1], a set of pointsX = {x1, . . . , xn} ⊆ Rd
will be said to have η-subspace rank r, denoted by ssrη(X) = r, if there exists a subspace
given by a projector Π ∈ Rd×d with rank (Π) = r that satisfies:∑

i,j∈[n]

‖Πxi −Πxj‖2
2 ≥ η

∑
i,j∈[n]

‖xi − xj‖2
2 . (1.2)

In this work, we will always consider η = Ω(1).

I Remark. Since the subspace Πr defined by the top-r left singular vectors of the matrix M
with columns {xi − xj}ij satisfies ‖ΠrM‖2

F ≥
∥∥∥Π̃M

∥∥∥2

F
for every Π̃ with rank

(
Π̃
)
≤ r, we

can always assume that Π = Πr(M) when we need to explicitly use the projections. Also,
note that the subspace rank is independent of any scaling or shifting of the points, and is
always at most the rank of the point set.

Deshpande et al. [6] use a slightly different notion of approximate dimension, called the
stable-rank of the point set, defined as sr (M) = ‖M‖2

F /σ1(M)2, where σ1 is the maximum

APPROX/RANDOM’17
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singular value of the matrixM . Clearly, sr (M) ≤ ssrη(X)/η, and so points with low subspace
rank also have low stable rank. While the stable rank is a well-known proxy for rank (see
[5, 25]), for applications to the Sparsest Cut problem, the notion of subspace rank suffices
and is natural (see Section 3.4). It would be interesting to see if other notions of approximate
rank yield further applications or improvements, in Sparsest Cut, or elsewhere.

Our main result is the following:

I Theorem 1.3. Given a set of points X = {x1, . . . , xn} ∈ Rd with ssrη(X) = r that satisfy
the `2

2 triangle inequalities, there is an embedding X ↪→ `1 with average distortion at most
Oη(
√
r). That is, there is a constant c(η) and a mapping h : X → Rd′ that satisfies:

‖h(xi)− h(xj)‖1 ≤ ‖xi − xj‖
2
2 ∀i, j ∈ [n] (1.3)∑

i,j∈[n]

‖h(xi)− h(xj)‖1 ≥
c(η)√
r
·
∑
ij

‖xi − xj‖2
2 (1.4)

This matches Goemans’ theorem in terms of the dependence on r, albeit for average-case
distortion. Since the subspace rank is an average global condition on the point set, we cannot
hope to prove a worst-case distortion guarantee like Goemans’ theorem that depends only on
the subspace rank (see Appendix A.1).

The above theorem holds even if the points satisfy the `2
2 triangle inequalities only

approximately, since the steps in the analysis of the algorithm only need the points to satisfy
the approximate version of the triangle inequalities (recall the remarks following Theorem 1.1).
Improving on the

√
r bound above with any technique that works with approximate triangle

inequalities would imply an improvement over the ARV algorithm’s guarantee, since dimension
reduction using the Johnson-Lindenstrauss [13] transform preserves pairwise distances (and
hence the `2

2 inequalities) approximately, while reducing the dimension to O(logn). Note
that this, thus, recovers the unconditional guarantee of O(

√
logn) of the ARV algorithm, but

gives better results for points in lower approximate dimension. This is unsurprising, since
our techniques do build on the ARV analysis.

Our main result immediately implies a O(
√
r) approximation algorithm for the Uniform

Sparsest Cut problem on low threshold-rank graphs, using just the Goemans-Linial SDP.

I Corollary 1.4. Let ε ∈ (0, 1]. Given a regular graph G with r-th smallest eigenvalue
of the normalized Laplacian satisfying λr(G) ≥ ΦSDP (G)/(1 − ε), we can find a Oε(

√
r)

approximation to the sparsest cut in the graph using SDP-1.

This improves upon the previously known guarantee of O(r/ε) using the Goemans-Linial
SDP in [6], under the same precondition.

Proof Techniques

In order to prove our main result, we follow the generic approach of the ARV algorithm [3]
that proceeds in two steps: If there is a dense cluster of the solution vectors, then a specific
Fréchet embedding (see Section 2 for a definition) works. If not, then the solutions are
‘well-spread’, and one can always find two Ω(n)-sized sets that are O(1/

√
logn)-apart in `2

2
distance, using a separating hyperplane algorithm. This constitutes the core of the proof,
and the analysis involves a ‘chaining argument’ which relies on the concentration of measure
in high-dimensional spaces. These well-separated sets can then be used to construct a good
Fréchet embedding into `1.
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In our case, we would analogously like to find two large sets that are Ω(1/
√
r)-apart, and

to do this, we need to work with the projections of the points. Note that the projections need
not be in `2

2, while the ARV algorithm’s analysis requires the use of `2
2 triangle inequalities

at various points.
Thus, in order to prove Theorem 1.3, we follow and adapt the techniques in Naor,

Rabani and Sinclair [22] (henceforth called the NRS analysis). Their work generalized the
ARV algorithm’s analysis to apply to the more general case of metrics quasisymmetrically
embeddable into `2, which includes `2

2 as a special case. We do not need the complete
machinery developed by them, though, and extend only a part of their analysis to our setting.
In particular, the chaining argument in [22] works in Euclidean, rather than `2

2 space, making
it useful in our case.

Our result, thus, also demonstrates the utility of isolating the chaining argument from
the use of `2

2 triangle inequalities in the ARV algorithm’s analysis.

1.2 Other related Work
We recall that the best known upper bound for the worst-case distortion of embedding
`2

2 ↪→ `1 is O(
√

logn · log logn) by [2], building on the techniques in [3, 17]. The best known
lower bound is Ω(

√
logn) for worst-case distortion [23], and exp(Ω(

√
log logn)) for average

distortion [14]. On low threshold-rank graphs (where λr ≥ Ω(1)ΦSDP ), an approximation
guarantee of O(1) for Sparsest Cut was obtained using O(r) levels of the Lasserre hierarchy
for SDPs [11]. In contrast, the works [7, 6] obtained a weaker O(r) approximation, but
using just the basic SDP relaxation. Oveis Gharan and Trevisan [8] also give a rounding
algorithm for the basic SDP relaxation on low-threshold rank graphs, but require a stricter
pre-condition on the eigenvalues (λr � log2.5 r · Φ(G)), and leverage it to give a stronger
O(
√

log r)-approximation guarantee. Their improvement comes from a new structure theorem
on the SDP solutions of low threshold-rank graphs being clustered, and using the techniques
in ARV for analysis.

Kwok et al. [15] showed that a better analysis of Cheeger’s inequality gives a O(r ·
√

1/λr)
approximation to the sparsest cut on regular graphs. In particular, when λr(G) ≥ ε, this
gives a O(r/

√
ε) approximation. Note that our result gives a better approximation in this

setting (see Section 3.4).

2 Notation

We use [n] = {1, . . . , n}. For a matrixM ∈ Rd×d, we sayM � 0 orM is positive-semidefinite
(psd) if yTXy ≥ 0 for all y ∈ Rd. The unit Euclidean Ball in Rd is denoted by Bd2 .

Graphs and Laplacians: All graphs will be defined on a vertex set V = [n] of size n. The
vertices will usually be referred to by indices i, j, k, l ∈ [n]. Given a graph with a symmetric
weight function on pairs W : V × V 7→ R+, with W (i, i) = 0 ∀i, let D(i) ..=

∑
jW (i, j) be

the degree of vertex i ∈ V . The (normalized) graph Laplacian matrix is defined as:

LW (i, j) :=

−
W (i,j)√
D(i)D(j)

if i 6= j ,

1 if i = j .

Note that LW � 0. We will denote the eigenvalues of (the Laplacian of) the graph G
by 0 = λ1(G) ≤ λ2(G) . . . ≤ λn(G), in increasing order. If the graph is c-regular, we have
D(i) = c for every i ∈ V . Note that c might be a fraction.

APPROX/RANDOM’17



21:6 Sparsest Cut and Embeddings from Approximately Low Dimensional Spaces

For nodes i, j in G, dG(i, j) is the shortest path between vertices i, j in G. For S ⊆ [n],
G[S] is the subgraph induced by G on S. The vertex expansion of G, denoted by h(G)
is defined as the largest constant h such that for every set S ⊆ V with 1 ≥ |S| ≥ |V |/2,
|NG(S)| ≥ h|S| where NG(S) = {j ∈ V : dG(j, S) = 1}.

Embeddings and cuts: For our purposes, a (semi-)metric space (X, d) consists of a finite
set of points X = {x1, x2, . . . , xn} and a distance function d : X ×X 7→ R≥0 satisfying the
following three conditions:
1. d(x, x) = 0, ∀x ∈ X.
2. d(x, y) = d(y, x).
3. (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z).
An embedding from a metric space (X, d) to a metric space (Y, d′) is a mapping f : X → Y .
The embedding is called a contraction, if

d′(f(xi), f(xj)) ≤ d(xi, xj), ∀xi, xj ∈ X.

For convenience, we will only deal with contractive mappings in this paper (this is without
loss of generality). A contractive mapping is said to have (worst-case) distortion ∆, if:

supi,j
d(xi,xj)

d′(f(xi),f(xj)) ≤ ∆. It is said to have average distortion β, if
∑

i<j
d(xi,xj)∑

i<j
d′(f(xi),f(xj))

≤ β.

Note that a mapping with worst-case distortion ∆ also has average distortion ∆, but not
necessarily vice-versa.

Fréchet embeddings of (X, d) are a class of embeddings of X → Rk into defined on the
basis of distances to point sets: a co-ordinate of the embedding will be given by a map of
the form d(xi, S) ..= minj∈S d(xi, xj) for some S ⊆ X. Note that Fréchet embeddings are
always contractive in every co-ordinate.

When X ⊆ Rk is a `2
2 space, we will use d(i, j) ..= ‖xi − xj‖2

2, and d(S, T ) =
mini∈S,j∈T d(i, j) for S, T ⊆ [n]. For c ∈ R, B(i, c) ..= {j : d(i, j) ≤ c}. We refer to
the quantity 1

n2

∑
i,j ‖xi − xj‖

2
2 as the spread of these points.

3 Proof of Main Theorem

3.1 Proof Outline
We prove Theorem 1.3 in two steps. First, we scale the points to lie within a `2 ball of radius
1; note that this would shrink the pairwise distances. Suppose that the points have constant
spread after this scaling; i.e. they satisfy

1
n2

∑
i,j∈V

‖xi − xj‖2
2 ≥ δ, where δ = Ω(1). (3.1)

Since scaling does not affect the subspace rank, we continue to have ssrη(X) = r. In this
case, we adapt the chaining argument from [22] to work on the projections {Πxi}i∈V to
conclude the existence of two large, ∆-separated sets for ∆ = Ω(1/

√
r).

In the general case, we show that by appropriately utilizing the subspace criterion, we
can either reduce it to the case of constant spread, or produce an O(1) distortion Fréchet
embedding by considering distances to an appropriate `2

2 ball centered at one of the points.
Let V ..= [n]. We will require the following definitions, following [3]:

I Definition 3.1 (Largeness). A subset A ⊆ V is β-large, if |A| ≥ βn.
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I Definition 3.2 (∆-separation). Subsets L ⊆ V and R ⊆ V are ∆-separated, if d(L,R) ≥ ∆.

The following lemma, implicit in [3], gives a sufficient condition for the existence of a
Fréchet embedding into `1 with low average distortion.

I Lemma 3.3 (Sufficient condition). If there is a set S ⊆ [n] satisfying

|S|
∑
i/∈S

d(i, S) ≥ c.n2 (3.2)

Then, there is an embedding of the points into `1 with average distortion 1/c.

Proof. Consider the embedding i 7→ d(i, S). Clearly, this is a Fréchet embedding, and hence
a contraction. Furthermore, we have:∑

i,j∈V
|d(i, S)− d(j, S)| ≥

∑
i/∈S,j∈S

|d(i, S)− 0|

= |S|
∑
i/∈S

d(i, S) ≥ cn2

Thus, the average distortion of the map is at most 1/c. J

Note that the existence of two Ω(1)-large, ∆-separated sets L,R would satisfy the above
condition, with S = L and c = O(1/∆). The above can also be thought of as an embedding
into `2, since it is one-dimensional.

3.2 The constant spread case
We will start by stating the following Proposition, which is a simple modification of Proposition
3.11 in [22]. Since the proof closely follows the original, requiring only a simple observation,
we do not give it here.

I Proposition 3.4 (From Proposition 3.11 in [22]). Let G = (V,E) be graph with vertex
expansion h(G) ≥ 1/2. Let f : V → Bd2 be a mapping that satisfies:

1
n2

∑
i,j∈V

‖f(i)− f(j)‖2 ≥ γ (3.3)

Then, there exists a pair i, j ∈ V , and constants c1(γ), c2(γ) such that

‖f(i)− f(j)‖2 ≥ c1(γ) and dG(i, j) ≤ c2(γ)
√
d (3.4)

I Remark. The modification only requires the observation that for any i, j with ‖f(i)− f(j)‖2 ≤
c1(γ), and u : ‖u‖2 = 1, 〈f(i)− f(j), u〉 ≤ c1(γ). This avoids a union bound over the pairs
of points in the last step of the proof, the rest of the steps being identical. Combined with
the original statement of Proposition 3.11 in [22], the term

√
d in the above can be replaced

by min
{√

logn,
√
d
}
.

We now proceed to prove a special case of Theorem 1.3 assuming condition (3.1).

I Theorem 3.5. Let X = {x1, . . . , xn} satisfy `2
2-triangle inequalities, with X ⊆ Bd2 and

ssrη(X) = r. Furthermore, suppose that

1
n2

∑
ij

‖xi − xj‖2
2 ≥ δ, where δ = Ω(1).

Then there exist sets A,B ⊆ X, with |A|, |B| ≥ (ηδ/32)n with d(A,B) ≥ Ω(1/
√
r).

APPROX/RANDOM’17



21:8 Sparsest Cut and Embeddings from Approximately Low Dimensional Spaces

Proof. Let Π be the r-dimensional subspace containing an η fraction of the squared lengths
of the difference vectors upon projection. Let V = [n], and define f : V → Br2 by

f(i) , Πxi

Since the set X has η-subspace rank r, we have, by definition:
1
n2

∑
i,j∈V

‖f(i)− f(j)‖2
2 ≥ ηδ. (3.5)

We will now follow the proof of Theorem 2.4 in [22], but switch to the projections where
appropriate. Consider the graph G = (V,E) with edges E =

{
{i, j} : ‖xi − xj‖2

2 ≤
κ√
r

}
,

where κ = κ(η, δ) is a constant that we will set later.
Suppose, for the sake of contradiction, that every two sets A,B ⊆ V with |A|, |B| ≥

(ηδ/32)n satisfy d(A,B) ≤ κ/
√
r, which implies that dG(A,B) ≤ 1. We use the following

lemma from [22]:

I Lemma 3.6 (Lemma 2.3 in [22]). Fix 0 < ε ≤ 1
10 , and let G = (V,E) be a graph such that

for every X,Y ⊆ V satisfying |X|, |Y | ≥ ε|V |, dG(x, y) ≤ 1. Then there is a U ⊆ V with
|U | ≥ (1− ε)|V | with h(G[U ]) ≥ 1

2 .

Invoking Lemma 3.6 on G yields a subset X ′ ⊆ V , with |X ′| ≥ (1 − ηδ
32 )n such that

h(G[X ′]) ≥ 1
2 . We claim the following:

1
|X ′|2

∑
i,j∈X′

‖f(i)− f(j)‖2 ≥
(ηδ)3/2

32 . (3.6)

To see this, note that |X ′ ×X ′| ≥ (1− ηδ
16 )n2. Let

D =
{

(i, j) ∈ V × V : ‖f(i)− f(j)‖2
2 ≥ ηδ/4

}
.

Since the diameter of the unit ball is 2, in order to satisfy (3.5), we should have |D| ≥ (ηδ/8)n2.
Thus, |D ∩ (X ′ ×X ′)| ≥ ηδ

16n
2. This implies that the average `2-distance in X ′ ×X ′ is at

least:

1
n2 |D ∩ (X ′ ×X ′)| ×

√
ηδ

4 ≥
(ηδ)3/2

32 . (3.7)

This proves (3.6).
We can now apply Proposition 3.4 to G[X ′], and the projections {f(i)}i∈V , with γ =

(ηδ)3/2/32. We infer that there exists a path in G, of k ≤ c2(γ)
√
r = a(η, δ)

√
r vertices

i1, i2, . . . ik ⊆ X ′ such that ‖f(i1)− f(ik)‖2 ≥ c1(γ) = b(η, δ), where a(η, δ) and b(η, δ) are
constants depending on η and δ.

This implies that:

b2(η, δ)
(a)
≤ ‖f(i1)− f(ik)‖2

2

(b)
≤ ‖xi1 − xik‖

2
2

(c)
≤

k−1∑
j=1

∥∥xij − xij+1

∥∥2
2

(d)
≤ a(η, δ)

√
r
κ√
r
. (3.8)

Above, (b) follows from the fact that projections can only decrease distances, (c) from the
`2

2 property, and (d) from the definition of G. This is a contradiction, if we set κ < b2(η,δ)
a(η,δ) . J

I Remark. The last chain of inequalities above is the only place where the `2
2 triangle

inequalities are invoked. Without them, we could still prove a weaker statement with O(1/r)
separation between the large sets, since (c) would hold with an additional multiplicative
factor of k by convexity.
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3.3 The general case
We now extend our argument to the general case. Let us fix some notation before going to
the proofs. We will take V ..= [n], and X = {x1, . . . , xn} to satisfy the `2

2 triangle inequalities,
with ssrη(X) = r. Let Π be the corresponding r-dimensional subspace. Let f(i) ..= Πxi, as
before. Define

df (i, j) ..= ‖f(i)− f(j)‖2
2 .

The terms df (i, S), df (S, T ) for S, T ⊆ V are defined naturally, and denote diamf (S) ,
maxi,j∈S df (i, j). Note that df (·, ·) is not necessarily a distance, unlike d(·, ·). However, since
f is a projection map, it satisfies:

d(i, S) ≥ df (i, S) ∀i ∈ V, ∀S ⊆ V, (3.9)

We will also assume that X is scaled to satisfy:

1
n2

∑
i,j∈V

‖xi − xj‖2
2 = 1 . (3.10)

We first record a simple observation.

I Observation 3.7. For any i, j ∈ V , and any S ⊆ V ,

df (i, j) ≤ 3 (df (i, S) + diamf (S) + df (j, S)).

Proof. Let i∗, j∗ ∈ S be such that df (i, S) = df (i, i∗) and df (j, S) = df (j, j∗). Since
√
df

obeys the triangle inequality, we have:(√
df (i, j)

)2
≤
(√

df (i, i∗) +
√
df (i∗, j∗) +

√
df (j, j∗)

)2

≤ 3(df (i, S) + diamf (S) + df (j, S))

The last inequality follows from the convexity of the function g(x) = x2, and the definition
of diamf . J

We now consider various cases, and show that a low average-distortion embedding exists in
each case.

I Lemma 3.8 (Dense Ball). If ∃i ∈ V , with |B(i, 1/12)| ≥ n/12, then we can find an
O(1)-average distortion embedding of X into `1.

Proof. The proof follows the proof of a similar lemma in [3]. Let i0 ∈ V be such that
|B(i0, 1/12)| ≥ n/12, and let S = B(i0, 1/12). Consider the embedding i 7→ d(i, S). This is
a contraction. Since

∑
ij ‖xi − xj‖

2
2 = n2, we have:

n2 =
∑
i,j∈V

d(i, j)

≤
∑
i,j∈V

(d(i, S) + d(j, S)) . . . Using `2
2 triangle inequality

= 2n
(∑
i/∈S

d(i, S)
)

APPROX/RANDOM’17
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This gives us that
∑
i/∈S d(i, S) ≥ n/12. Since |S| = Ω(n), Lemma 3.3 applies, and proves

that the above embedding has O(1) average-distortion. 2 J

I Lemma 3.9 (Isolating a bounded ball). If there is no i ∈ V such that |B(i, 1/12)| ≥ n/12,
then there is a j ∈ V such that S = B(j, 12/9) satisfies |S| ≥ 3

12n, and∑
i,j∈S

d(i, j) ≥
(

2
12

)(
1
12

)
n2

12

Proof. Suppose we had |B(j, 12/9)| < (3n/12) for every j ∈ V . Then, for any j ∈ V , we
would have |B(j, 12/9)| > 9n/12, which gives us that

∑
i d(j, i) > n. Summing over j ∈ V

contradicts (3.10).
Now, let j0 ..= arg maxj∈V |B(j, 12/9)|, and S ..= B(j0, 12/9). Define the set A =

B(j0, 12/9) \B(j0, 1/12). From our assumption and the preceeding argument, |A| ≥ 2n/12.
Since |B(i, 1/12)| ≤ n/12 for every i ∈ A, we have that

∣∣∣B(i, 1/12) ∩A
∣∣∣ ≥ n/12. This gives

us: ∑
i∈A,j∈A

d(i, j) ≥ 2n
12 ×

1
12 ×

n

12 . J

In next two lemmas, assume that the precondition of Lemma 3.9 holds, i.e., there is no
i ∈ V with |B(i, 1/12)| ≥ n/12.

I Lemma 3.10. Let j0 = arg maxj∈V |B(j, 12/9)|, and S , B(j0, 12/9). If S satisfies:∑
i,j∈S

df (i, j) ≥ η

600 |S|
2,

then there is an embedding of X into `1 with O(
√
r) average distortion.

Proof. Consider the map g : V → Rd given by g(i) ,
√

9/12 ·xi. This ensures that g(i) ∈ Bd2
for every i ∈ S, and the mapping continues to obey the `2

2 triangle inequalities. Furthermore,
from Lemma 3.9, the points in S satisfy:

1
|S|2

∑
i,j∈S

‖g(i)− g(j)‖2
2 ≥

9
12 ×

2
123 = Ω(1). (3.11)

From the assumption on S, we infer that:

1
|S|2

∑
i,j∈S

‖Πg(i)−Πg(j)‖2
2 ≥

9
12 ×

η

600 .

We can now invoke Theorem 3.5 on just the points in S to conclude that there exist sets
A,B ⊆ S, such that |A|, |B| ≥ Ωη(n) with d(A,B) ≥ Ωη(1/

√
r) (the scaling by a constant

factor just shrinks some distances). As before, it is easy to see that A satisfies the conditions
of Lemma 3.3 with c = Ω(1/

√
r) and hence the mapping h(i) , d(i, A) has average distortion

O(
√
r). Note that by the ARV algorithm [3], the sets can be found with good probability by

a random separating hyperplane through j0. J

2 Strictly speaking, one could do without the `2
2 triangle inequality here by adjusting the constants

appropriately, as we did in Observation 3.7.
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I Lemma 3.11. Let j0 = arg maxj∈V |B(j, 12/9)|, and S , B(j0, 12/9). If S satisfies:∑
ij∈S

df (i, j) ≤ η

600 |S|
2,

then we can find an embedding of X into `1 with O(1) average distortion.

Proof. The proof will be similar to the proof of Lemma 3.8, except for the fact that we will
work with projections instead of the original vectors.

First, observe that there exists an i0 ∈ S such that |Bf (i0, η/24) ∩ S| ≥ 24|S|/25. If not,
then for every i ∈ S, we will have

∑
j∈S df (i, j) > 1

25 |S| × η/24 = η|S|/600. Summing over
j ∈ S results in a contradiction to the precondition on S.
Let T , Bf (i0, η/24); from the preceding argument, we have |T | = Ω(n).

I Claim 3.12.
∑
j /∈T df (j, T ) ≥ ηn/12

Proof. We know that
∑
i,j∈V ‖f(i)− f(j)‖2

2 =
∑
i,j∈V df (i, j) ≥ ηn2. Using Observation 3.7,

we can infer:

ηn2 ≤
∑
i,j∈V

df (i, j)

≤ 3
∑
i,j∈V

(df (i, T ) + diamf (T ) + df (j, T )) . . .Using Observation 3.7

= 3
(

2n
∑
i∈V

df (i, T ) + 4η
24n

2

)
. . . Since diamf (T ) ≤ 4η

24

This yields that
∑
i df (i, T ) ≥ η

12n, proving the claim. J

Since |T | = Ω(n), and d(i, T ) ≥ df (i, T ), T satisfies the conditions of Lemma 3.3. This
gives us an O(1) average-distortion embedding of the points into `1. J

We can now infer the proof of Theorem 1.3 by using the results above.

Proof of Theorem 1.3. The conditions covered in Lemmas 3.8, 3.9, 3.10 and 3.11 on the
set of points {xi}i∈V are exhaustive, and in each case yield an embedding with O(

√
r)

average distortion. It is clear that each of these conditions can be easily checked, and the
corresponding embeddings can be constructed efficiently. J

I Remark. The Hamming Cube on N points, residing in logN dimensions, and having
η-subspace rank Ωη(logN) by symmetry, has two Ω(N)-sized sets that are Ω(1/

√
logN)

apart, and shows that the above analysis is tight up to constants.

3.4 Application to Sparsest Cut
The proof of Corollary 1.4 now follows easily, using the main result.

Proof of Corollary 1.4. Suppose λr/n ≥ ΦSDP /(1 − ε). We invoke the following result of
Guruswami and Sinop [11] (stated here for the special case of Uniform Sparsest Cut):

I Proposition 3.13 (Von-Neumann inequality [11, Theorem 3.3]). Let σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0
be the singular values of the matrix M with columns {(xi − xj)}i<j. Then∑

t≥r σ
2
j∑n

t=1 σ
2
j

≤ ΦSDP
λr(G)/n.

APPROX/RANDOM’17
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For every l ≤ n, we know that
∑l
i=1 σ

2
i =

∑
i<j ‖Πl(xi − xj)‖2

2, where Πl is the subspace
defined by the the top l left singular vectors of M . This immediately gives us that ssrε(X) =
r − 1. Applying the main theorem gives us an O(

√
r) average distortion embedding into `1,

and hence an Oε(
√
r) approximation to Φ(G) in this setting. J

I Remark. Under the same precondition, Guruswami and Sinop [11] give an O(1/ε) ap-
proximation, but by solving a SDP of size nO(r), using a partial solver that runs in time
2O(r)poly(n) [10]. They need to know r first, and set up the SDP and solver appropri-
ately. The works [7, 6] give a O(r/ε2) and O(r/ε) approximation respectively, using just the
Goemans-Linial SDP; the rounding algorithms do not depend on r. Our algorithm too is
independent of r, and we get a better guarantee of O(

√
r/ε) in this setting.

Though the precondition of the corollary may seem involved, it can easily be related back
to a simpler one, as the following corollary shows (proof in Appendix A.2).

I Corollary 3.14. If G is regular with λr(G) ≥ ε, then we can find a O(
√
r + 1/

√
ε)

approximation to the sparsest cut in G in poly(n) time.

I Remark. It is clear that we get a O(
√
r) approximation for all graphs whose `2

2 representation
always has subspace rank r. Graphs of low threshold-rank are one class of graphs that have
this property.
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A Appendix

A.1 Ruling out a worst-case distortion bound of O(
√

ssrη(X))
We give a simple example of why one cannot hope to prove a worst-case distortion bound
like Goemans’ result, using the notion of subspace rank. Suppose that a certain point set X
satisfies the `2

2 inequalities, and has worst-case distortion Ω(D) for embedding into `1. It is
known that there exists such an X with D = Ω(

√
logn) [23]. Without loss of generality, let

X be scaled to satisfy
∑
i,j ‖xi − xj‖

2
2 = n2, and ‖x1 − x2‖2

2 = maxi,j ‖xi − xj‖2
2. Consider

the set Y which has X, along with C − 1 additional copies of x1 and x2
3. Clearly, Y satisfies

the `2
2 triangle inequalities. Further, Y has η-subspace rank of 1 for a large enough C: the

sum of all squared distances is at most C + (C2 − C) ‖x1 − x2‖2
2, and the sum of squared

distances along the direction x1 − x2 is at least C2 ‖x1 − x2‖2
2. However, embedding Y with

worst-case distortion O(1) into `1 would contradict the lower bound on embedding X into `1.

A.2 Proof of Corollary 3.14
Proof (Of Corollary 3.14). The proof follows by using a combination of two algorithms,
depending on how λr compares to ΦSDP (G). Suppose that G is 1-regular by scaling the edge
weights, without loss of generality, and let X = {x1, . . . , xn} be the optimal SDP solution.
If ΦSDP ≥ ε/100n, then there is one co-ordinate of the SDP solution with objective value
at least ε/100n. In this case, running the Cheeger rounding algorithm [1, Lemma 2.1] (see
also [24, Section 2.4] for an exposition) on this co-ordinate would output a cut of sparsity
O(
√
ε/n) ≤ O (ΦSDP (G)/

√
ε).

If ΦSDP ≤ ε/100n then we have λr/n ≥ 100ΦSDP . Applying Corollary 1.4 with ε =
99/100 gives us an O(

√
r) average-distortion embedding into `1, and hence an O(

√
r)

approximation to Φ(G) in this setting. Thus, the best of the two cuts will be a O(
√
r+ 1/

√
ε)

approximation to Φ(G). J

3 Technically, we are dealing with semi-metrics, and hence distinct points may overlap.


	Introduction
	Our Results
	Other related Work

	Notation
	Proof of Main Theorem
	Proof Outline
	The constant spread case
	The general case
	Application to Sparsest Cut

	Appendix
	Ruling out a worst-case distortion bound of O(ssr(X))
	Proof of Corollary 3.14


