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Abstract
We consider the relaxed online strip packing problem, where rectangular items arrive online and
have to be packed into a strip of fixed width such that the packing height is minimized. Thereby,
repacking of previously packed items is allowed. The amount of repacking is measured by the
migration factor, defined as the total size of repacked items divided by the size of the arriving
item. First, we show that no algorithm with constant migration factor can produce solutions
with asymptotic ratio better than 4/3. Against this background, we allow amortized migration,
i. e. to save migration for a later time step. As a main result, we present an AFPTAS with
asymptotic ratio 1 + O (ε) for any ε > 0 and amortized migration factor polynomial in 1/ε. To
our best knowledge, this is the first algorithm for online strip packing considered in a repacking
model.
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1 Introduction

In the classical strip packing problem we are given a set of two-dimensional items with heights
and widths bounded by 1 and a strip of infinite height and width 1. The goal is to find
a packing of all items into the strip without rotations such that no items overlap and the
height of the packing is minimal. In many practical scenarios, the entire input is not known
in advance. Therefore, an interesting field of study is the online variant of the problem. Here,
items arrive over time and have to be packed immediately without knowing future items.
Following the terminology of [11] for the online bin packing problem, in the relaxed online
strip packing problem previous items may be repacked when a new item arrives.

There are different ways to measure the amount of repacking in a relaxed online setting.
We follow the migration model introduced by Sanders, Sivadasan, and Skutella in [24]. For
online job scheduling on identical parallel machines they defined the migration factor µ as
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13:2 Online Strip Packing with Polynomial Migration

follows: When a new job of size pj arrives, jobs of total size µpj can be reassigned. In the
context of online strip packing the migration factor µ ensures that the total area of repacked
items is at most µ times the area of the arrived item.

By a well known relation between strip packing and parallel job scheduling [14], any
(online) strip packing algorithm applies to (online) scheduling of parallel jobs. The latter
problem is highly relevant e. g. in computer systems [14, 27, 23].

Preliminaries. Since strip packing is NP-hard [1], research focuses on efficient approximation
algorithms. Let A(I) denote the packing height of algorithm A on input I and OPT(I) the
minimum packing height. The absolute (approximation) ratio is defined as supI A(I)/OPT(I)
while the asymptotic (approximation) ratio as lim supOPT(I)→∞A(I)/OPT(I). Typically,
the performance of online algorithms is measured by competitive analysis, where an online
algorithm is compared with an optimal offline algorithm. In the following, all ratios mentioned
in the context of online algorithms are competitive.

1.1 Related Work
Offline. Strip packing is one of the classical packing problems and receives ongoing research
interest in the field of combinatorial optimization. Since Baker, Coffman and Rivest [1] gave
the first algorithm with asymptotic ratio 3, strip packing was investigated in many studies,
considering both asymptotic and absolute approximation ratios. We refer the reader to [6]
for a survey. For the asymptotic ratio, a well-known result is the AFPTAS by Kenyon and
Rémila [21]. Concerning the absolute ratio, currently the best known algorithm of ratio
5/3 + ε is by Harren et al. [13].

An interesting result was given by Han et al. in 2007. In [12], they studied the relation
between bin packing and strip packing and developed a framework between both problems.
For the offline case, it is shown that any bin packing algorithm can be applied to strip packing
while maintaining the same asymptotic ratio.

Online. The first algorithm for online strip packing was given by Baker and Schwarz [2] in
1983. Using the concept of shelf algorithms [1], they derived the algorithm First-Fit-Shelf
with asymptotic ratio arbitrary close to 1.7 and absolute ratio 6.99 (where all rectangles
have height at most hmax = 1). Later, Csirik and Woeginger [8] showed a lower bound of
h∞ ≈ 1.69 on the asymptotic ratio for the concept of shelf algorithms and gave an improved
shelf algorithm with asymptotic ratio h∞ + ε for any ε > 0. The framework of Han et al.
[12] is applicable in the online setting if the online bin packing algorithm belongs to the class
Super Harmonic. Using Seiden’s online bin packing algorithm Harmonic++ [25], there exists
an algorithm for online strip packing with an asymptotic ratio of 1.58889. In 2007 and 2009,
the concept of First-Fit-Shelf by Baker and Schwarz was improved independently by two
research groups, Hurink and Paulus [14] and Ye, Han, and Zhang [28]. Both improve the
absolute competitive ratio of from 6.99 to 6.6623 without a restriction on hmax. Further
results on special variants of online strip packing were given by Imeh [16] and Ye, Han, and
Zhang [29].

On the negative side, there is no algorithm for online strip packing (without repacking)
with an asymptotic ratio better then 1.5404 since the lower bound in [3] for online bin packing
is also valid for online strip packing. Regarding the absolute ratio, the first lower bound of 2
from [5] was improved in several studies [19, 15, 22]. Currently, the best known lower bound
by Yu, Mao, and Xiao [30] is (3 +

√
2)/2 ≈ 2.618.
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Related results on the migration model. Since its introduction by Sanders, Sivadasan,
and Skutella [24], the migration model became increasingly popular. In the context of online
scheduling on identical machines, Sanders, Sivadasan, and Skutella [24] gave a PTAS with
migration factor 2O((1/ε) log2(1/ε)) for the objective of minimizing the makespan. Thereby,
the migration factor in [24] depends only on the approximation ratio ε and not on the input
size. Such algorithms are called robust.

Skutella and Verschae [26] studied scheduling on identical machines while maximizing
the minimum machine load, called machine covering. They considered the fully dynamic
setting in which jobs are also allowed to depart. Due to the presence of very small jobs,
Skutella and Verschae showed that there is no PTAS for this problem in the migration model.
Instead, they introduced the reassignment cost model, in which an amortized analysis of the
migration factor is allowed. Using the reassignment cost model, they gave a robust PTAS for
the problem with amortized migration factor 2O((1/ε) log2(1/ε)).

Also online bin packing has been investigated in the migration model in a sequence of
papers, inspired by the work of Sanders, Sivadasan, and Skutella [24]: The first robust
APTAS for relaxed online bin packing was given in 2009 by Epstein and Levin [10]. They
obtained an exponential migration factor 2O((1/ε2) log 1/ε). In 2013, Jansen and Klein [17]
improved this result and gave an AFPTAS with polynomial migration factor O

( 1
ε3 log 1

ε4

)
.

The development of advanced LP/ILP-techniques made this notable improvement possible.
Furthermore, in [4] Berndt, Jansen, and Klein used the techniques developed in [17] to give
an AFPTAS for fully dynamic bin packing with a similar migration factor.

Our contribution

To the authors knowledge, there exists currently no algorithm for online strip packing in the
migration or any other repacking model. Therefore, we present novel ideas to obtain the
following results: First, a relatively simple argument shows that in the (strict) migration
model it is not possible to maintain solutions that are close to optimal. We prove the
following theorem in Section 1.3:

I Theorem 1.1. In the (strict) migration model, there is no approximation algorithm for
relaxed online strip packing with asymptotic competitive ratio better than 4/3.

For this reason, it is natural to extend the migration model such that amortization is
allowed. We say that an algorithm has an amortized migration factor of µ if for every time
step t, the total migration (i. e. the total area of repacked items) up to time t is bounded
by µ

∑t
i=1 SIZE(it), where SIZE(it) is the area of the item arrived at time t. Adapted

to scheduling problems, this corresponds with the reassignment cost model introduced by
Skutella and Verschae in [26]. Consequently, we focus on an approach that makes use of
amortization and therefore admits an asymptotic approximation scheme. We adapt several
offline and online techniques and combine them with our novel approaches to obtain the
following main result:

I Theorem 1.2. There is a robust AFPTAS for relaxed online strip packing with an amortized
migration factor polynomial in 1/ε.

1.2 Technical Contribution
A general approach in the design of robust online algorithms is to rethink existing algorithmic
strategies that work for the corresponding offline problem in a way that the algorithm can

APPROX/RANDOM’17
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hB

big items

flat items

(a) Packing of items in a container

1hB

2hB

(b) Packing of containers in the strip

Figure 1 Packing structure of our approach. Items are packed into containers of fixed height hB ,
thus the packing of containers results in a bin packing problem.

adapt to a changing problem instance. The experiences that were made so far in the design
of robust algorithms (see [17, 4, 26]) are to design the algorithm in a way such that the
generated solutions fulfill very tight structural properties. Such solutions can then be adapted
more easily as new items arrive.

A first approach would certainly be do adapt the well known algorithm for (offline) strip
packing by Kenyon and Rémila [21] to the online setting. However, we can argue that
the solutions generated by this algorithm do not fulfill sufficient structural properties. In
the algorithm by Kenyon and Rémila, the strip is divided vertically into segments, where
each segment is configured with a set of items. Thereby, each segment can have a different
height. Now consider the online setting, where we are asked for a packing for the enhanced
instance that maintains most parts of the existing packing. Obviously, it is not enough to
place new items on top of the packing as this would exceed the approximation guarantee.
To guarantee a good competitive ratio, existing configurations of the segments need to be
changed. However, this seems to be hard to do as the height of a configuration can change.
Gaps can occur in the packing as a segment might decrease in height or vice versa a segment
might increase in height and therefore does not fit anymore in its current position. Over time
this can lead to a very fragmented packing. On the other hand, closing gaps in a fragmented
packing can cause a huge amount of repacking.

Containers. Therefore, we follow a different approach to develop an algorithm that guar-
antees solutions with a more modular structure. A central idea is to batch items to larger
rectangles of fixed height, called containers (see Figure 1a). As each container has the same
height hB , it is natural to divide the strip into levels of equal height hB (see Figure 1b) and
fill each level with containers best possible. Thus, finding a container packing is in fact a bin
packing problem, where levels correspond with bins and the sizes of the bin packing items
are given by the container widths. This approach was studied in the offline setting by Han
et al. in [12], while an analysis in the online setting is more sophisticated.

Thus, the packing of items into the strip is given by two assignments: By the container
assignment each item is assigned a container where its is placed. Moreover, the level
assignment describes which container is placed in which level (corresponds with the bin
packing solution). To guarantee solutions with good approximation ratio, both functions
have to satisfy certain properties.

Dynamic rounding / Invariant properties. For the container assignment, a natural choice
would certainly be to assign the widest items to the first container, the second widest to
the second container, and so on. In [12], Han et al. show that this container assignment is
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g· · ·g0 · · ·· · · left(g)

it

g1

Figure 2 Shift operation moves widest items between groups to insert new item it.

somehow optimal. However, in the online setting we can not maintain this strict order while
bounding the repacking size. Therefore, we use a relaxed ordering by introducing groups
for containers of similar width and requiring the sorting over the groups, rather than over
containers. For this purpose, we adapt the dynamic rounding technique developed by Berndt,
Jansen, and Klein in [4] and formulate important characteristics as invariant properties.

Shift. In order to insert new items, we develop an operation called Shift. The idea is to
move items between containers of different groups such that the invariant properties stay
fulfilled. When inserting an item it via Shift into group1 g, items are moved from g to
the group left(g), where again items are shifted to the next group, and so on (see Figure 2).
Thereby, the total height of the shifted items can increase in each step. However, it is limited
such that items that can not be shifted further (at group g0 in Figure 2) can be packed into
one additional container. This way, we get a new container assignment for the enhanced
instance which maintains the approximation guarantee and all desired structural properties.

LP/ILP-techniques. As a consequence of the shift operation, there may be a new container
which has to be inserted into the packing. Obviously, placing new containers always into new
levels may lead to a level assignment which does not satisfy the approximation guarantee.
Therefore, the existing level assignment has to be changed, which causes further repacking.
We apply the LP/ILP-techniques developed in [17] to maintain a good level assignment while
the amortized migration factor is polynomial in 1/ε.

Packing of small items. Another challenging part regards the handling of items with small
area. Without maintaining an advanced structure, small items can fractionate the packing
in a difficult way. Such difficulties also arise in related optimization problems, see e.g. [26, 4].
For the case of flat items (with small height) we overcome these difficulties by the packing
structure shown in Figure 1a: Flat items are separated from big items in the containers and
are sorted by width such that the least wide item is at the top. Narrow items (small width)
can be used to fill gaps in the packing while grouping narrow items of similar height. We
sketch some ideas for the packing of small items in the Appendix A-B and refer to the full
version [18] for all details.

1.3 Lower Bound
In this section we prove Theorem 1.1. We use an adversary to construct an instance with
arbitrary optimal packing height, but A(I) ≥ 4

3 OPT(I) for any such algorithm A.

Proof. Let A be an algorithm for relaxed online strip packing with migration factor µ. We
show that for any height h there is an instance I with OPT(I) ≥ h and A(I) ≥ 4

3 OPT(I).
The instance consists of two item types: A big item has width 1

2 − ε and height 1, while a flat

1 In the following, by ‘group of an item’ we mean the group of the container in which the item is placed.

APPROX/RANDOM’17
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2K

`/2

2K − `

Flat Items

Figure 3 Optimal online packing.

item has width 1
2 + ε and height 1

2dµe . For an item i let SIZE(i) denote its area. Note that A
can not repack a big item b when a flat item f arrives, as SIZE(b) > µSIZE(f) for ε < 1/6.

First, the adversary sends 2K big items, where K = 3 dhe. Let ` be the number of big
items that are packed by A next to another big item. The packing has a height of at least
`
2 + 2K − ` = 2K − `

2 (see Figure 3). Since the optimum packing height for 2K big items is
K (always two items in one level), A has an absolute ratio of at least 2− `

2K . If ` ≤ 4K
3 , the

absolute ratio is at least 4
3 and nothing else is to show.

Now assume ` > 4K
3 . In this case, the adversary sends k = 4 dµeK flat items of total

height 2K. In the optimal packing of height 2K big items and flat items form separate stacks
that are placed next to each other. Note that no two flat items can be packed next to each
other. Since A can not repack any big item when a flat item arrives, in the best possible
packing achievable by A flat items of total height 2K − ` are packed next to big items (see
Figure 3, flat items are packed in the dashed area). Therefore, the packing height is at least
2K + `

2 and hence the absolute ratio is at least 1 + `
4K ≥

4
3 . In either case, it follows that

the asymptotic ratio is at least 4/3 by considering K →∞. J

1.4 Remainder of the Paper
In the remainder of this paper we give a high-level description of the proof of Theorem 1.2.
Thereby, we focus on big items having minimum area ε2 (see below). For most of the technical
details as well as the handling of small items we refer to the full version [18].

Throughout the following sections, let ε ∈ (0, 1/4] be a constant such that 1/ε is integer.
We denote the height and width of an item i by h(i) and w(i) (both at most 1) and define
SIZE(i) = w(i)h(i). An item i is called big if h(i) ≥ ε and w(i) ≥ ε. Let IL be the set of big
items. If R is a set of items, let SIZE(R) =

∑
i∈R SIZE(i) and h(R) =

∑
i∈R h(i).

2 Container Packing

Recall that we follow a two-level-approach to obtain the actual packing: Items are packed
into containers of equal height hB, whereby the widest item inside a container defines its
width (see Figure 1a). The strip is divided into levels of height hB , where the containers are
packed (see Figure 1b). In this section we state important invariant properties concerning
the relation between items and containers. Further, we show that if these invariant properties
hold, the container packing yields a good approximation to the strip packing problem.

In order to find a container packing, we use a common LP formulation by Eisemann [9]
(see also [4, 17]). However, the number of occurring container widths has to be bounded
to solve the LP efficiently. Therefore, we introduce groups for the containers and round
each container width to the largest width in its group, similar to rounding techniques in bin
packing [20]. Nevertheless, the rounding has to be flexible enough for the online setting. We
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(l, A, 0) (l, A, q(l, A)) (l, B, q(l, B))

≤ 2lk

(l, A, 1) (l, B, 0) (l, B, 1)· · · · · ·

= 2lk = 2lk = 2l(k − 1) ≤ 2l(k − 1)= 2l(k − 1)

Block A Block B

Kg

Figure 4 Groups of one category l ∈W and number of containers Kg per group.

adapt the dynamic rounding technique developed in [4], which is described in the following
section.

2.1 Dynamic Rounding
Let C be the set of containers. Each container is assigned to a (width) category l ∈ N,
where container c has width category l if w(c) ∈ (2−(l+1), 2−l]. Let W denote the set of
all non-empty categories and define ω = |W | in the following. It follows immediately that
ω = O (log 1/ε). Furthermore, we build groups within the categories: A group g ∈ G is
a triple (l,X, r), where l ∈ W is the category, X ∈ {A,B} is the block, and r ∈ N is the
position in the block. The maximum position of category l at block X that is non-empty is
denoted by q(l,X). Figure 4 outlines the group structure of one category l ∈W (the values
for Kg will become clear in Section 2.2). For a group g = (l,X, r) the groups left(g) and
right(g) are defined as the respective neighboring groups2 in the order shown in Figure 4.

By the notion of blocks, groups of one category can be partitioned into two types. This
becomes helpful to maintain the invariant properties with respect to the growing set of items.
More details on that are given in the later Sections 2.2 and 3.2.

The assignment from containers to groups is given by a rounding function R : C → G.
Let Kg = |{c ∈ C | R(c) = g}| be the number of containers of group g. Let ILg be the set of
items in (containers of) group g.

2.2 Invariant Properties
In Section 1.2 we argued that only solutions with strong structural properties can be adapted
appropriately in the online setting while maintaining a good competitive ratio. Definition 2.1
formalizes this central properties.

I Definition 2.1 (Invariant properties). Let k ∈ N be a parameter and h(g) =
∑
i∈IL

g h(i)
be the total height of items in group g.
(a) Items correspond to categories

2−(l+1) < w(i) ≤ 2−l ∀i ∈ ILg s.t. g = (l, ·, ·)
(b) Sorting of items over groups

w(i) ≥ w(i′) ∀i ∈ ILg, i′ ∈ ILg
′
s.t. g = left(g′)

(c) Number of containers in block A
K(l,A,0) ≤ 2lk,
K(l,A,r) = 2lk ∀l ∈W and ∀1 ≤ r ≤ q(l, A)

(d) Number of containers in block B
K(l,B,q(l,B)) ≤ 2l(k − 1),
K(l,B,r) = 2l(k − 1) ∀l ∈W and ∀0 ≤ r < q(l, B)

(e) Total height of items per group
(hB − 1)(Kg − 1) ≤ h(g) ≤ (hB − 1)Kg ∀g ∈ G

2 Set left((l, A, 0)) = (l, A,−1) and right((l, B, q(l, B))) = (l, B, q(l, B) + 1) as temporary groups.

APPROX/RANDOM’17
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Property (a) ensures that each item is inserted into the right category. Note that as a
consequence, each container of a group (l, ·, ·) has a width in (2−(l+1), 2−l]. By property (b),
all items in a group g have a width greater or equal than items in the group right(g). That
is, instead of a strict order over all containers, (b) ensures an order over groups of containers.
The properties (c) and (d) set the number of containers to a fixed value, except for special
cases (see Figure 4): Groups in block A have more containers than groups in block B.
Moreover, there are two flexible groups (namely (l, A, 0) and (l, B, q(l, B))) whose number
of containers is only upper bounded. Finally, property (e) ensures an important relation
between items and containers of one group g: Since h(g) ≤ Kg(hB − 1), at least one of the
Kg containers has a filling height of at most hB− 1 and thus can admit a new item. However,
the lower bound (hB − 1)(Kg − 1) ≤ h(g) ensures that each container is well filled in an
average container assignment.

One of the important consequences of the invariant properties is the fact that the number
of non-empty groups |G| can be bounded from above, assuming that the instance is not too
small. Therefore, the parameter k has to be set in a particular way:

I Lemma 2.2. For k =
⌊

ε
4ωhB

SIZE(IL)
⌋
the number of non-empty groups in G is bounded

by O
(
ω
ε

)
= O

( 1
ε log 1

ε

)
, assuming that SIZE(IL) ≥ 24ωhB(hB−1)

εhB−2ε .

Proof. Let G1 = G \
(⋃

l∈W (l, A, 0) ∪
⋃
l∈W (l, B, q(l, B))

)
and let g ∈ G1. Since by invari-

ant (a) every container of group g has width greater than 2−(l+1), it follows together with
the further invariant properties

SIZE(ILg) > 2−(l+1)(hB − 1)(Kg − 1) (a), (e)

≥ 2−(l+1)(hB − 1)(2l(k − 1)− 1) (c), (d)

= 1
2(hB − 1)(k − 1)− 2−(l+1)(hB − 1)

≥ 1
2(hB − 1)(k − 1)− hB − 1

2
= 1

2(hB − 1)(k − 2) .

Now, let I(l)
L be the set of items in IL which belong to containers of category l. It holds that

SIZE(I(l)
L ) ≥

∑
g=(l,·,·)∈G1

SIZE(ILg) ≥ (q(l, A) + q(l, B))
( 1

2 (hB − 1)(k − 2)
)
and resolving

leads to

q(l, A) + q(l, B) ≤ 2 SIZE(I(l)
L )

(hB − 1)(k − 2) . (1)

We now show (hB − 1)(k − 2) ≥ ε
8ωhB

SIZE(IL). The assumption on SIZE(IL) is equivalent
to ε

4ωhB
SIZE(IL)− 3 ≥ ε

8ω(hB−1) SIZE(IL). Therefore,

k − 2 =
⌊

ε

4ωhB
SIZE(IL)

⌋
− 2 ≥ ε

4ωhB
SIZE(IL)− 3 ≥ ε

8ω(hB − 1) SIZE(IL)

and thus

(hB − 1)(k − 2) ≥ (hB − 1)ε
8ω(hB − 1) SIZE(IL) = ε

8ω SIZE(IL) .

Further, we get

2 SIZE(IL)
(hB − 1)(k − 2) ≤

2 SIZE(IL)
ε

8ω SIZE(IL) = 16ω
ε

. (2)
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As shown in Figure 4, for each category l there are q(l, A)+q(l, B)+2 groups. Now, summing
over all categories l ∈W concludes the proof:∑

l∈W

q(l, A) + q(l, B) + 2

≤
∑
l∈W

(
2 SIZE(I(l)

L )
(hB − 1)(k − 2) + 2

)
eq. (1)

= 2 |W |+ 2
(hB − 1)(k − 2)

∑
l∈W

SIZE(I(l)
L )

= 2 |W |+ 2 SIZE(IL)
(hB − 1)(k − 2)

≤ 2ω + 16ω
ε

eq. (2) J

2.3 Approximation Guarantee
Furthermore, we can argue that if the invariant properties of Definition 2.1 are fulfilled, the
rounded container packing yields a good approximation to a packing of the instance IL.

Let con : IL → C be a container assignment and R : C → G be a rounding function
fulfilling the invariant properties (a-e). Formally, we define the rounded container instance
CRcon as follows: For each container c ∈ C such that there exists an item i with con(i) = c,
define a rectangle of height h(c) = hB and width w(c) = max{w(i) | i ∈ IL, con(i) = c}.
Then, round each container width to the largest width in its group defined by R.

By choosing hB = 13/ε2 and k =
⌊

ε
4ωhB

SIZE(IL)
⌋
as parameters of the invariant, we

get the following result:

I Lemma 2.3. Let CRcon be the strip packing instance of rounded containers fulfilling all
invariant properties from Definition 2.1. Assuming SIZE(IL) ≥ 4ωhB

ε (hB + 1), it holds that
OPT(CRcon) ≤ (1 + 4ε) OPT(IL) +O

(
1/ε4

)
.

Proof (Sketch). In [18] we give a detailed proof using a proof technique from [12]. For
the sake of intuition, in this paper we only sketch the main arguments necessary to proof
Lemma 2.3. The proof uses a nice combination of all invariant properties from Definition 2.1.

Intuitively, the goal is to show that by packing the containers CRcon instead of the items
IL, we do not loose too much area in the packing. This can be shown formally by defining
two sets of rectangles: Let ÎL be the set of items in IL where the width of each item from
group g is set to the widest item in the group right(g). Note that by invariant (b), the
widths of items from ÎL get rounded down. As the heights remain unchanged, it holds that
OPT(ÎL) ≤ OPT(IL). Furthermore, let C1 be the set of all container rectangles from CRcon,
except from the left- and right-most groups of each category l.

For the moment, assume that each container is filled up to the maximum filling height hB .
Therefore, we have a relation between ÎL and C1: Each stack of rounded-down rectangles
from ÎL corresponds with a container rectangle from C1, namely with one of the group to
the right. Therefore, packing C1 instead of ÎL is basically the same. By invariant (e), the
total height of items in each group is bounded from below. Thus we can think of an average
container assignment, in which each container is well-filled also in height. Therefore, the
packing capacity of each container is used efficiently in height and width.

Finally, we have to argue that the containers dropped from CRcon to obtain C1 can be
packed such that the total packing height increases only by a small term. By invariant (c–d),
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hB

(a) Set Sout (dark items)

hB

(b) Gaps after removal of Sout

hB

(c) After Sink

Figure 5 Operation Sink closes gaps during a Shift operation.

the left- and right-most groups of a category l have each at most 2lk containers, all of width
at most 2−l by invariant (a). That is, 2k levels of height hB are enough to place all residual
containers in CRcon not contained in C1. By definition of k and ω, it follows that the additional
packing height for the missing containers in C1 is not more than εSIZE(IL) ≤ εOPT(IL). J

3 Shift Operation

So far, we introduced the packing structure and showed important characteristics of it. In
this section we consider the online setting, where new items arrive and have to be integrated
into the structure such that invariant properties (a-e) are maintained. In order to maintain
(a-b) when inserting a new item i, a suitable group has to be found, defined as follows:

I Definition 3.1 (Suitable group). For a group g, let wmin(g) resp. wmax(g) denote the
width of an item with minimal resp. maximal width in ILg. Set wmin(left((l, A, 0))) =∞
and wmax(right((l, B, q(l, B)))) = 0. Group g = (l,X, r) is suitable for a new item i if
w(i) ∈ (2−(l+1), 2−l], wmin(left(g)) ≥ w(i), and wmax(right(g)) < w(i).

Basically, new items can be integrated into the container structure in two ways: They
can be placed into new containers, or they can be placed into existing containers, where
already packed items have to be removed possibly.

Since the first option occurs rather in special cases, in Section 3.1 we describe a simplified
version of the Shift operation which inserts items via the second way. Note that in this case
the number of containers remains unchanged and thus (c) and (d) are maintained anyway.
Afterwards, we briefly describe the issue of new containers in the packing.

3.1 Shift Algorithm (simplified)
Algorithm 1 shows the (simplified) Shift operation. Suppose that S is a set of items to be
inserted into the suitable group g. The easy case is when h(g) + h(S) does not exceed the
upper bound (hB − 1)Kg from invariant (e): Then, Place(g, S) in Line 3 packs each item
in S into any container with sufficient small packing height3 of this group. It can be easily
seen that there must be such a container: Assume that item i ∈ S can not be placed. Then,
each of the Kg containers is filled with items of total height greater than hB − 1. Thus,
h(g) + h(S) > Kg(hB − 1), which contradicts (e).

However, the crucial point is that due to the insertion of S, the total height of items in g
could exceed the upper bound from (e). In order to fulfill (e), items from g are removed. For
this purpose, we choose the widest items from g, as they can be inserted into the group left(g)
while maintaining the sorting property (b). The function WidestItems(ILg ∪S,∆) in Line 5

3 That is, the total height of items in this container plus the height of the new item does not exceed hB .
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Algorithm 1: Shift
Input :Group g ∈ G, Items S ⊂ IL, suitable for g according to Definition 3.1

1 ∆ = h(g) + h(S)− (hB − 1)Kg

2 if ∆ ≤ 0 then // No violation of invariant (e)
3 Place(g,S)
4 else
5 Sout = WidestItems(ILg ∪ S, ∆)
6 Remove Sout from group
7 Sink(cj) // For all affected containers cj
8 Place(g,S)
9 Shift(left(g), Sout)

returns a set of items Sout ⊆ ILg ∪ S s.t. w(i) ≥ w(i′) for each i ∈ Sout, i′ ∈ (ILg ∪ S) \ Sout
and h(Sout) ∈ [∆,∆ + 1). Note that after removing the items Sout, gaps may occur in the
packing. These have to be closed before new items can be placed, which is done by the
operation Sink in Line 7 (see Figures 5a to 5c for an illustration). Now, there is enough
room to place the items S in Line 8. The removed items get inserted into left(g) via a further
Shift operation. If the group left(g) does not exist, one has to open a new container for the
remaining items.

An important characteristic of Algorithm 1 is that it maintains all invariant properties.
In the following we give a proof restricted to property (e), as this is somehow the most
fundamental property.

I Lemma 3.2. Suppose that invariant property (e) holds. After shifting items S into group
g via Algorithm 1, invariant property (e) remains fulfilled.

Proof. We show that the total height of items after the removal of Sout and insertion
of S lies in the interval [(hB − 1)(Kg − 1), (hB − 1)Kg]. Since h(Sout) ≥ ∆, it holds
h(g)−h(Sout)+h(S) ≤ h(g)−∆+h(S) = h(g)−h(g)−h(S)+(hB−1)Kg+h(S) = (hB−1)Kg .

On the other side, h(Sout) < ∆ + 1 and thus h(g)− h(Sout) + h(S) > h(g)−∆− 1 + h(S) =
h(g)− h(g)− h(S) + (hB − 1)Kg − 1 + h(S) = (hB − 1)Kg − 1. With hB ≥ 2 it follows that
(hB − 1)Kg − 1 ≥ (hB − 1)(Kg − 1). Hence, property (e) is fulfilled. J

Since the set Sout is inserted via another shift operation into the next group, in general the
insertion of an item it triggers a sequence of shift operations Shift(g0, S0),Shift(g1, S1),
. . . ,Shift(gd, Sd) with S0 = {it}. Thereby, the total height of shifted items h(Sout) grows
linearly in the position of the shift sequence, like the following lemma shows.

I Lemma 3.3. Consider the above defined shift sequence and let Sjout be the set Sout in the
call Shift(gj , Sj). For any j with 0 ≤ j ≤ d it holds that h(Sjout) ≤ h(S0) + j + 1 .

Proof. Let ∆j denote the value of ∆ in the call Shift(gj , Sj). First note that by invariant (e)
∆j ≤ h(Sj) holds for each j . Further, the function WidestItems(·,∆j) returns a set Sjout
with h(Sjout) < ∆j + 1. For j = 0 it holds that h(S0

out) < ∆0 + 1 ≤ h(S0) + 1. Now suppose
h(Sjout) ≤ h(S0) + j + 1 for some j ≥ 0. Note that Sj+1 = Sjout, thus for the index j + 1 we
have h(Sj+1

out ) < ∆j+1 +1 ≤ h(Sj+1)+1 = h(Sjout)+1. By assumption, h(Sjout) ≤ h(S0)+j+1
and thus h(Sj+1

out ) ≤ h(S0) + (j + 1) + 1. J

Lemma 3.3 is particularly important to bound the amount of items arriving in the leftmost
group. By choosing hB appropriately, the remaining items fit into one additional container.
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Algorithm 2: Insertion of a big item
Input : Item it ∈ IL

1 if SIZE(IL(t)) < 4ωhB

ε (hB + 1) then // Offline mode
2 Use offline algorithm
3 else // Online mode
4 Find suitable group g = (l,X, r) according to Definition 3.1
5 Shift(g, {it})
6 BlockBalancing

New containers. We already mentioned that most of the repacking happens inside existing
containers and therefore new containers occur rather in special cases. However, note that
these special cases are important: Items which have to be shifted out of group (l, A, 0) can
not be shifted further, as there is no group to the left (see Figures 2 and 4).

Therefore, we also have to deal with new containers in the container packing. Obviously,
updating the level assignment such that new containers are placed in new levels is not enough
to guarantee a good competitive ratio. Instead, a new level assignment has to be found,
which maintains large parts of the existing assignment (in order to bound the repacking).
Since this problem is closely related to an online bin packing problem, here we make use of
the LP/ILP-techniques developed in [17]. For all technical details see [18].

3.2 Insertion Algorithm
Let IL(t) = {i1, i2, . . . , it} denote the instance at time t. The insertion algorithm for big
items, given in Algorithm 2, works in one of two modes: While SIZE(IL(t)) < 4ωhB

ε (hB + 1),
Algorithm 2 works in the offline mode. Here, an offline algorithm fulfilling all invariant
properties repacks the whole instance each time a new item arrives. This is due to the fact
that the operations modifying the LP-solutions require a minimum size of IL(t). As soon as
SIZE(IL(t)) is large enough, in the online mode the algorithm goes over to use Shift(g, {it})
to insert it into the suitable group g.

The last operation in Algorithm 2, denoted as BlockBalancing, adapts the total
number of containers to the increasing value of SIZE(IL(t)). Recall that by choice of the
parameters (see Section 2.3), k depends on SIZE(IL(t)) and thus increases over time. That
is, at some point the parameter k changes to k′ = k + 1. Obviously, we can not rebuild the
whole container assignment to fulfill the new group sizes required by (c-d) according to the
new parameter k′. Instead, the block structure (see Section 2.1) is exactly designed to deal
with this situation: All groups of block A that satisfy invariant property (c) with parameter
k satisfy (d) for parameter k′, if they were in block B. In the procedure BlockBalancing
groups are moved from block B to A parallel to the increasing fractional value of k. When
block B is empty, groups from block A can be ‘renamed’ to block B groups. This way, (c-d)
are fulfilled for the new parameter k′ and the repacking is distributed among all time steps
since the last parameter update. This technique was developed in [4]. For more details and
a precise description of the operations see [18].

With respective results for Shift (including Lemma 3.2) and BlockBalancing, Al-
gorithm 2 maintains all invariant properties. Furthermore, we can show that all operations
modifying the LP/ILP-solutions of the level assignment return feasible solutions with the
desired approximation guarantee. Therefore we obtain the following result:
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I Theorem 3.4. Algorithm 2 is an AFPTAS for the insertion of big items with asymptotic
competitive ratio 1 +O (ε).

4 Migration Analysis

It remains to analyze the migration factor of Algorithm 2. Recall the definition of the
migration factor µ = SIZE(Repacking(t))

SIZE(it) , where Repacking(t) is the set of repacked items and
it the item arriving at time t. Since in this extended abstract we focus on big items, the
migration factor can be bound without amortization. First, note that in the offline mode
of Algorithm 2, the repacking size is clearly bounded by SIZE(IL(t)) < O

( 1
ε5 log 1

ε

)
. The

analysis for the online mode is quite involved since the operation Shift consists of several
repacking steps performed in different groups. In the maximum shift sequence each group
occurs once (see again Figure 2), thus the maximum number of shift operations can be at
most the number of groups |G|. Again, one crucial argument is that |G| ≤ O

( 1
ε log 1

ε

)
(see

Lemma 2.2). We give a detailed analysis for the repacking of the shift operation in [18] and
get eventually:

I Lemma 4.1. The total repacking in a maximum shift sequence is at most O
(

1
ε7

(
log 1

ε

)2
)
.

Recall that in the online mode of Algorithm 2 the procedure BlockBalancing performs
repacking as well. However, it can be shown that its repacking size is dominated by the
Shift part. Since big items have minimum size ε2, we obtain the following corollary:

I Corollary 4.2. Algorithm 2 has the migration factor µ = O
(

1
ε9

(
log 1

ε

)2
)
.
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lower bound (Section 1.3).
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Figure 6 F-buffer contains 2l slots of height y for each category l.

A Flat Items

We say an item i is flat if w(i) ≥ ε and h(i) < ε. The main difficulty of flat items
becomes clear in the following scenario: Imagine that flat items of a group g are elements of
Sout = WidestItems(·,∆) in a shifting process. Remember that generally each container,
from which items are removed, has to be sinked (see Section 3.1), i. e. at most |Sout| containers.
In case of big items, due to their minimum height ε we get |Sout| ≤ b∆/εc. In contrast, flat
items can have an arbitrary small height and thus no such bound is possible. But Sink on
all Kg containers would lead to unbounded migration (since Kg depends on SIZE(IL)).

Therefore, we aim for a special packing structure for flat items that avoids the above
problem of sinking too many containers. Like shown in Figure 1a, flat items build a sorted
stack at the top of the container such that the least wide item is placed at the top edge.
Thereby, widest items can be removed from the container without leaving a gap.

To maintain the sorting, we introduce a buffer for flat items called F -buffer. It is located in
a rectangular segment of width 1 and height ωy, somewhere in the packing, for some constant
y. Note that the additional height for the F-buffer is bounded by ωy = O ((log 1/ε)y). The
internal structure of the F-buffer is shown in Figure 6: For each category l, there are 2l slots
in one level of height y. Items can be placed in any slot of their category.

An incoming flat item may overflow the F-buffer, more precisely, the level of one category
in the F-buffer. For this purpose, Algorithm 3 iterates over all groups gq, gq−1, . . . , g0 of this
category, where gq is the rightmost and g0 the leftmost group4. For each group, the set S
contains those items in the F-buffer for which the group is suitable. The set S is split into
smaller subsets of total height at most 1, then each subset gets inserted via a single call of
Shift.

Note that the concept of a ‘buffered insertion’ for small items, like in Algorithm 3,
corresponds with the notion of amortized migration: While flat items can be placed in the
F-buffer, no repacking is performed at all. We save this migration for a later time step,
namely when the F-buffer is full. Then, all items from the F-buffer get inserted into the
containers, maintaining the packing structure and resulting in an empty F-buffer.

4 Note that the direction of the iterative shifting is crucial: Calling Shift for a group g may reassign
items in all groups left to g. Therefore, iterating from ‘right to left’ is necessary to guarantee that after
shifting into group g, no group to the right of g is suitable for a remaining item in S. In other words,
with this direction one shift call for each group is enough, which is in general not true for the direction
‘left to right’.
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Algorithm 3: Insertion of a flat item
Input :Flat item it of category l

1 if it can be placed in the F-buffer then
2 Place it in the F-buffer
3 else
4 Let B(l) be the set of items in the buffer slots of category l
5 for j = q(l, A) + q(l, B) + 1, . . . , 0 do

6 Let gj =
{

(l, A, j) j ≤ q(l, A)
(l, B, j − q(l, A)− 1) j > q(l, A)

7 Let S = {i ∈ B(l) | gj is suitable for i}
8 Let S1, . . . , Sn be partition of S with h(Sr) ∈ (1− ε, 1] for all 1 ≤ r ≤ n.
9 for r = 1, . . . , n do

10 Shift(gj,Sr)
11 Remove S from B(l)
12 BlockBalancing

(1− α)r−1(1− α)r

w

w − ε

Figure 7 Shelf for narrow items of group r (dense).

B Narrow Items

We say an item i is narrow if w(i) < ε. Narrow items can be packed efficiently if items of
similar height are packed in a row. This is the concept of shelf algorithms introduced by
Baker and Schwarz [2] which is described in the next subsection.

However, the goal is to integrate narrow items into the container packing introduced in
Section 2. We show in Section B.2 how to fill gaps in the container packing with shelfs of
narrow items. This leads to a modified first-fit-algorithm for narrow items with asymptotic
approximation ratio of 1 +O (ε), as finally shown in Lemma B.2.

B.1 Shelf Packing
For a parameter α ∈ (0, 1) item i belongs to group r ∈ N \ {0} if h(i) ∈ [(1−α)r, (1−α)r−1).
Narrow items of group r are placed into a shelf of group r, which is a rectangle of height
(1− α)r−1. Figure 7 shows a shelf for group r. Analogously to [2], we say a shelf of width w
is dense when it contains items of total width greater than w − ε and sparse otherwise.

When the instance consists only of narrow items, the concept of shelf algorithms yields
an online AFPTAS immediately. Consider the following first-fit shelf algorithm: Place an
item of group r into the first shelf of group r where it fits, open a new shelf of group r only
if necessary5.

5 Note that this simple algorithm works in the online setting since no sorting is necessary (in contrast to
the NFDH algorithm [7], for example).
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I Lemma B.1. If I contains only narrow items, the shelf algorithm with parameter α = ε2

1−ε2

yields a packing of height at most (1 + ε) OPT(I) +O
(
1/ε4

)
.

Proof. For a group r, let Ir = {i ∈ I | h(i) ∈ [(1− α)r, (1− α)r−1)} . Consider the packing
obtained by the shelf algorithm and let βr the number of shelfs of group r. Each dense shelf
for group r contains items of size at least (1 − α)r(1 − ε), see Figure 7. Note that by the
first-fit-principle, for each group at most one shelf is sparse. Thus there are at least βr − 1
dense shelfs for each group r, hence SIZE(Ir) ≥ (βr − 1)(1− α)r(1− ε), or equivalently

βr ≤ SIZE(Ir)(1− α)−r(1− ε)−1 + 1 . (3)

The packing consists of βr shelfs of height (1 − α)r−1 for each group r (set βr = 0, if the
group does not exist). Therefore, the packing height is:

∞∑
r=0

βr(1− α)r−1

≤
∞∑
r=0

(
SIZE(Ir)(1− α)−r(1− ε)−1 + 1

)
(1− α)r−1 eq. (3)

=
∞∑
r=0

SIZE(Ir)(1− α)−1(1− ε)−1 + (1− α)r−1

= 1
(1− ε)(1− α)

∞∑
r=0

SIZE(Ir) +
∞∑
r=0

(1− α)r−1

≤ 1
(1− ε)(1− α) SIZE(I) + 1

α− α2 Geometric series

≤ 1
(1− ε)(1− α) OPT(I) + 1

α− α2

= (1 + ε) OPT(I) +O
(

1
ε4

)
Choice of α

Note that the total height of sparse shelfs is bounded by a constant, even if the number
of groups is unbounded. This follows by the geometric series:

∞∑
r=0

(1− α)r−1 = 1
1− α

∞∑
r=0

(1− α)r = 1
1− α

1
α

= 1
α− α2 J

B.2 Filling Gaps in the Container Packing
As shown in the previous section, shelfs are a good way to pack narrow items efficiently. But
before opening a new shelf that increases the packing height, we have to ensure that the
existing packing is well-filled. Therefore, the idea is to fill gaps in the container packing
with shelfs of narrow items first. Thereby, a gap is the rectangle of height hB that fills the
remaining width of a level. Only if no significant gaps exist, new shelfs are packed on top of
the packing.

Figure 8a shows the packing structure of the strip on a high level: Here, all C-rectangles
represent containers for big and flat items. If the total width of containers in a level is less
than a threshold value (say 1−O (ε)), these containers get aligned such that the only gap
occurs at the right end of a level. We call these gaps D-containers. Inside, each D-container
is organized in shelfs of narrow items (see Figure 8b).
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Figure 8 D-containers are introduced to fill gaps in the container packing with shelfs.

Since the width of containers changes due to shift operations, without aligning a level
could be fragmented such that no contiguous area can be used for a D-container. As aligning
levels means further repacking, the insertion algorithm for narrow items makes use of a
special buffer, similar to the case of flat items.

Finally, it has to be proven that inserting narrow items this way maintains the overall
approximation guarantee. Note that the first-fit strategy for narrow items (sketched above),
has two important properties: If the item can be placed in a gap, the packing height does
not increase. Now suppose that an item gets placed in a new shelf on top of the packing.
This only occurs, if the existing packing is well-filled, since no significant gaps were found.
As a consequence of this important observation we get the following lemma (proven in [18]):

I Lemma B.2. Let h′ be the height of the container packing. The insertion of narrow items
returns a packing of height hfinal, such that hfinal ≤ max

{
h′, (1 + ε′) SIZE(I) +O

(
ω
ε3

)}
,

where ε′ ∈ O (ε).

Note that I denotes the set of all items (including big, flat, and narrow items). Lemma B.2
immediately implies that the final packing height is at most (1+O (ε)) OPT(I)+O (poly(1/ε)):
We can use Lemma 2.3 to bound the height h′ of the container packing and the fact that
SIZE(I) ≤ OPT(I).
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