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Abstract
In this paper, we consider the problem of maximizing a monotone submodular function subject
to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially
and at any point of time, the algorithm has access only to a small fraction of the data stored in
primary memory. For this problem, we propose a (0.363− ε)-approximation algorithm, requiring
only a single pass through the data; moreover, we propose a (0.4 − ε)-approximation algorithm
requiring a constant number of passes through the data. The required memory space of both
algorithms depends only on the size of the knapsack capacity and ε.
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1 Introduction

A set function f : 2E → R+ on a ground set E is called submodular if it satisfies the
diminishing marginal return property, i.e., for any subsets S ⊆ T ( E and e ∈ E \T , we have

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T ).

A function is monotone if f(S) ≤ f(T ) for any S ⊆ T . Submodular functions play a
fundamental role in combinatorial optimization, as they capture rank functions of matroids,
edge cuts of graphs, and set coverage, just to name a few examples. Besides their theoretical
interests, submodular functions have attracted much attention from the machine learning
community because they can model various practical problems such as online advertising [1,
11, 18], sensor location [12], text summarization [16, 17], and maximum entropy sampling [14].
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11:2 Streaming Monotone Submodular Maximization under a Knapsack Constraint

Many of the aforementioned applications can be formulated as the maximization of a
monotone submodular function under a knapsack constraint. In this problem, we are given
a monotone submodular function f : 2E → R+, a size function c : E → N, and an integer
K ∈ N, where N denotes the set of positive integers. The problem is defined as

maximize f(S) subject to c(S) ≤ K, (1)

where we denote c(S) =
∑
e∈S c(e) for a subset S ⊆ E. Throughout this paper, we assume

that every item e ∈ E satisfies c(e) ≤ K as otherwise we can simply discard it. Note that,
when c(e) = 1 for every item e ∈ E, the constraint coincides with a cardinality constraint.

The problem of maximizing a monotone submodular function under a knapsack constraint
is classical and well-studied. First introduced by Wolsey [20], the problem is known to be NP-
hard but can be approximated within the factor of (close to) 1−1/e; see e.g., [3, 10, 13, 8, 19].

In some applications, the amount of input data is much larger than the main memory
capacity of individual computers. In such a case, we need to process data in a streaming
fashion. That is, we consider the situation where each item in the ground set E arrives
sequentially, and we are allowed to keep only a small number of the items in memory at
any point. This setting effectively rules out most of the techniques in the literature, as
they typically require random access to the data. In this work, we also assume that the
function oracle of f is available at any point of the process. Such an assumption is standard
in the submodular function literature and in the context of streaming setting [2, 7, 21].
Badanidiyuru et al. [2] discuss several interesting and useful functions where the oracle can
be implemented using a small subset of the entire ground set E.

We note that the problem, under the streaming model, has so far not received its deserved
attention in the community. Prior to the present work, we are aware of only two: for the
special case of cardinality constraint, Badanidiyuru et al. [2] gave a single-pass (1/2 − ε)-
approximation algorithm; for the general case of a knapsack constraint, Yu et al. [21] gave a
single-pass (1/3− ε)-approximation algorithm, both using O(K log(K)/ε) space.

We now state our contribution.

I Theorem 1. For the problem (1),
1. there is a single-pass streaming algorithm with approximation ratio 4/11− ε ≈ 0.363− ε,
2. there is a multiple-pass streaming algorithm with approximation ratio 2/5− ε = 0.4− ε.
Both algorithms use O(K · poly(ε−1)polylog(K)) space.

Our Technique

We begin by a straightforward generalization of the algorithm of [2] for the special case
of cardinality constraint (Section 2). This algorithm proceeds by adding a new item into
the current set only if its marginal-ratio (its marginal return with respect to the current
set divided by its size) exceeds a certain threshold. This algorithm performs well when all
items in OPT are relatively small in size, where OPT is an optimal solution. However, in
general, it only gives (1/3− ε)-approximation. Note that this technique can be regarded as a
variation of the one in [21]. To obtain better approximation ratio, we need new ideas.

The difficulty in improving this algorithm lies in the following case: A new arriving item
that is relatively large in size, passes the marginal-ratio threshold, and is part of OPT, but
its addition would cause the current set to exceed the capacity K. In this case, we are forced
to throw it away, but in doing so, we are unable to bound the ratio of the function value of
the current set against that of OPT properly.
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We propose a branching procedure to overcome this issue. Roughly speaking, when the
function value of the current set is large enough (depending on the parameters), we create
a secondary set. We add an item to the secondary set only if it passes the marginal-ratio
threshold (with respect to the original set) but its addition to the original set would violate
the size constraint. In the end, whichever set achieves the higher value is returned. In a
way, the secondary set serves as a “back-up” with enough space in case the original set does
not have it, and this allows us to bound the ratio properly. Sections 3 and 4 are devoted to
explaining this branching algorithm, which gives (4/11− ε)-approximation with a single pass.

We note that the main bottleneck of the above singe-pass algorithm lies in the situation
where there is a large item in OPT whose size exceeds K/2. In Section 5, we show that
we can first focus on only the large items (more specifically, those items whose size differ
from the largest item in OPT by (1 + ε) factor) and choose O(1) of them so that at least
one of them, along with the rest of OPT (excluding the largest item in it), gives a good
approximation to f(OPT). Then in the next pass, we can apply a modified version of the
original single-pass algorithm to collect small items. This multiple-pass algorithm gives a
(2/5− ε)-approximation.

We remark that the proofs of some lemmas and theorems are omitted due to the page
limitation, which can be found in the full version of this paper.

Related Work

Maximizing a monotone submodular function subject to various constraints is a subject that
has been extensively studied in the literature. We are unable to give a complete survey
here and only highlight the most representative and relevant results. Besides a knapsack
constraint or a cardinality constraint mentioned above, the problem has also been studied
under (multiple) matroid constraint(s), p-system constraint, multiple knapsack constraints.
See [4, 9, 13, 8, 15] and the references therein. In the streaming setting, other than the
knapsack constraint that we have discussed before, there are also works considering a matroid
constraint. Chakrabarti and Kale [5] gave 1/4-approximation; Chekuri et al. [7] gave the
same ratio. Very recently, for the special case of partition matroid, Chan et al. [6] improved
the ratio to 0.3178.

Notation

For a subset S ⊆ E and an element e ∈ E, we use the shorthand S + e and S − e to stand
for S ∪ {e} and S \ {e}, respectively. For a function f : 2E → R, we also use the shorthand
f(e) to stand for f({e}). The marginal return of adding e ∈ E with respect to S ⊆ E is
defined as f(e | S) = f(S + e)− f(S). We frequently use the following, which is immediate
from the diminishing marginal return property:

I Proposition 2. Let f : 2E → R+ be a monotone submodular function. For two subsets
S ⊆ T ⊆ E, it holds that f(T ) ≤ f(S) +

∑
e∈T\S f(e | S).

2 Single-Pass (1/3 − ε)-Approximation Algorithm

In this section, we present a simple (1/3− ε)-approximation algorithm that generalizes the
algorithm for a cardinality constraint in [2]. This algorithm will be incorporated into several
other algorithms introduced later.

APPROX/RANDOM’17



11:4 Streaming Monotone Submodular Maximization under a Knapsack Constraint

Algorithm 1
1: procedure MarginalRatioThresholding(α, v) . α ∈ (0, 1], v ∈ R+
2: S := ∅.
3: while item e is arriving do
4: if f(e|S)

c(e) ≥
αv−f(S)
K−c(S) and c(S + e) ≤ K then S := S + e.

5: return S.

2.1 Thresholding Algorithm with Approximate Optimal Value
In this subsection, we present an algorithm MarginalRatioThresholding, which achieves (almost)
1/3-approximation given a (good) approximation v to f(OPT) for an optimal solution OPT.
This assumption is removed in Section 2.2.
Given a parameter α ∈ (0, 1] and v ∈ R+, MarginalRatioThresholding attempts to add a new
item e ∈ E to the current set S ⊆ E if its addition does not violate the knapsack constraint
and e passes the marginal-ratio threshold condition, i.e.,

f(e | S)
c(e) ≥ αv − f(S)

K − c(S) . (2)

The detailed description of MarginalRatioThresholding is given in Algorithm 1.
Throughout this subsection, we fix S̃ = MarginalRatioThresholding(α, v) as the output of

the algorithm. Then, we have the following lemma.

I Lemma 3. The following hold:
(1) During the execution of the algorithm, the current set S ⊆ E always satisfies f(S) ≥

αvc(S)/K. Moreover, if an item e ∈ E passes the condition (2) with the current set S,
then f(S + e) ≥ αvc(S + e)/K.

(2) If an item e ∈ E fails the condition (2), i.e., f(e|S)
c(e) < αv−f(S)

K−c(S) , then we have f(e | S̃) <
αvc(e)/K.

An item e ∈ OPT is not added to S̃ if either e does not pass the condition (2), or its
addition would cause the size of S to exceed the capacity K. We name the latter condition
as follows:

I Definition 4. An item e ∈ OPT is called bad if e passes the condition (2) but the total
size exceeds K when added, i.e., f(e | S) ≥ αv−f(S)

K−c(S) , c(S + e) > K and c(S) ≤ K, where S
is the set we have just before e arrives.

The following lemma says that, if there is no bad item, then we obtain a good approximation.

I Lemma 5. If v ≤ f(OPT) and there have been no bad item, then f(S̃) ≥ (1− α)v holds.

Proof. By the submodularity and the monotonicity, we have v ≤ f(OPT) ≤ f(OPT ∪ S̃) ≤
f(S̃) +

∑
e∈OPT\S̃ f(e | S̃). Since we have no bad item, f(e | S̃) ≤ αvc(e)/K for any

e ∈ OPT \ S̃ by Lemma 3 (2). Hence, we have v ≤ f(S̃) +αv, implying f(S̃) ≥ (1−α)v. J

Consider an algorithm Singleton, which takes the best singleton as shown in Algorithm 2.
If some item e ∈ OPT is bad, then, together with S̃′ = Singleton(), we can achieve (almost)
1/3-approximation.

I Theorem 6. We have max{f(S̃), f(S̃′)} ≥ min{α/2, 1 − α}v. The right-hand side is
maximized to v/3 when α = 2/3.
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Algorithm 2
1: procedure Singleton()
2: S := ∅.
3: while item e is arriving do
4: if f(e) > f(S) then S := {e}.
5: return S.

Algorithm 3
1: procedure DynamicMRT(ε, α) . ε, α ∈ (0, 1]
2: V := {(1 + ε)i | i ∈ Z+}.
3: For each v ∈ V, set Sv := ∅.
4: while item e is arriving do
5: m := max{m, f(e)}.
6: I := {v ∈ V | m ≤ v ≤ Km/α}.
7: Delete Sv for each v 6∈ I.
8: for each v ∈ I do
9: if f(e|Sv)

c(e) ≥ αv−f(Sv)
K−c(Sv) and c(Sv + e) ≤ K then Sv := Sv + e.

10: return Sv for v ∈ I that maximizes f(Sv).

Proof. If there exists no bad item, we have f(S̃) ≥ (1−α)v by Lemma 5. Suppose that we have
a bad item e ∈ E. Let Se ⊆ E be the set just before e arrives in MarginalRatioThresholding.
Then, we have f(Se + e) ≥ αvc(Se + e)/K by Lemma 3 (1). Since c(Se + e) > K, this means
f(Se + e) ≥ αv. Since f(Se + e) ≤ f(Se) + f(e) by submodularity, one of f(Se) and f(e) is
at least αv/2. Thus f(S̃) ≥ f(Se) ≥ αv/2 or f(e) ≥ αv/2. J

Therefore, if we have v ∈ R+ with v ≤ f(OPT) ≤ (1 + ε)v, the algorithm that runs
MarginalRatioThresholding(2/3, v) and Singleton() in parallel and chooses the better output
has the approximation ratio of 1

3(1+ε) ≥ 1/3− ε. The space complexity of the algorithm is
clearly O(K).

2.2 Dynamic Updates
MarginalRatioThresholding requires a good approximation to f(OPT). This requirement
can be removed with dynamic updates in a similar way to [2]. We first observe that
maxe∈S f(e) ≤ f(OPT) ≤ K maxe∈S f(e). So if we are given m = maxe∈S f(e) in advance, a
value v ∈ R+ with v ≤ f(OPT) ≤ (1 + ε)v for ε ∈ (0, 1] exists in the guess set I = {(1 + ε)i |
m ≤ (1 + ε)i ≤ Km, i ∈ Z+}. Then, we can run MarginalRatioThresholding for each v ∈ I
in parallel and choose the best output. As the size of I is O(log(K)/ε), the total space
complexity is O(K log(K)/ε).

To get rid of the assumption that we are given m in advance, we consider an algorithm,
called DynamicMRT, which dynamically updates m to determine the range of guessed optimal
values. More specifically, it keeps the (tentative) maximum value max f(e), where the
maximum is taken over the items e arrived so far, and keeps the approximations v in the
interval between m and Km/α. The details are provided in Algorithm 3. We have the
following guarantee.

I Theorem 7. For ε ∈ (0, 1], the algorithm that runs DynamicMRT(ε, 2/3) and Singleton()
in parallel and outputs the better output is a (1/3−ε)-approximation streaming algorithm with
a single pass for the problem (1). The space complexity of the algorithm is O(K log(K)/ε).

APPROX/RANDOM’17
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Algorithm 4
1: procedure BranchingMRT(ε, α, v, c1, b) . ε, α ∈ (0, 1], v ∈ R+, and c1, b ∈ [0, 1/2]
2: S := ∅.
3: λ := 1

2α(1− b)v.
4: while item e is arriving do
5: Delete e with c(e) > min{(1 + ε)c1, 1/2}K.
6: if f(e|S)

c(e) ≥
αv−f(S)
K−c(S) and c(S + e) ≤ K then S := S + e.

7: if f(S) ≥ λ then break // leave the While loop.
8: Let ê be the latest added item in S.
9: if c(S) ≥ (1− b)K then S′0 := {ê} else S′0 := S.

10: S′ := S′0.
11: while item e is arriving do
12: Delete e with c(e) > min{(1 + ε)c1, 1/2}K.
13: if f(e|S)

c(e) ≥
αv−f(S)
K−c(S) and c(S + e) ≤ K then S := S + e.

14: if f(e|S)
c(e) ≥

αv−f(S)
K−c(S) and c(S + e) > K then

15: if f(S′) < f(S′0 + e) then S′ := S′0 + e.
16: return S or S′ whichever has the larger function value.

3 Improved Single-Pass Algorithm for Small-Size Items

Let OPT = {o1, o2, . . . , o`} be an optimal solution with c(o1) ≥ c(o2) ≥ · · · ≥ c(o`). The
main goal of this section is achieving (2/5− ε)-approximation, assuming that c(o1) ≤ K/2.
The case with c(o1) > K/2 will be discussed in Section 4.

3.1 Branching Framework with Approximate Optimal Value
We here provide a framework of a branching algorithm BranchingMRT as Algorithm 4. This
will be used with different parameters in Section 3.2.

Let v and c1 be (good) approximations to f(OPT) and c(o1)/K, respectively, and let b ≤
1/2 be a parameter. The value c1 is supposed to satisfy c1 ≤ c(o1)/K ≤ (1 + ε)c1, and hence
we ignore items e ∈ E with c(e) > min{(1 + ε)c1, 1/2}K. The basic idea of BranchingMRT
is to take only items with large marginal ratios, similarly to MarginalRatioThresholding. The
difference is that, once f(S) exceeds a threshold λ, where λ = 1

2α (1− b) v, we store either
the current set S or the latest added item as S′. This guarantees that f(S′) ≥ λ and
c(S′) ≤ (1− b)K, which means that S′ has a large function value and sufficient room to add
more elements. We call the process of constructing S′ branching. We continue to add items
with large marginal ratios to the current set S, and if we cannot add an item to S because it
exceeds the capacity, we try to add the item to S′. Note that the set S′, after branching,
can have at most one extra item; but this extra item can be replaced if a better candidate
comes along (See line 14–15).

Remark that the sequence of sets S in BranchingMRT is identical to that in MarginalRa-
tioThresholding. Hence, we do not need to run MarginalRatioThresholding in parallel to this
algorithm. We say that an item e ∈ OPT is bad if it is bad in the sense of MarginalRa-
tioThresholding, i.e., it satisfies the condition in Definition 4. We have the following two
lemmas.

I Lemma 8. For a bad item e with c(e) ≤ bK, let Se be the set just before e arrives in
Algorithm 4. Then f(Se) ≥ λ holds. Thus branching has happened before e arrives.
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Proof. Sine e is a bad item, we have c(Se) > K−c(e) ≥ (1−b)K. Hence f(Se) ≥ α(1−b)v ≥ λ
by Lemma 3 (1). Since the value of f is non-decreasing during the process, it means that
branching has happened before e arrives. J

I Lemma 9. It holds that f(S′0) ≥ λ and c(S′0) ≤ (1− b)K.

Proof. We denote by S the set obtained right after leaving the while loop from Line 4.
If c(S) < (1 − b)K, then f(S′0) = f(S) ≥ λ. Otherwise, since c(S) ≥ (1 − b)K, we have
f(S) ≥ α(1 − b)v ≥ 2λ by Lemma 3 (1). Hence f(S′0) = f(ê) ≥ λ since f(S − ê) < λ and
the submodularity. The second part holds since c(ê) ≤ K/2 ≤ (1− b)K by b ≤ 1/2. J

Let S̃ and S̃′ be the final two sets computed by BranchingMRT. Note that we can regard
S̃ as the output of MarginalRatioThresholding and S̃′ as the final set obtained by adding at
most one item to S′0.

Observe that the number of bad items depends on the parameter α. As we will show in
Section 3.2, by choosing a suitable α, if we have more than two bad items, then the size of S̃
is large enough, implying that f(S̃) is already good for approximation (due to Lemma 3 (1)).
Therefore, in the following, we just concentrate on the case when we have at most two bad
items.

I Lemma 10. Let α be a number in (0, 1], and suppose that we have only one bad item ob.
If v ≤ f(OPT) and b ∈ [c(ob)/K, (1 + ε)c(ob)/K], then it holds that

max{f(S̃), f(S̃′)} ≥ 1
2

(
1− αK − c(ob)

2K

)
v−εαc(ob)

4K v =
(

1
2

(
1− αK − c(ob)

2K

)
−O(ε)

)
v.

Proof. Suppose not, that is, suppose that both of f(S̃) and f(S̃′) are smaller than βv, where
β = 1

2 (1− αK−c(ob)
2K )− αc(ob)

4K ε. We denote Os = OPT \ {ob}.
Since the bad item ob satisfies c(ob) ≤ bK, it arrives after branching by Lemma 8. By

Lemma 9, we have c(S′0 + ob) ≤ K. Since f(S̃′) is less than βv, we see that f(S′0 + ob) < βv.
Since f(S′0) ≥ λ,

f(OPT) ≤ f(ob | S′0) + f(S′0 ∪Os) < (βv − λ) + f(S′0 ∪Os). (3)

Since S′0 ⊆ S̃, submodularity implies that

f(S′0 ∪Os) ≤ f(S̃ ∪Os) ≤ f(S̃) +
∑

e∈Os\S̃

f(e | S̃). (4)

Since f(S̃) < βv and no item in Os is bad, (3) and (4) imply by Lemma 3 (2) that

v ≤ f(OPT) < (βv − λ) + f(S′0 ∪Os) < (βv − λ) + βv + αc(Os)
K

v

≤ 2βv − 1
2α(1− b)v + α

(
1− c(ob)

K

)
v.

Therefore, we have

β >
1
2

(
1 + α

2c(ob)/K − b− 1
2

)
.

Since b ≤ (1 + ε)c(ob)/K, we obtain

β >
1
2

(
1− (K − c(ob))α

2K

)
− αc(ob)

4K ε,

which is a contradiction. This completes the proof. J

APPROX/RANDOM’17



11:8 Streaming Monotone Submodular Maximization under a Knapsack Constraint

For the case when we have exactly two bad items, we obtain the following guarantee.

I Lemma 11. Let α be a number in (0, 1], and suppose that we have exactly two bad items
ob and om with c(ob) ≥ c(om). If v ≤ f(OPT) and b ∈ [c(ob)/K, (1 + ε)c(ob)/K], then it
holds that

max{f(S̃), f(S̃′)} ≥ 1
3

(
1 + α

c(om)
K

)
v − αc(ob)

3K εv =
(

1
3

(
1 + α

c(om)
K

)
−O(ε)

)
v.

3.2 Algorithms with Guessing Large Items
We now use BranchingMRT to obtain a better approximation ratio. In the new algorithm,
we guess the sizes of a few large items in an optimal solution OPT, and then use them to
determine the parameter α.

We first remark that, when |OPT| ≤ 2, we can easily obtain a 1/2-approximate solution
with a single pass. In fact, since f(OPT) ≤

∑`
i=1 f(oi) where ` = |OPT|, at least one of oi’s

satisfies f(oi) ≥ f(OPT)/`, and hence Singleton returns a 1/2-approximate solution when
` ≤ 2. Thus, in what follows, we may assume that |OPT| ≥ 3.

We start with the case that we have guessed the largest two sizes c(o1) and c(o2) in OPT.

I Lemma 12. Let ε ∈ (0, 1], and suppose that v ≤ f(OPT) and ci ≤ c(oi)/K ≤ (1 + ε)ci for
i ∈ {1, 2}. Then, S̃′ = BranchingMRT(ε, α, v, c1, b) with α = 1/(2− c2) or 2/(5− 4c2 − c1)
and b = min{(1 + ε)c1, 1/2} satisfies

f(S̃′) ≥
(

min
{

1− c2

2− c2
,

2(1− c2)
5− 4c2 − c1

}
−O(ε)

)
v. (5)

Proof. Let S̃ = MarginalRatioThresholding(α, v). Note that f(S̃′) ≥ f(S̃). If S̃ has size at
least (1− (1 + ε)c2)K, then Lemma 3 (1) implies that

f(S̃) ≥ α(1− (1 + ε)c2)v = α(1− c2)v −O(ε)v.

Otherwise, c(S̃) < (1− (1 + ε)c2)K. In this case, we see that only the item o1 can have size
more than (1 + ε)c2K, and hence only o1 can be a bad item. If o1 is not a bad item, then we
have no bad item, and hence Lemma 5 implies that

f(S̃) ≥ (1− α)v.

If o1 is bad, then Lemma 10 implies that

f(S̃′) ≥ 1
2

(
1− α1− c1

2

)
v −O(ε)v.

Thus the approximation ratio is the minimum of the RHSes of the above three inequalities.
This is maximized when α = 1/(2− c2) or α = 2/(5− 4c2 − c1), and the maximum value is
equal to the RHS of (5). J

Note that the approximation ratio achieved in Lemma 12 becomes 1/3−O(ε) when, for
example, c1 = c2 = 1/2. Hence, the above lemma does not show any improvement over
Theorem 6 in the worst case. Thus, we next consider the case that we have guessed the largest
three sizes c(o1), c(o2), and c(o3) in OPT. Using Lemma 11 in addition to Lemmas 3 (1), 5
and 10, we have the following guarantee.
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I Lemma 13. Let ε ∈ (0, 1], and suppose that v ≤ f(OPT) and ci ≤ c(oi)/K ≤ (1 + ε)ci
for i ∈ {1, 2, 3}. Then the better output S̃′ of BranchingMRT(ε, α, v, c1, b1) and Branch-
ingMRT(ε, α, v, c1, b2) with α = 1/(2 − c3) or 2/(c2 + 3), b1 = min{(1 + ε)c1, 1/2}, and
b2 = min{(1 + ε)c2, 1/2} satisfies

f(S̃′) ≥
(

min
{

1− c3

2− c3
,
c2 + 1
c2 + 3

}
−O(ε)

)
v.

Proof. Let S̃ = MarginalRatioThresholding(α, v). If S̃ has size at least (1− (1 + ε)c3)K, then
we have by Lemma 3 (1)

f(S̃) ≥ α(1− (1 + ε)c3)v = α(1− c3)v −O(ε)v.

Otherwise, c(S̃) < (1− (1 + ε)c3)K. In this case, we see that only o1 and o2 can have size
more than (1 + ε)c3, and hence only they can be bad items. If we have no bad item, it holds
by Lemma 5 that

f(S̃) ≥ (1− α)v.

Suppose we have one bad item. If it is o1 then Lemma 10 with b1 implies

f(S̃′) ≥
(

1
2

(
1− α1− c1

2

)
−O(ε)

)
v,

and, if it is o2, we obtain by Lemma 10 with b2

f(S̃′) ≥
(

1
2

(
1− α1− c2

2

)
−O(ε)

)
v.

Moreover, if we have two bad items o1 and o2, then Lemma 11 implies

f(S̃′) ≥
(

1
3 (1 + αc2)−O(ε)

)
v.

Therefore, the approximation ratio is the minimum of the RHSes in the above five inequalities,
which is maximized to

min
{

1− c3

2− c3
,
c2 + 1
c2 + 3

}
−O(ε),

when α = 1/(2− c3) or α = 2/(c2 + 3). J

We now see that we get an approximation ratio of 2/5−O(ε) by combining the above
two lemmas.

I Theorem 14. Let ε ∈ (0, 1] and suppose that v ≤ f(OPT) ≤ (1 + ε)v and ci ≤ c(oi)/K ≤
(1 + ε)ci for i ∈ {1, 2, 3}. If c(o1) ≤ K/2, then we can obtain a (2/5 − O(ε))-approximate
solution with a single pass.

Proof. We run the two algorithms with the optimal α shown in Lemmas 12 and 13 in parallel.
Let S̃ be the output with the better function value. Then, we have f(S̃) ≥ βv, where

β = max
{

min
{

1− c2

2− c2
,

2(1− c2)
5− 4c2 − c1

}
,min

{
1− c3

2− c3
,
c2 + 1
c2 + 3

}}
−O(ε).

We can confirm that the first term is at least 2/5, and thus S̃ is a (2/5−O(ε))-approximate
solution. J

APPROX/RANDOM’17
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Algorithm 5
1: procedure DynamicBranchingMRT(ε)
2: V := {(1 + ε)i | i ∈ Z+}.
3: For each c1, c2, c3 ∈ V with c3 ≤ c2 ≤ c1 ≤ 1/2 and each b ∈ {(1+ε)c1, (1+ε)c2, 1/2},

do the following with α defined based on Lemmas 12 and 13.
4: For each v ∈ V, set Sv := ∅.
5: while item e is arriving do
6: Delete e with c(e) > (1 + ε)c1K.
7: m := max{m, f(e)}.
8: I := {v ∈ V | m ≤ v ≤ Km/α}.
9: Delete Sv (along with Ŝv and S′v if exists) such that v 6∈ I.

10: for v ∈ V do
11: if f(Sv) < λ then
12: if f(e|Sv)

c(e) ≥ αv−f(Sv)
K−c(Sv) and c(Sv + e) ≤ K then Sv := Sv + e.

13: if f(Sv) ≥ λ then
14: if c(S) ≥ (1− b)K then S′ := {e} else S′ := S.
15: Ŝv := S′.
16: else
17: if f(e|Sv)

c(e) ≥ αv−f(Sv)
K−c(Sv) and c(Sv + e) ≤ K then Sv := Sv + e.

18: if f(e|Sv)
c(e) ≥ αv−f(Sv)

K−c(Sv) and c(Sv + e) > K then
19: if f(S′v) < f(Ŝv + e) then S′v := Ŝv + e.
20: S := Sv for v ∈ I that maximizes f(Sv).
21: S′ := S′v for v ∈ I that maximizes f(S′v).
22: return S or S′ whichever has the larger function value.

To eliminate the assumption that we are given v, we can design a dynamic-update
version of BranchingMRT by keeping the interval that contains the optimal value, similarly
to Theorem 7. DynamicBranchingMRT, given in Algorithm 5, is a dynamic-update version
of BranchingMRT. The proof for updating the interval I dynamically is the same as the
proof of Theorem 7. The number of streams for guessing v is O(log(K)/ε). We also guess ci
for i ∈ {1, 2, 3} from {(1 + ε)j | j ∈ Z+}. As 1 ≤ c(oi) ≤ K/2 for i ∈ {1, 2, 3}, the number
of guessing for ci is O(log(K)/ε). Hence, including v, there are O((log(K)/ε)4) streams in
parallel. To summarize, we obtain the following:

I Theorem 15. Suppose that c(o1) ≤ K/2. The algorithm that runs DynamicBranchingMRT
and Singleton in parallel and takes the better output is a (2/5− ε)-approximation streaming
algorithm with a single pass for the problem (1). The space complexity of the algorithm is
O(K(log(K)/ε)4).

4 Single-Pass (4/11 − ε)-Approximation Algorithm

In this section, we consider the case that c(o1) is larger than K/2. For the purpose, we
consider the problem of finding a set S of items that maximizes f(S) subject to the constraint
that the total size is at most pK, for a given number p ≥ 2. We say that a set S of items is
a (p, α)-approximate solution if c(S) ≤ pK and f(S) ≥ αf(OPT), where OPT is an optimal
solution of the original instance.
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I Theorem 16. For a number p ≥ 2, there is a
(
p, 2p

2p+3 − ε
)
-approximation streaming

algorithm with a single pass for the problem (1). In particular, when p = 2, it admits
(2, 4/7− ε)-approximation. The space complexity of the algorithm is O(K(log(K)/ε)3).

The basic framework of the algorithm is the same as in Section 3; we design a thresholding
algorithm and a branching algorithm, where the parameters are different and the analysis is
simpler.

Using Theorem 16, we can design a (4/11− ε)-approximation streaming algorithm for an
instance having a large item.

I Theorem 17. For the problem (1), there exists a (4/11 − ε)-approximation streaming
algorithm with a single pass. The space complexity of the algorithm is O(K(log(K)/ε)4).

Proof. Let o1 be an item in OPT with the maximum size. If c(o1) ≤ K/2, then Theorem 15
gives a (2/5−O(ε))-approximate solution, and thus we may assume that c(o1) > K/2. Note
that there exists only one item whose size is more thanK/2. Let β be the target approximation
ratio which will be determined later. We may assume that f(o1) < βf(OPT), as otherwise
Singleton (Algorithm 2) gives β-approximation. Then, we see f(OPT− o1) > (1− β)f(OPT)
and c(OPT − o1) < K/2. Consider maximizing f(S) subject to c(S) ≤ K/2 in the set
{e ∈ E | c(e) ≤ K/2}. The optimal value is at least f(OPT − o1) > (1 − β)f(OPT).
We now apply Theorem 16 with p = 2 to this problem. Then, the output S̃ has size
at most K, and moreover, we have f(S̃) ≥

( 4
7 −O(ε)

)
(1 − β)f(OPT). Thus, we obtain

min{β, ( 4
7 −O(ε))(1− β)}-approximation. This approximation ratio is maximized to 4/11

when β = 4/11. J

5 Multiple-Pass Streaming Algorithm

In this section, we provide a multiple-pass streaming algorithm with approximation ratio
2/5− ε.

We first consider a generalization of the original problem. Let ER ⊆ E be a subset of the
ground set E. For ease of presentation, we will call ER the red items. Consider the problem
defined below:

maximize f(S) subject to c(S) ≤ K, |S ∩ ER| ≤ 1. (6)

In the following, we show that, given ε ∈ (0, 1], an approximation v to f(OPT) with
v ≤ f(OPT) ≤ (1 + ε)v, and an approximation θ to f(or) for the unique item or in
OPT ∩ ER, we can choose O(1) of the red items so that one of them e ∈ ER satisfies that
f(OPT− or + e) ≥ (Γ(θ)−O(ε))v, where Γ(·) is a piecewise linear function lower-bounded
by 2/3. For technical reasons, we will choose θ to be one of the geometric series (1 + ε)i/2
for i ∈ Z.

I Theorem 18. Suppose that we are given ε ∈ (0, 1], v ∈ R+ with v ≤ f(OPT) ≤ (1 + ε)v,
and θ ∈ R+ with the following property:
1. if θ ≤ 1/2, θv/(1 + ε) ≤ f(or) ≤ θv,
2. if θ ≥ 1/2, θv ≤ f(or) ≤ (1 + ε)θv ≤ v.
Then, there is a single-pass streaming algorithm that chooses a set S of red items in ER
with constant size such that (i) for any item e ∈ S, θv/(1 + ε) ≤ f(or) ≤ θv when θ ≤ 1/2
and θv ≤ f(or) ≤ (1 + ε)θv ≤ v when θ ≥ 1/2, and (ii) some item e ∈ S satisfies that
f(OPT− or + e) ≥ (Γ(θ)−O(ε))v, where Γ(θ) is defined as follows: when θ ∈ (0, 1/2),

Γ(θ) = max
{ t(t+ 3)

(t+ 1)(t+ 2) −
t− 1
t+ 1θ | t ∈ Z+, t >

1
θ
− 2
}
, (7)

when θ ∈ [1/2, 2/3), Γ(θ) = 2/3, and when θ ∈ [2/3, 1], Γ(θ) = θ.

APPROX/RANDOM’17
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Algorithm 6
1: procedure MultiPassKnapsack(ε, v, θ, c1) . ε ∈ (0, 1], v ∈ R+, and θ, c1 ∈ [0, 1].
2: Use the algorithm in Theorem 18 to choose a set S of items e with c1/(1 + ε) ≤
c(e)/K ≤ c1 so that one of them e ∈ S satisfies f(OPT− o1 + e) ≥ v(Γ(θ)−O(ε)).

3: for each item e ∈ S do
4: Define a submodular function ge(·) = f(· | e).
5: Apply the marginal-ratio thresholding algorithm (Lemma 21) with regard to

function ge, where h = 1−c1
1−(c1/(1+ε)) and K ′ = (1− (c1/(1 + ε))K.

6: Let the resultant set be Se.
7: return the solution Se ∪ {e} with maxe∈S f(Se + e).

We next show that when c(o1) ≥ K/2, we can use multiple passes to get a (2/5 − ε)-
approximation for the problem (1). Let OPT = {o1, o2, . . . , o`} be an optimal solution with
c(o1) ≥ c(o2) ≥ · · · ≥ c(o`). Suppose that c1 ∈ R+ satisfies 1/2 ≤ c1/(1 + ε) ≤ c(o1)/K ≤ c1.

We observe the following claims.

I Claim 19. When c(o1) ≥ K/2, we may assume that 3
10f(OPT) < f(o1) < 2

5f(OPT).

I Claim 20. We may assume that c(o1) ≤ (1 + ε) 2
3K.

We use the first pass to estimate f(OPT) as follows. For an error parameter ε ∈ (0, 1],
perform the single-pass algorithm in Theorem 7 to get a (1/3−ε)-approximate solution S ⊆ E,
which can be used to upper bound the value of f(OPT), that is, f(S) ≤ f(OPT) ≤ (3+ε)f(S).
We then find the geometric series to guess its exact value. Thus, we may assume that we are
given the value v with v ≤ f(OPT) ≤ (1 + ε)v.

Below we show how to obtain a solution of value at least (2/5−O(ε))v, using two more
passes. Before we start, we introduce a slightly modified versions of the algorithms presented
in Section 2; it will be used as a subroutine.

I Lemma 21. Consider the problem (1) with the knapsack capacity K ′. Let h ∈ R+, and
suppose that Algorithms 1 and 2 are modified as follows:

(At Line 4 in Algorithm 1) A new item e is added into the current set S only if f(e|S)
c(e) ≥

αv−f(S)
hK′−c(S) and c(S + e) ≤ hK ′.
(At Line 4 in Algorithm 2) A new item e is taken into account only if c(e) ≤ hK ′.

Then, the best returned set S̃ of the two algorithms with α = 2h
h+2 satisfies that c(S̃) ≤ hK ′

and f(S̃) ≥ h
h+2v. Moreover, we can obtain a

(
h
h+2 −O(ε)

)
-approximate solution with the

dynamic update technique.

Let all items e ∈ E whose sizes c(e) satisfy c1/(1 + ε) ≤ c(e)/K ≤ c1 be the red items.
By Theorem 18, we can select a set S of the red items so that one of them guarantees
f(OPT− o1 + e) ≥ (Γ(θ)−O(ε))v, where θ satisfies the condition in Theorem 18. Note that
any e ∈ S satisfies f(e) ≥ θv/(1 + ε). Also, by Claim 19, we see 3

10v < θ < 2
5 (1 + ε)v.

In the next pass, for each e ∈ S, define a new monotone submodular function ge(·) =
f(· | e) and apply the modified thresholding algorithm (Lemma 21) with h = 1−c1

1−(c1/(1+ε))
and K ′ = (1− (c1/(1 + ε))K. Let Se be the output of the modified thresholding algorithm.
Then our algorithm returns the solution Se ∪ {e} with maxe∈S f(Se + e). The detail is given
in Algorithm 6.

The returned solution has size at mostK, since c(Se) ≤ (1−c1)K by Lemma 21. Moreover,
it follows that the returned solution S̃ satisfies that f(S̃) ≥ (2/5−O(ε))v. The next theorem
summarizes our results in this section.
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I Theorem 22. For ε ∈ (0, 1], suppose that v ≤ f(OPT) ≤ (1 + ε)v, 1/2 ≤ c1/(1 + ε) ≤
c(o1)/K ≤ c1, and θ satisfies the condition in Theorem 18. After running MultiPassKnap-
sack(ε, v, θ, c1), there exists an item e ∈ S chosen in Line 2, which, along with Se collected
in Line 6, gives f(Se + e) ≥ (2/5−O(ε))v.

I Theorem 23. Suppose that c(o1) > K/2. There exists an algorithm that uses Multi-
PassKnapsack as a subroutine so that it returns (2/5− ε)-approximation with 3 passes for
the problem (1). The space complexity of the algorithm is O(K(log(K)/ε)2).
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