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Abstract
The Unique Games Conjecture (UGC) has pinned down the approximability of all constraint
satisfaction problems (CSPs), showing that a natural semidefinite programming relaxation offers
the optimal worst-case approximation ratio for any CSP. This elegant picture, however, does not
apply for CSP instances that are perfectly satisfiable, due to the imperfect completeness inherent
in the UGC. For the important case when the input CSP instance admits a satisfying assignment,
it therefore remains wide open to understand how well it can be approximated.

This work is motivated by the pursuit of a better understanding of the inapproximability of
perfectly satisfiable instances of CSPs. Our main conceptual contribution is the formulation of
a (hypergraph) version of Label Cover which we call “V label cover.” Assuming a conjecture
concerning the inapproximability of V label cover on perfectly satisfiable instances, we prove the
following implications:

There is an absolute constant c0 such that for k ≥ 3, given a satisfiable instance of Boolean k-
CSP, it is hard to find an assignment satisfying more than c0k2/2k fraction of the constraints.
Given a k-uniform hypergraph, k ≥ 2, for all ε > 0, it is hard to tell if it is q-strongly colorable
or has no independent set with an ε fraction of vertices, where q = dk +

√
k − 1

2e.
Given a k-uniform hypergraph, k ≥ 3, for all ε > 0, it is hard to tell if it is (k − 1)-rainbow
colorable or has no independent set with an ε fraction of vertices.

We further supplement the above results with a proof that an “almost Unique” version of Label
Cover can be approximated within a constant factor on satisfiable instances.
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1 Introduction

The sustained progress on approximation algorithms and inapproximability results for
optimization problems since the early 1990s has been nothing short of extraordinary. This
has led to a sharp understanding of the approximability threshold of many fundamental
problems, alongside the development of a rich body of techniques on the algorithmic, hardness,
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and mathematical programming aspects of approximate optimization. Yet there also remain
many problems which have resisted resolution and for some there are in fact large gaps
between the known algorithmic and hardness results. Examples include vertex cover, graph
coloring, max-cut, feedback vertex set, undirected multicut, densest subgraph, and so on.

The Unique Games Conjecture of Khot [38] postulates a strong inapproximability result
for a particular class of arity two constraint satisfaction problems. This single assumption has
a remarkable array of consequences, and implies tight inapproximability results for numerous
problems including Vertex Cover [41], max-cut and indeed all constraint satisfaction problems
(CSPs) [39, 49, 52], maximum acyclic subgraph and all ordering CSPs [20], scheduling
problems [4, 3], graph pricing [44], and cut problems like directed multicut [45], to name a
few. Furthermore, for CSPs, the UGC implies that a standard semidefinite programming
relaxation gives the best approximation ratio [52, 53, 8].

While the UGC has identified a common barrier against progress on a host of approxi-
mation problems, there are still several situations it does not apply to. Crucially, imperfect
completeness, where Yes instances are only almost satisfiable, is inherent in the UGC, and
this feature is inherited by the problems it reduces to. In particular, the UGC does not
say anything about problems with perfect completeness, where Yes instances have a perfect
solution obeying all the constraints. Important classes of such problems include satisfiable
instances of CSPs (which have a perfect satisfying assignment and the goal is maximize
the number of satisfied constraints) and coloring graphs/hypergraphs with approximately
optimal number of colors.

Our understanding of approximating satisfiable instances of CSPs still has many gaps.
Håstad’s tight hardness result for approximating Max 3-SAT on satisfiable instances was
much harder to prove than the analogous result for near-satisfiable instances, and was an early
sign of the subtleties of ensuring perfect completeness. The approximability of satisfiable
CSPs corresponds via a direct translation to the power of probabilistically checkable proof
(PCP) systems with perfect completeness – the best soundness error one can achieve with
a k query (non-adaptive) PCP is equal to the best inapproximability factor one can prove
for a satisfiable arity k CSP. For k = 3, the best soundness is 5/8 + ε for any ε > 0, and
this was established only recently via an intricate proof of the approximation resistance of
satisfiable NTW (the arity 3 No-Two predicate which stipulates the number of true literals
must be either 0, 1 or 3) [35]. As a basic open question that still remains wide open, we do
not know the approximability of satisfiable Max NAE-3-SAT (not-all-equal 3-SAT) under
any plausible (or even not so plausible!) conjecture.

The above-mentioned Unique Games hardness results consist of two components: (i) a
dictatorship test that gives a way to test if a function is a dictator or is far from a dictator
(e.g., has no influential coordinates), using constraints corresponding to the problem at
hand (for NAE-3-SAT this would be checking if certain triples of function values are not all
equal), and (ii) a reduction from Unique Games via the dictatorship test that establishes
inapproximability under the UGC. The second step is standard, and it gives a “free pass”
from the world of combinatorics/analysis of Boolean functions to the complexity world.
When we require perfect completeness, no such conjectured off-the-shelf compiler from
dictatorship tests to hardness is known (and such a passage even appears unlikely). For
instance, dictatorship tests with perfect completeness and optimal soundness are known or
Max k-CSP [59] and Max NAE-3-SAT 1. However, in both cases we do not have matching
inapproximability results under any plausible conjecture.

1 Folklore, and this has connections to robust forms of Arrow’s theorem [36] and [50, Sec. 4].
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The closest to a UGC surrogate in the literature is the d-to-1 conjecture also made in [38].
The Unique Games problem is an arity 2 CSP whose constraints are bijections; the d-to-1
Label Cover is an arity 2 CSP whose constraints are d-to-1 functions. When d ≥ 2, deciding
satisfiability of a d-to-1 Label Cover instance is NP-complete, unlike Unique Games whose
satisfiability is trivial to ascertain. Khot’s d-to-1 conjecture states that d-to-1 Label Cover is
also hard to approximate within any constant factor, even on satisfiable instances. Note that
the UGC and d-to-1 conjecture are incomparable in strength; the UGC has simpler bijective
constraints but the d-to-1 conjecture asserts perfect completeness which the UGC cannot.

The d-to-1 conjecture has been used to show some strong inapproximability results with
perfect completeness. Such applications are, however, sporadic and also typically do not
yield tight results. Some of these results are conditioned specifically on the 2-to-1 conjecture,
such as a

√
2− ε inapproximability for vertex cover (mentioned in [38] and explicit in [40]),

Max k-coloring with perfect completeness [27], and coloring 4-colorable graphs [13]. The
d-to-1 conjecture, for any fixed d, has been used to show the approximation resistance
of NTW [51] and a similar result for larger arity [32],2 and finding independent sets in
2-colorable 3-uniform hypergraphs [43]. Yet, the implications of the d-to-1 conjecture are
limited, and it has become apparent that it is not a versatile starting point for hardness
results with perfect completeness.

1.1 Our contributions
Given the above context, our work is motivated by the quest for a better starting point than
2-to-1 Label Cover for inapproximability results with perfect completeness, and which might
be able to give striking consequences similar to the UGC.

Aggressive Unique Games variant. One version of Label Cover that is most similar to
Unique Games, which we call (L, s)-nearly unique Label Cover, has constraint relations in3
[L] × [L] consisting of a matching and s additional edges, for a small s that is a constant
independent of L. For this version, it is NP-hard to decide satisfiability, and in fact one can
give strong reductions matching the performance of dictatorship tests from it. However, this
nearly unique form of Label Cover has a constant factor approximation algorithm with ratio
depending only on s. We prove this result in the full version of the paper.

V label cover. Our main conceptual contribution is the formulation of a (hypergraph)
version of Label Cover which we call “V label cover.” This is an extension of 2-to-1 Label
Cover, where the constraint predicates are 2-to-1 maps from [2L] to [L], whose relation
graph can be visualized as L disjoint “V’s.” In V label cover of arity k, we have “longer V’s”
where the two branches involve k variables which coincide in single variable.4 This is best
illustrated by Figure 1 in Section 3.

We put forth the V label cover conjecture, which asserts a strong inapproximability result
for this problem. For completeness, we want an assignment where for every constraint, the
k variables involved get values in a single “V-branch.” For soundness, we insist that no
assignment even weakly satisfies more than a tiny fraction of constraints, where a constraint

2 These were later improved to NP-hardness in [35] and [63].
3 We denote [L] = {1, . . . , L}.
4 We should mention that our path to the formulation of V label cover was more circuitous, and has its

origins in attempts to define hypergraph versions of the “α Label Cover” problem of [13].

APPROX/RANDOM’17
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is weakly satisfied if two of its k variables get values in some V-branch. 5 For this to make
sense, the “junction” of the V’s cannot all be on the same variable (as in 2-to-1 Label Cover),
as in that case we will have a Unique Label Cover constraint between the other (k − 1)
variables, which we can perfectly satisfy. Therefore, in our V label cover constraints, we have
V’s with junctions at all the k variables involved in the constraint. At a high level, this is
similar to the correlation-breaking constraints of Chan [10].

Near-optimal inapproximability for Max k-CSP with perfect completeness. Assuming
the V label cover conjecture, we prove a near-tight inapproximability result for approximating
satisfiable Max k-CSP over any fixed domain.

I Theorem 1.1. Assume the V label cover conjecture. There is an absolute constant c0 such
that for k ≥ 3, given a satisfiable instance of Boolean k-CSP, it is hard to find an assignment
satisfying more than c0k2/2k fraction of the constraints. For CSP over domain size q ≥ 3,
where q is a prime power, it is hard to satisfy more than c0k3q3/qk of the constraints.

The approximability of Max k-CSP has been the subject of many papers in the past two
decades since the advent of Håstad’s optimal inapproximability results [29]; a partial list
includes [58, 57, 16, 30, 17, 56, 25, 2, 10, 33] on the hardness side, and [60, 61, 28, 11, 25, 46]
on the algorithmic side.

The best known approximation guarantee for Max k-CSP over domain size q is Ω(kq/qk)
(for k ≥ Ω(log q), and 0.62k/2k for the Boolean case [46]. This tight up to constant factors,
due to Chan’s inapproximability factor of O(kq/qk) [10]. However, this hardness does not
apply for satisfiable instances. For satisfiable instances, the best hardness factor is 2O(k1/3)/2k
for Boolean Max k-CSP [33], and qO(

√
k)/qk for Max k-CSP over domain size a prime q [30].

Note that our improved hardness factors (conditioned on the V label cover conjecture) from
Theorem 1.1 are the first to get poly(k, q)/qk type hardness for satisfiable instances (albeit
only for prime powers) and are close to optimal. We note that satisfiable instances can
be easier to approximate – Trevisan gave an elegant linear-algebra based factor (k + 1)/2k
approximation algorithm for satisfiable Boolean Max k-CSP [61] long before Hast’s Ω(k/2k)
algorithm for the general case [28].

Inapproximability for strong and rainbow colorable hypergraphs. Our other application
of the V label cover conjecture is to hypergraph coloring, another fundamental problem where
perfect completeness is crucial. We say a hypergraph is c-colorable if there is a coloring of its
vertices with c colors so that no hyperedge is monochromatic. Given a 2-colorable k-uniform
hypergraph for k ≥ 3, strong inapproximability results that show the NP-hardness of coloring
with any fixed ` number of colors are known [21, 14], and recent developments show hardness
(for k ≥ 8) even for ` = exp((logn)Ω(1)) where n is the number of vertices [42, 62, 34].
However, these results do not apply when the hypergraph has some form of balanced coloring
that is stronger than just being 2-colorable. Specifically, we consider the notions of strong
and rainbow colorability in this work. A hypergraph is q-strongly colorable, q ≥ k (resp.
q-rainbow colorable, q ≤ k) if it can be colored with q colors so that in every hyperedge,
all vertices get distinct colors (resp. all q colors are represented). We refer the reader to
the recent work [23, 6, 5] for further context on these notions. When k = q, so that there

5 This stronger requirement in soundness is common in hypergraph versions of Label Cover. For general
Label Cover the stronger soundness guarantee can be ensured with a minor loss in parameters, but for
V label cover we do not know such a reduction.
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is a perfectly balanced k-coloring where each hyperedge has exactly one vertex of each
of the k colors, one can in polynomial time find a 2-coloring without any monochromatic
hyperedge [47]. Here we prove a strong hardness result for coloring hypergraphs (in fact for
finding sizable independent sets), when this perfect balance condition is relaxed even slightly
(specifically, q = k − 1 for rainbow coloring, and q = k + o(k) for strong coloring).

A q-strong coloring of a hypergraph is also a legal q-coloring of the graph obtained by
converting each of its hyperedges into a clique. For this reason, our hardness result for
strongly colorable hypergraphs also implies hardness results in the more elementary setting
of approximate graph coloring. There are several “pure” NP-hardness results known for graph
coloring (e.g., the best known results in different regimes are [37, 22, 34, 6]), but there is a
gigantic gap between these results and the known algorithms. [13] establishes much improved
results, assuming variants of both the 2–to–1 conjecture as well as a new variant known as
alpha label cover. Their main result is that for all ε > 0, given a 3–colorable graph G, under
these assumptions, it is NP–hard to locate an independent set with |G|ε vertices. In this
work, assuming the V label cover–conjecture, we give a substantial generalization of this
hardness.

I Theorem 1.2. Assume the V label cover conjecture.6
Given a k-uniform hypergraph, k ≥ 2, for all ε > 0, it is hard to tell if it is q-strongly
colorable or has no independent set with an ε fraction of vertices, where q = dk+

√
k− 1

2e.
Given a k-uniform hypergraph, k ≥ 3, for all ε > 0, it is hard to tell if it is (k−1)-rainbow
colorable or has no independent set with an ε fraction of vertices.

The authors of [23] showed that for any ε > 0, it is NP-hard to distinguish if a k-uniform
hypergraph (k even) is a k/2-rainbow colorable or does not have a independent set with
ε fraction of the vertices. The results of [6] give results for strong coloring, but they only
apply when k = 2 or when the weak coloring has only two colors. Thus, modulo the V label
cover–conjecture, our results improve on those in the literature.

These proofs are included in the full version of the paper.

A path to NP-hardness results? In several cases, the UGC conditioned hardness results
were later replaced by NP-hardness results. Examples include some geometric inapproxima-
bility results [26], hardness of Unique Coverage [24], inapproximability results for agnostic
learning [18], tight hardness results for scheduling [55], Chan’s breakthrough showing an
asymptotically tight inapproximability result for (near-satisfiable) Max k-CSP [10], etc. We
hope that establishing a similar body of conditional results for perfect completeness, based
on the V label cover conjecture or related variants, will point to strong inapproximability
results and spur unconditional results in this domain.

1.2 Proof overview
We now briefly describe the steps needed to prove Theorem 1.1 and Theorem 1.2.

In each case, we reduce from a V label cover instance to a constraint satisfaction problem
(with weighted constraints). In Section 3.3, we detail this reduction. The structure of the
reduction has the same standard form as many other inapproximability results. Each vertex
of the V label cover instance is replaced by a constellation of variables, known as a long code.
Each hyperedge of the V label cover instance is replaced by a probability distribution of

6 Technically, we need an “induced” version of the V label cover conjecture for this result.

APPROX/RANDOM’17



4:6 The Quest for Strong Inapproximability Results with Perfect Completeness

constraints between the variables in the correspond long codes. This is done carefully as to
ensure that perfectly strongly satisfiable V label cover instances map to perfectly satisfiable
CSPs.

For each problem type (Max-k-CSP, strong coloring, rainbow coloring), we craft a
probability distribution which exploits its underlying structure. The probability distributions
need to have a special correlation structure in order to be compatible with the V label cover
constraints. We abstract a general notion termed V label cover–compatibility (Definition 3.2)
which captures the properties common to these distributions. For example, we dictate that
each vertex of each long code is sampled uniformly at random. Then, for each application, we
outline the additional properties of our probability distributions in order for the reductions
to have the proper soundness (Definition 4.1).

For the soundness analysis, given a good approximation to the resulting CSP, we seek to
find an approximate weak labeling of the original V label cover instance. To do that, we
attempt to decode each long code by finding one (or many) low-degree influential coordinates;
these coordinates can be viewed as candidate labels for the associated vertex. We then argue
that for a sizable fraction of constraints, two of the decoded labels will belong to the a single
V-branch in the constraint. We can then label our V label cover instance by assigning each
vertex a label selected at random from among its decoded labels, which in expectation finds
a good approximate weak labeling.

In order to guarantee these influential coordinates, we invoke a couple of invariance
principles. For Max-k-CSP, we directly invoke a result due to Mossel (Theorem 2.9) on
pairwise independent probability distributions. This version guarantees a common influential
coordinate between three functions that belongs to a common “V.” A pigeonhole principle
then implies that two of these labels must be in the same branch. For the hypergraph coloring
problems, where we do not have pairwise independence of the distributions, we generalize
the invariance principles of Mossel [48, 13] to yield a common influential coordinate for two
functions that further lie on the same V-branch. This result, is available in the full version
of the paper.

1.3 Organization
In Section 2, we outline the necessary background on CSPs and probability spaces. In
Section 3, we motivate and detail the V label cover–conjecture. In Section 4, we apply V
label cover to the Max-k-CSP problem. In Appendix A, we prove Lemma 4.4.

2 Preliminaries

2.1 Probability distributions
As is now commonplace in hardness of approximation reductions (e.g., [10, 13, 2, 48]), we
utilize the following results on correlated probability spaces.

I Definition 2.1 ([31, 19, 54]7). Let X × Y be a finite joint probability space with a
probability measure µ. The correlation between X and Y , denoted ρ(X,Y ) is defined to be

ρ(X,Y ) = sup
f :X→R,g:Y→R

E[f ]=E[g]=0, Var[f ]=Var[g]=1

[
E

(x,y)∼µ
[f(x)g(y)]

]
.

7 See [1] for a history of this definition.
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This is then easily extended to the correlation of n ≥ 3 spaces.

I Definition 2.2 (Definition 1.9 of [48]). Let X1×X2× · · · ×Xn be a finite joint probability
space. Let Zi = X1 ×X2 × · · · ×Xi−1 ×Xi+1 × · · · ×Xn. Then we define the correlation of
X1, . . . , Xn to be

ρ(X1, X2, . . . , Xn) = max
1≤i≤n

ρ(Xi, Zi).

When a probability space can be decomposed into the product of independent subspaces,
then the correlation behaves elegantly.

I Lemma 2.3 (Theorem 1 of [64]). For all i ∈ [n], let Xi × Yi be a probability space with
measure µi. Assume that µ1, . . . , µn are independent. Then,

ρ(X1 ×X2 × · · · ×Xn, Y1 × Y2 × · · · × Yn) = max
1≤i≤n

ρ(Xi, Yi).

Often it can be difficult to bound the correlation of a distribution away from 1. The
following result is key in reducing these complex correlation problems into rather elementary
graph connectivity problems.

I Lemma 2.4 (Lemma 2.9 of [48]). Let X×Y be a finite joint probability space with measure
µ. Let G be the bipartite graph on X ∪ Y such that (x, y) ∈ X × Y is an edge iff Pr[x, y] > 0
with respect to µ. Assume that G is connected, and let δ be the minimum nonzero probability
in the joint distribution. Then, we have that

ρ(X,Y ) ≤ 1− δ2/2.

2.2 Influences
Recall the influence of a function over a probability space.

I Definition 2.5. Let X1, . . . , Xn be finite independent probability spaces, and let f :
X1×· · ·×Xn → R be a function. Let Yi = X1×· · ·×Xi−1×Xi+1×· · ·×Xn. The influence
is

Infi(f) = E
x∈Yi

[Varz∈Xi f(x1, . . . , xi−1, z, xi+1, . . . , xn)].

Likewise, we need the notion of low-degree influences. We use the multilinear-polynomial
definition used many times previously (e.g., [49, 13, 48]).

I Definition 2.6 (e.g., Definition 3.4, 3.7 of [49]). Let X1, . . . , Xn be finite independent
probability spaces, and let f : X1 × · · · ×Xn → R be a function. For each i ∈ [n], let qi be
the cardinality of the support of Xi. Let α(i)

1 , . . . , α
(i)
qi : Xi → R be an orthonormal basis of

functions such that α(i)
1 ≡ 1. Let Σ = [q1]× · · · [qn]. Now, f can be uniquely expressed as

f =
∑
σ∈Σ

cσ

n∏
i=1

α(i)
σi
.

for cσ ∈ R, which we call the Fourier coefficients. For σ ∈ Q, let |σ| = |{i ∈ [n] | σi 6= 1}|.
The low-degree influence for d ∈ [n] is

Inf≤di f =
∑

σ∈Σ,|σ|≤d,σi 6=1

c2σ.

APPROX/RANDOM’17
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The following is a key elementary fact concerning influences.

I Lemma 2.7 (e.g., Proposition 3.8 [49]). Consider f : X1 × · · · ×Xn → R. For all integers
d ≥ 1,

n∑
i=1

Inf≤di f ≤ dVar f.

In particular, for all τ > 0, |{i ∈ [n] | Inf≤di f ≥ τ}| ≤ dVar f
τ .

Sometimes, we look at f from the perspective of different marginal distributions. Consider
f : X1× · · ·Xn → R where the Xi’s are independent. Furthermore, assume that each Xi can
be written as Xi = Yi,1 × · · ·Yi,`i

, where these Yi,j ’s are independent. Then, we let Inf≤dXi
f

denote the low-degree influence of f in the ith coordinate with respect to the Xi’s. Likewise,
we let Inf≤dYi,j

f be the influence of the (i, j)th coordinate when viewed from the perspective
of f : Y1,1 × · · · × Yn,`n

→ R.
For each (i, j), let β(i,j)

1 , . . . , β
(i,j)
qi,j : Yi,j → R be an orthonormal basis of functions such

that β(i,j)
1 ≡ 1. Note that qi =

∏`i

j=1 qi,j . Let Σ′ = [q1,1] × · · · [qn,`n
]. Then, we have that

there exist cσ’s such that f =
∑
σ∈Σ′ c

′
σ

∏n
i=1 α

(i)
σi . If `i ≤ D for all i, then we have the

following result

I Lemma 2.8 (e.g., Claim 2.7 [13]). If `i ≤ D for all i ∈ [n], then we have for all i, d ∈ [n]
that

Inf≤dXi
f ≤

`i∑
k=1

Inf≤DdYi,k
f.

Thus, there exists k ∈ [`i] such that
1
D

Inf≤dXi
f ≤ Inf≤DdYi,k

f.

Proof. The proof is a straightforward adaptation of the proof of Claim 2.7 in [13]. J

For our applications, we only need the case D = 2.

2.3 Invariance principles
Like [2], we use the following result on pairwise independent probability spaces.

I Theorem 2.9 (Lemmas 6.6, 6.9 [48]). Fix k ≥ 3. For 1 ≤ i ≤ n, let Ωi = X
(1)
i × · · · ×X

(k)
i

be finite pairwise independent probability spaces with probability measure µi such that the
probability measures corresponding to µ1, . . . , µn are independent. Let δ be the minimum
positive probability among all the µi. Let

ρ = max
1≤i≤n

ρ(X(1)
i , . . . , X

(k)
i )

and assume that ρ < 1. For every ε > 0, there exists τ(δ, ε, ρ), d(δ, ε, ρ) > 0 such that for any
functions f1, . . . , fk where fi : X(i)

1 × · · · ×X
(i)
n → [0, 1] if

∀` ∈ [n], |{i | Inf≤d
X

(i)
`

fi > τ}| ≤ 2

then∣∣∣∣∣
k∏
i=1

E[fi]− E

[
k∏
i=1

fi

]∣∣∣∣∣ ≤ ε.
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u1

u2

u3

u4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1 A schematic diagram of the branches for an edge e = (u1, u2, u3, u4) of V label
cover instance Ψ with parameters k = 4 and L = 2. The ith row represents π(e)

i and the jth
column represents the input j. The dashed and dotted lines are to indicated the two different
branches with the same values with respect to π(e). For example, we may deduce from this
diagram that (10, 10, 10, 10) and (9, 10, 11, 11) are two branches of e. In particular, we have that
π

(e)
1 (9) = π

(e)
2 (10) = π

(e)
3 (11) = π

(e)
4 (11). Note that ψ(e)

i (j) =⊥ exactly when the node of the ith
row and jth column is at the intersection of two branches. Compare with Figure 1 of [13].

In other words, if the product of the expected values and the expected value of the product
significantly differ, then there must exist three functions with a common high low-degree
influence coordinate. Note that the number “three” is crucially used in our reduction in
Section 4.

3 V label cover

In this section, we propose a variant of hypergraph label cover which seems to plausibly have
perfect completeness while also allowing for new hardness reductions. It can be thought of
as a generalization of 2-to-1 label cover.

3.1 Definition
Let k ≥ 2 and L ≥ 1 be positive integers. An instance of k-uniform V -label cover is a
k-uniform hypergraph on vertex set U . The constraints are on k-tuples E ⊆ Uk. Each
edge e = (u1, . . . , uk) also has projection maps π(e)

1 , . . . , π
(e)
k : [(2k − 1)L] → [kL] with the

following special property.

The maps are surjective, in particular for all i ∈ [k] and j ∈ [kL],

|(π(e)
i )−1(j)| =

{
1 i ≡ j mod k

2 otherwise

In addition we would like to be able to distinguish between the two labels which map to a
common value. To do this, we supplement the projection maps with distinguishing functions
ψ1, . . . , ψk : [(2k − 1)L]→ {0, 1,⊥} such that for all i ∈ [k], the map x 7→ (π(e)

i (x), ψi(x)) is
injective. Furthermore, if |(π(e)

i )−1(π(e)
i (x))| = 1, then we define ψi(x) =⊥, and otherwise

ψi(x) ∈ {0, 1}. We say that (t1, . . . , tk) ∈ [(2k − 1)L]k is a branch of e if there is ` ∈ [kL]
and b ∈ {0, 1} such that for all i, (π(e)

i (ti), ψ(e)
i (ti)) equals (`, b) or (`,⊥). Note that for each

branch, there is exactly one j ∈ [k] such that ψ(e)
j (tj) =⊥. In fact such such an index satisfies

j ≡ π(e)
i (ti) mod k for all j. We say that i is the junction of the branch.

To better understand the setup, see Figure 1.
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The goal of V -label cover is to produce a labeling of the vertices σ : U → [(2k − 1)L].
We say that a hyperedge e = (u1, . . . , uk) is strongly satisfied if (σ(u1), . . . , σ(uk)) is a
branch. In other words, for all i, j ∈ [k], π(e)

i (σ(ui)) = π
(e)
j (σ(uj)) and either ψ(e)

i (σ(ui)) =
ψ

(e)
j (σ(uj)) 6= ⊥ or exactly one of ψ(e)

i (σ(ui)), ψ(e)
j (σ(uj)) is ⊥. Another way to express this

is that (π(e)
i (σ(ui)), ψ(e)

i (σ(ui))) is uniform except for one i for which ψ(e)
i (σ(ui)) =⊥ (the

meeting point in the ‘V’ of the two branches).
We say the hyperedge is weakly satisfied if for some distinct i, j ∈ [k], π(e)

i (σ(ui)) =
π

(e)
j (σ(uj)) and σ(ui) and σ(uj) are in the same branch.
We now formally state our conjectured intractability of approximating V label cover.

Below we state an “induced” version where in the soundness guarantee, for every labeling,
most of the hyperedges within any subset of vertices of density ε fail to be weakly satisfied.
The induced version is needed for our reduction to hypergraph coloring (this is similar to the
α conjecture of [13] which was also defined in an induced form). For our Max k-CSP result,
it suffices to assume the soundness condition that at most ε fraction of edges are weakly
satisfiable. For simplicity, we only state the stronger induced version below.

I Conjecture 3.1 (V label cover–conjecture, induced version). For all k ≥ 2 and ε > 0, there
exists an L ≥ 1 such that for any k-uniform V label cover instance Ψ on label set L and
vertex set U and hyperedge set E, it is NP-hard to distinguish between

YES: There exists a labeling for which every hyperedge is strongly satisfied.
NO: For every labeling and every subset U ′ ⊂ U with |U ′| ≥ |U |ε, less than ε fraction of
the edges in (U ′)k ∩ E are weakly satisfied by the labeling.

3.2 Compatibility
Consider a domain size q ≥ 2, an arity k ≥ 2, and a predicate P ⊆ [q]k. In order to
understand the “V label cover–hardness” of this predicate P , for each edge e = (u1, . . . , uk)
of our V label cover instance we seek to construct probability distributions on [q]k×(2k−1)L

such that the marginal distribution of each branch of e is supported by P . We define the
notion of V label cover–compatibility in order to capture exactly what we need.

I Definition 3.2. For a predicate P ⊆ [q]k, consider µ1, . . . , µk supported on P 2. For
i, j ∈ [k], let Xi,j ∼ [q]2 be the marginal distribution of µi on the jth coordinates. That is,
for all (a, b) ∈ [q]2,

Pr
(x′,y′)∼Xi,j

[(x′, y′) = (a, b)] = Pr
(x,y)∼µi

[(xj , yj) = (a, b)].

We call the distributions µ1, . . . , µk a V label cover–compatible family if they satisfy the
following properties.
1. For all i ∈ [k], Xi,i is uniform on {(a, a) | a ∈ [q]}.
2. For all i, j ∈ [k] with i 6= j and Xi,j is uniform on [q]2.
3. For all i ∈ [k], ρ(µi) < 1, which we define to be

ρ(µi) := ρ(Xi,1, . . . , Xi,k).

We say that P is V label cover–compatible if a V label cover–compatible family µ1, . . . , µk
exists.

The reason we have k different distributions is because the two connected branches can
intersect in k different rows (see Figure 1).
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Property (3) of Definition 3.2 precludes any algebraic structure in our predicate that
would permit a polynomial-time algorithm. For example, the uniform distribution on the
predicate {x ∈ Zn2 | x1 + · · ·+ xn = 0} has correlation 1 and allows for Gaussian-elimination
to solve exactly.

3.3 Reduction from V label cover to P -CSP
Let P ⊆ [q]k be a predicate for q, k ≥ 2 which is V label cover–compatible with distributions
µ1, . . . , µk. In this section, we show how to reduce an arbitrary instance of V label cover into
an instance of P -CSP, the constraint satisfaction problem where all clauses are of the form
(x1, . . . , xn) ∈ P . Furthermore, we assign weights to the clauses of this CSP, in which the
weights are determined by these distributions µi. This reduction is the starting point for
showing the conditional NP-hardness results in Section 4.

Let Ψ = (U,E,L, {π(e)
i }e∈E,i∈[k], {ψ

(e)
i }e∈E,i∈[k]) be our instance of k-uniform V label

cover. For each u ∈ U , we construct q(2k−1)L variables x(u)
s , where s ∈ [q](2k−1)L. Now,

for every edge e = (u1, . . . , uk) ∈ E and every s(1), . . . , s(k) ∈ [q](2k−1)L with the following
property:

For any t1, . . . , tk ∈ [(2k − 1)L] such that (t1, . . . , tk) is a branch of e, we have
(s(1)
t1 , . . . , s

(k)
tk

) ∈ P ,

we add the constraint (x(u1)
s(1) , . . . , x

(uk)
s(k) ) ∈ P. Looking back at Figure 1, we have that any

assignment of values from [q] to the nodes of the schematic such that each branch is an
element of P corresponds to some choice (s(1), . . . , s(k)).

Let Φ be the resulting instance. Although we have described the clauses, we have not yet
determined the relative weights of the clauses.

I Claim 3.3. If Ψ has a labeling σ : U → [(2k− 1)L] which strongly satisfies every hyperedge,
then we have that Φ has a perfect satisfying assignment. In other words, this reduction has
perfect completeness.

Proof. For each u ∈ U , and s ∈ [q](2k−1)L, we let x(u)
s = sσ(u). One can verify this assignment

satisfies Φ. J

Now, fix e = (u1, . . . , uk) ∈ E. For each ` ∈ [kL], let (a1, . . . , ak), (b1, . . . , bk) be the two
branches of e such that π(e)

i (ai) = π
(e)
i (bi) = ` for all i. Let j ∈ [k] be the unique index for

which aj = bj , (i.e., j is the junction). Let I be the index set I := {(i, ai) | i ∈ [k]} ∪ {(i, bi) |
i ∈ [k]}; note that |I| = 2k − 1. Let Ω(e)

` ∼ [q]I be the probability distribution isomorphic to
µj such that the marginals x1, . . . , xk, y1, . . . , yk of µj correspond to the marginals indexed
by (1, a1), . . . , (k, ak), (1, b1), . . . , (k, bk) of Ω(e)

` .
Let

ν(e) :=
∏
`∈[kL]

Ω(e)
` ,

where the product is over independent distributions. Note that the support of ν(e) can be
identified with [q][k]×[(2k−1)L] since each (i, ai) ∈ [k]× [(2k − 1)L] is accounted for in some
branch. We let Y (e,i)

j be the marginal distribution of coordinate (i, j) ∈ [k]× [(2k − 1)L] of
ν(e). For any i ∈ [k] and ` ∈ [kL], we let X(e)

i,` be the marginal distribution on the indices

APPROX/RANDOM’17
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{(i, t) | π(e)
i (t) = `}. In particular, if i is a junction, the meeting point of the branches, then

Y
(e,i)
t = X

(e)
i,` . Otherwise, X(e)

i,` is the product of two Y ’s:

X
(e)
i,` =

∏
t∈(π(e)

i
)−1(`)

Y
(e,i)
t .

This distribution ν(e) specifies the probability distribution of the clauses corresponding to a
particular edge of the label cover instance. These probabilities are the relative weights of the
clauses in the instance.

4 Perfect-completeness approximation resistance and Max-k-CSPq

A natural question to ask concerning V label cover is if it reduces to natural families of
predicates which are hard to approximate, even when guaranteed perfect completeness. In
the case of imperfect completeness, Austrin and Mossel [2] showed assuming the Unique
Games Conjecture that if a predicate P ⊆ [q]k, for some finite domain size q, supports a
balanced pairwise independent distribution, then P is approximation resistant. That is,
for all ε > 0, it is NP-hard to distinguish between 1 − ε-satisfiable and |P |

qk + ε-satisfiable
P -CSPs. Only a few years later, in a breakthrough by Chan [9], unconditional approximation
resistance was shown for any P which supports a balanced pairwise independent subgroup.
We hope that establishing a similar conditional results for perfect completeness will spur
unconditional results in this domain.

In order to reduce from V label cover, we need a more stringent criteria than merely
supporting a balanced pairwise independent distribution. We call these more structured
distributions pairwise-independent V label cover-compatible.

I Definition 4.1. Let q ≥ 2, k ≥ 3 be parameters. Let P ⊆ [q]k be a predicate. We say that
P is pairwise–independent V label cover–compatible if there exists a V label cover–compatible
family µ1, . . . , µk supported on P 2 (with marginals Xi,j , i, j ∈ [k]) with the additional
property that:
4. For all i ∈ [k] and j 6= j′ ∈ [k], we have that Xi,j and Xi,j′ are pairwise independent.

To motivate the definition, one way to view property (4), when combined with properties
(1) and (2) of Definition 3.2, is that P does not just support a pairwise independent distribu-
tion, but that the distribution can preserve pairwise independence even when conditioning
on the value of a coordinate.8 Assuming the V label cover-conjecture, this property suffices
to establish perfect-completeness approximation resistance if we allow what are known as
folded predicates.9 Assume that [q] has a + operator (e.g., addition modulo q). We specify
that we may use folded versions of our predicate P to be the predicates

a ∈ [q]k, P (a) := {(x1 + a1, . . . , xk + ak) | (x1, . . . , xk) ∈ P}.

Each P (a) has the same cardinality, so incorporating these extra predicates can only increase
the severity of the hardness of approximation. Thus, more precisely we say that the family
of predicates {P (a) | a ∈ [q]k} is perfect-completeness approximation resistant. That is, for

8 The definition permits a slightly broader class of P (i.e., the distribution can change depending on
which coordinate is conditioned on), but our applications will construct P of the type specified in the
motivation.

9 This is a standard assumption in the CSP literature, e.g., [2].
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every ε > 0, it is NP-hard to distinguish whether a CSP with predicates from {P (a) | a ∈ [q]k}
is perfectly satisfiable or is |P |

qk + ε satisfiable.

I Theorem 4.2. Let P ⊆ [q]k be a predicate which supports a pairwise-independent V label
cover–compatible distribution. Then, assuming the V label cover–conjecture, we have that the
collection of predicates {P (a) | a ∈ [q]k} is perfect-completeness approximation resistant.

Proof. The high-level structure of our proof is analogous to that of Austrin and Mossel [2].
The proof proceeds in a couple of stages. First, we describe the reduction from a V label
cover instance to an instance of P -CSP, and note that such a reduction preserves perfect
completeness. Second, we analyze the soundness of our reduction using Theorem 2.9 to show
that if our P -CSP can be well-approximated, then our original V label cover instance also
admits an approximation.

Reduction. Let Ψ = (U,E,L, {π(e)
i }e∈E,i∈[k], {ψ

(e)
i }e∈E,i∈[k]) be our instance of k-uniform

V label cover. Let Φ be the instance of P -CSP guaranteed by the construction in Section 3.3.
Let ν(e) ∈ [q][k]×[(2k−1)L] be the weighting distributions on the clauses corresponding to the
hyperedges. Let Ω(e)

` , X
(e)
i,j , Y

(e,i)
j be the marginal distributions described in Section 3.3. By

Claim 3.3, our reduction has perfect completeness.
We now modify the CSP Φ into a new CSP Φ′ which incorporates folding. For each

constraint (x(u1)
s(1) , . . . , x

(uk)
s(k) ) ∈ P and for each i ∈ [k], let (s(i))′ = s(i) − s(i)

1 (i.e., subtract
s

(i)
1 from every coordinate). Then, we specify that

(x(u1)
(s(1))′ , . . . , x

(uk)
(s(k))′) ∈ P

(s(1)
1 ,...,s

(k)
1 ).

One may check that this modification preserves perfect completeness.

Soundness. We view an assignment to Φ′ as a collection of functions F = {fu : [q](2k−1)L →
[q] | u ∈ U}, where fu(s) is the assigned value for xus . Because of our modification to the
CSP, we only specify constraints for fu(s) when s1 = q. Thus, we may assume that each fu
is folded. That is, fu(s) + a ≡ fu(s+ (a, . . . , a)) mod q for all a ∈ [q]. One may check that
the fu’s satisfy a clause in Φ′ if and only if they satisfy the corresponding clause in Φ. Thus,
it is equivalent to focus on the fu’s satisfaction of Φ.

For a ∈ [q], we let

f (a)
u (x) =

{
1 fu(x) = a

0 otherwise

We define the influences and low-degree influences (Definitions 2.5 and 2.6) of the f (a)
u ’s to

be with respect to the uniform distribution.
Let Φ(F) be the fraction of constraints of Φ satisfied by F , using the weights specified

by the ν(e) distributions. We seek to show for any ε > 0 if there exists a F such that
Φ(F) > |P |

qk + ε, then there exists δ > 0 and σ : U → [(2k − 1)L] such that σ weakly satisfies
δ fraction of the constraints of Ψ.

It is evident from the construction, that a group of constraints are associated with each
e ∈ E. Let e(F) be the fraction of constraints corresponding to φ satisfied by F (that is the
measure with respect to ν(e) of the clauses satisfied by F). We have that

Φ(F) = 1
|E|

∑
e∈E

e(F).
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Thus, if Φ(F) > |P |
qk + ε, there exists a subset E′ ⊆ E such that |E′| > (ε/2)|E| and

e(F) ≥ |P |
qk + ε/2 for all e ∈ E′; as otherwise, Φ(F) ≤ ε/2 ·1+(1− ε/2) ·

(
|P |
qk + ε/2

)
< |P |

qk + ε.
Fix, e = (u1, . . . , uk) ∈ E′. Note that

e(F) = E
(s1,...,sk)∼ν(e)

[(f(u1)(s1), . . . , f(uk)(sk)) ∈ P ]

=
∑
r∈P

E
(s1,...,sk)∼ν(e)

[f (r1)
u1

(s1) · · · frk
uk

(sk)].

Thus, for some r ∈ P , we have that

E
(s1,...,sk)∼ν(e)

[f (r1)
u1

(s1) · · · frk
uk

(sk)] > 1
qk

+ ε

2|P | .

Let ε′ = ε/(2|P |) > 0. Also, for all i ∈ [k], let Π(e)
i =

∏kL
`=1X

(e)
i,` . Since each Π(e)

i is uniform
and fui is folded, we have that

E
si∼Π(e)

i

[f (ri)
ui

(si)] = 1
q
.

In particular, this implies that∣∣∣∣∣∏̀
i=1

E[f (ri)
ui

(si)]− E

[∏̀
i=1

f (ri)
ui

(si)
]∣∣∣∣∣ > ε′.

Note that ν(e) = Ω(e)
1 × · · · ×Ω(e)

kL meets the requirements of Theorem 2.9. Thus, there exists
τ, d > 0, which are functions of only ε′ and parameters of |P |, such that

∃` ∈ [kL], |{i : Inf≤d
X

(e)
i,`

f (ri)
ui

> τ}| ≥ 3.

Let i1, i2, i3 ∈ [k] be three of these coordinates and let ` ∈ [kL] be the guaranteed value of `.
Observe that we can also write Π(e)

ia
as

Π(e)
ia

=
∏

t∈[(2k−1)L]

Y
(e,ia)
t .

Note that each X(e)
ia,`

can be written as the product distribution of at most 2 Y (e,ia)
t ’s, where

π
(e)
ia

(t) = `. By invoking Lemma 2.8 with D = 2, we have that there exists t1, t2, t3 such that
π

(e)
ia

(ta) = ` for all a ∈ {1, 2, 3} and

Inf≤2d
Y

(e,ia)
ta

f (ri)
uia

= Inf≤2d
ta >

τ

2 ,

where the equality is due to the fact that the Y (e,ia)
ta distributions are uniform distributions

on [q].
Note that since each ‘component’ of (e) has two branches, by the Pigeonhole principle,

some two of {t1, t2, t3} are in the same branch. Thus, any assignment σ for which σ(uia) = ta
for all a ∈ {1, 2, 3} weakly satisfies e.

For each u ∈ U . Let Su ⊆ [(2k − 1)L] be the set of labels j for which Inf≤2d
j f

(a)
u > τ/2

for some a ∈ [q]. Since Var f (a)
u ≤ max(f (a)

u )2 = 1, we have by Lemma 2.7 that |Su| ≤ 4dq/τ ,
which is independent of L. Construct a random labeling σ : U → [(2k − 1)L] by sampling
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each σ(u) from Su independently and uniformly at random (if Su is empty, let σ(u) = 1).
For each e ∈ E′, we established that there exists i, i′ ∈ [k] and ` ∈ Sui

and `′ ∈ Sui′ such
that setting σ(ui) = ` and σ(ui′) = `′ weakly satisfies e. Thus, in expectation at least

|E′|
|E|
· 1

(max |Su|)2 = τ2ε

16d2q2 > 0

of the edges are weakly satisfied. Note that this expression is independent of L and the size
of Ψ, as desired. J

We use this theorem to obtain hardness of approximation results for Max-k-CSPq when
q ≥ 2 is a prime power. We first need the following lemma which follows from standard
constructions in BCH codes.

I Lemma 4.3. Let q ≥ 2 be a prime power, and let ` ≥ 1 be odd. There exists S ⊂ F`q with
|S| = q(`−1)/2 such that S is 3-wise linearly independent over Fq. That is, each three-element
subset of S is linearly independent.

I Remark. Because of the recent breakthrough that subsets of Znq which do not have an
arithmetic progress of length three have size at most qcn for some c < 1, [12, 15], it is
impossible to improve that factor of 1/2 in the exponent to 1 when q ≥ 3. In particular,
Lemma 4.4 can at best be improved to Oq(k2+γ) for some γ > 0 (where the Oq notation
hides the dependence of q).

I Lemma 4.4. For all q ≥ 2 a prime power and k ≥ 2, there exists P ⊆ [q]k which is
pairwise–independent V label cover-compatible with |P | = 2k3q3.

The proof is given in Appendix A.
Using the same proof techniques, we have the following corollary.

I Corollary 4.5. For q = 2 and all k ≥ 2, there exists P ⊆ [2]k which is pairwise–independent
V label cover–compatible and |P | = O(k2).

Proof. Repeat the proof of Lemma 4.4, but note that S = {x ∈ F`2 :
∑`
i=1 xi = 1} is a

3-wise-independent subset of size 2`−1. J

Now we may obtain Theorem 1.1.

Proof of Theorem 1.1. The case q = 2 follows immediately from Corollary 4.5 and Theo-
rem 4.2. Similarly, if q ≥ 3 is a prime power, then the result follows from Lemma 4.4 and
Theorem 4.2. J

This is the first conditional NP-hardness reduction which obtains a soundness of poly(q,k)
qk

for even one fixed q. Previously, a long code test due to Tamaki and Yoshida [59] obtained
O(k)
2k for when q = 2. The currently best known unconditional result for Max-k-CSP2 is

2O(k1/3)

2k due to Huang [33]. For q ≥ 3, the best known result is [30] [46].
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A Proof of Lemma 4.4

Proof. We use a modification of the constructions of [2] and [59]. Let ` ≥ 3 be the least
odd integer such that q(`−1)/2 ≥ k. Thus, q` ≤ k2q3. View F`q as a vector space over Fq.
By Lemma 4.3 there exists S ⊂ F`q with |S| ≥ q(`−1)/2 ≥ k such that S is 3-wise linearly
independent (i.e., every 3-element subset is linearly independent). Let v(1), . . . , v(k) ∈ S be k
distinct elements from this set. Define 〈·, ·〉 to be the canonical bilinear form on F`q. That is,
〈x, y〉 =

∑`
i=1 xiyi.

We give an initial attempt to construct our predicate. Let10

P0 = {(〈v(1), X〉, . . . , 〈v(k), X〉) : X ∈ F`q}.

We have that |P0| ≤ q` ≤ k2q3. We show that P0 satisfies properties (1), (2), and (4). Note
that the definition of P0 defined a natural probability distribution µ. It is clear that µ has

10Note that we identify [q] with Fq in some canonical way.
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uniform marginal distributions (since each v(i) is nonzero and X is uniform). Furthermore,
the marginal distributions are 3-wise independent (and thus 3-wise uniform) since the v(i)’s
are 3-wise linearly independent. (We omit the proof, a similar result for pairwise independence
is Lemma 4.2 of [2].)

Now, fix i ∈ [k], define µi to be

µi := {x, y ∼ µ independent : xi = yi}.

Let Xi,j with j ∈ [k] be the marginals of µi. We seek to show µi satisfies properties (1), (2),
and (4). Property (1) follows immediately from the uniform marginals of µ. Now, fix j 6= i,
since (xi, xj) and (xi = yi, yj) are uniform distributions and xj and yj are conditionally
independent given xi, we have that

Pr[xi ∧ xj ∧ yj ] = Pr[xj ∧ yj |xi] Pr[xi] = Pr[xj |xi] Pr[yj |xi] Pr[xi] = Pr[xj ] Pr[yj ] Pr[xi].

Therefore, (xi, xj , yj) is uniform on F`q. Thus, property (2) and the case j′ = i of property
(4) follow.

To finish establishing property (4), consider j 6= j′ ∈ [k] \ {i}. We seek to show that
(xj , xj′ , yj , yj′) is uniform for which it suffices to show that (xi, xj , xj′ , yj , yj′) is uniform.
Like before,

Pr[xi ∧ xj ∧ xj′ ∧ yj ∧ yj′ ]
= Pr[xj ∧ xj′ |xi] Pr[yj ∧ yj′ |xi] Pr[xi]
= Pr[xj ] Pr[xj′ ] Pr[yj ] Pr[yj′ ] Pr[xi] (3-wise independence of µ).

Thus, the µi’s satisfy properties (1), (2), and (4). Sadly, due to the nice algebraic structure
of P0, we have that ρ(µi) = 1 for all i. To rectify this, we create a ‘noisy’ version of P0. For
x ∈ Fkq , let |x| be the number of nonzero coordinates of x. Then, we define P to be

P := {x ∈ Fkq | ∃y ∈ P0, |x− y| ≤ 1}.

Note that |P | ≤ (k + 1)|P0| ≤ 2k3q3. Now, modify the µi’s to get µ′i’s by the following
procedure.
1. Sample (x, y) ∈ µi.
2. Sample j ∈ [k] and a, b ∈ Fq uniformly.
3. If i = j, set xi = yj = a. Otherwise, set xi = a and yj = b.
Clearly the support of µ′i is P 2. Also µ′i preserves properties (1), (2), and (4) of being V label
cover-compatible since re-randomizing coordinates can only assist in maintaining pairwise
independent distributions.

It remains to show that µ′i satisfies property (3). The proof of this is similar to that of
Lemma 4.6 of [59]. Let

Zi,j :=
k∏

j=1,j 6=i
Xi,j .

It suffices to show that ρ(Xi,j , Zi,j) < 1. To do that, it suffices to show by Lemma 2.4
that the bipartite graph whose edges are the support of Xi,j × Zi,j is connected. For any
(α, β) ∈ Xi,j × Zi,j , since with nonzero probability the jth coordinate is rerandomized, we
have that (α′, β) ∈ Xi,j × Zi,j for all α′ in the support of Xi,j . From this connectivity
immediately follows.

Therefore, P has the desired properties. J
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