
Global and Fixed-Terminal Cuts in Digraphs∗†

Kristóf Bérczi1, Karthekeyan Chandrasekaran2, Tamás Király3,
Euiwoong Lee4, and Chao Xu5

1 MTA-ELTE Egerváry Research Group, Budapest, Hungary
berkri@cs.elte.hu

2 University of Illinois, Urbana-Champaign, IL, USA
karthe@illinois.edu

3 MTA-ELTE Egerváry Research Group, Budapest, Hungary
tkiraly@cs.elte.hu

4 Carnegie Mellon University, Pittsburgh, PA, USA
euiwoonl@cs.cmu.edu

5 University of Illinois, Urbana-Champaign, IL, USA
chaoxu3@illinois.edu

Abstract
The computational complexity of multicut-like problems may vary significantly depending on
whether the terminals are fixed or not. In this work we present a comprehensive study of this
phenomenon in two types of cut problems in directed graphs: double cut and bicut.
1. Fixed-terminal edge-weighted double cut is known to be solvable efficiently. We show that

fixed-terminal node-weighted double cut cannot be approximated to a factor smaller than 2
under the Unique Games Conjecture (UGC), and we also give a 2-approximation algorithm.
For the global version of the problem, we prove an inapproximability bound of 3/2 under
UGC.

2. Fixed-terminal edge-weighted bicut is known to have an approximability factor of 2 that is
tight under UGC. We show that the global edge-weighted bicut is approximable to a factor
strictly better than 2, and that the global node-weighted bicut cannot be approximated to a
factor smaller than 3/2 under UGC.

3. In relation to these investigations, we also prove two results on undirected graphs which are of
independent interest. First, we show NP-completeness and a tight inapproximability bound
of 4/3 for the node-weighted 3-cut problem under UGC. Second, we show that for constant
k, there exists an efficient algorithm to solve the minimum {s, t}-separating k-cut problem.

Our techniques for the algorithms are combinatorial, based on LPs and based on the enumera-
tion of approximate min-cuts. Our hardness results are based on combinatorial reductions and
integrality gap instances.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Directed Graphs, Arborescence, Graph Cuts, Hardness of Approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.2

1 Introduction

The minimum two-terminal cut problem (min s − t cut) and its global variant (min cut)
are classic interdiction problems with fast algorithms. Generalizations of the fixed-terminal

∗ A full version of the paper is available at https://arxiv.org/abs/1612.00156.
† Kristóf and Tamás are supported by the Hungarian National Research, Development and Innovation

Office – NKFIH grants K109240 and K120254. Chao is supported in part by NSF grant CCF-1526799.

© Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, Euiwoong Lee, and Chao Xu;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 2; pp. 2:1–2:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.2
https://arxiv.org/abs/1612. 00156
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Global and Fixed-Terminal Cuts in Digraphs

variant, including the multi-cut and the multi-way cut, as well as generalizations of the global
variant, including the k-cut, have been well-studied in the algorithmic literature [10, 14]. In
this work, we study two generalizations of global cut problems to directed graphs, namely
double cut and bicut (that we describe below). We study the power and limitations of fixed
terminal variants of these cut problems in order to solve the global variants. In the process,
we examine “intermediate” multicut problems where only a subset of the terminals are
fixed, and obtain results of independent interest. In particular, we show that the undirected
{s, t}-separating k-cut problem, where two of the k terminals are fixed, is polynomial-time
solvable for constant k. In what follows, we describe the problems along with the results.
We refer the reader to Tables 1, 2, and 3 at the end of Section 1.1 for a summary of the
results. We mention that all our algorithmic/approximation results hold for the min-cost
variant while the inapproximability results hold for the min-cardinality variant by standard
modification of our reductions and algorithms. For ease of presentation, we do not make this
distinction.

The starting point of this work is node-weighted double cut, that we describe below. We
recall that an arborescence in a directed graph D = (V,E) is a minimal subset F ⊆ E of
arcs such that there exists a node r ∈ V with every node u ∈ V having a unique path from r

to u in the subgraph (V, F) (e.g., see [26]).

Double Cut. The input to the NodeDoubleCut problem is a directed graph and the goal
is to find the smallest number of nodes whose deletion ensures that the remaining graph
has no arborescence. NodeDoubleCut is a generalization of node weighted global min
cut in undirected graphs to directed graphs. It is non-monotonic under node deletion. This
problem is key to understanding fault tolerant consensus in networks. We briefly describe
this connection.

Significance of double cut. In a recent work, Tseng and Vaidya [28] showed that consensus
in a directed graph can be achieved in the synchronous model subject to the failure of f nodes
if and only if the removal of any f nodes still leaves an arborescence in the remaining graph.
Thus, the number of nodes whose failure can be tolerated for the purposes of achieving
consensus in a network is exactly one less than the smallest number of nodes whose removal
ensures that there is no arborescence in the network. So, it is imperative for the network
authority to be able to compute this number.

A directed graph D = (V,E) has no arborescence if and only if 1 there exist two distinct
nodes s, t ∈ V such that every node u ∈ V can reach at most one node in {s, t}. By this
characterization, every directed graph that does not contain a tournament has a feasible
solution to NodeDoubleCut. This characterization motivates the following fixed-terminal
variant, denoted {s, t}-NodeDoubleCut: Given a directed graph with two specified nodes
s and t, find the smallest number of nodes whose deletion ensures that every remaining node
u can reach at most one node in {s, t} in the resulting graph. An instance of {s, t}-Node-
DoubleCut has a feasible solution provided that the instance has no edge between s and t.
An efficient algorithm to solve/approximate {s, t}-NodeDoubleCut immediately gives an
efficient algorithm to solve/approximate NodeDoubleCut.

1 We believe that this characterization led earlier authors [3] to coin the term double cut to refer to the
edge deletion variant of the problem. We are following this naming convention.

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:3

Edge-weighted case. In the edge-weighted version of the problem, {s, t}-EdgeDoubleCut,
the goal is to delete the smallest number of edges to ensure that every node in the graph can
reach at most one node in {s, t}. Similarly, in the global variant, denoted EdgeDoubleCut,
the goal is to delete the smallest number of edges to ensure that there exist nodes s, t such
that every node u can reach at most one node in {s, t}, i.e. the graph has no arborescence.
The fixed-terminal variant {s, t}-EdgeDoubleCut is solvable in polynomial time using
maximum flow and, consequently, EdgeDoubleCut is also solvable in polynomial time (see
e.g. [3]).

Results for double cut. Our main result on the fixed-terminal variant, namely {s, t}-Node-
DoubleCut, is the following hardness of approximation.

I Theorem 1. {s, t}-NodeDoubleCut is NP-hard, and has no efficient (2−ε)-approximation
for any ε > 0 assuming the Unique Games Conjecture.

We also give a 2-approximation algorithm for {s, t}-NodeDoubleCut, which leads to a
2-approximation for the global variant.

I Theorem 2. There exists an efficient 2-approximation algorithm for {s, t}-NodeDouble-
Cut and NodeDoubleCut.

While we are aware of simple combinatorial algorithms to achieve the 2-approximation for
{s, t}-NodeDoubleCut, we present an LP-based algorithm since it also helps to illustrate
an integrality gap instance which is the main tool underlying the hardness of approximation
(Theorem 1) for the problem. Next we focus on the complexity of NodeDoubleCut. We
note that the NP-hardness of the fixed-terminal variant does not necessarily mean that the
global variant is also NP-hard.

I Theorem 3. NodeDoubleCut is NP-hard, and has no efficient (3/2− ε)-approximation
for any ε > 0 assuming the Unique Games Conjecture.

Bicuts offer an alternative generalization of min cut to directed graphs. The approximability
of the fixed-terminal variant of bicut is well-understood while the complexity of the global
variant is unknown. In the following we describe these bicut problems and exhibit a dichotomic
behaviour between the fixed-terminal and the global variant.

Bicut. The edge-weighted two-terminal bicut, denoted {s, t}-EdgeBiCut, is the following:
Given a directed graph with two specified nodes s and t, find the smallest number of edges
whose deletion ensures that s cannot reach t and t cannot reach s in the resulting graph.
Clearly, {s, t}-EdgeBiCut is equivalent to 2-terminal multiway-cut (the goal in k-terminal
multiway cut is to delete the smallest number of edges to ensure that the given k terminals
cannot reach each other). This problem has a rich history and has seen renewed interest
in the last few months culminating in inapproximability results matching the best-known
approximability factor: {s, t}-EdgeBiCut admits a 2-factor approximation (by simple
combinatorial techniques) and has no efficient (2− ε)-approximation assuming the Unique
Games Conjecture [19, 5]. In the global variant, denoted EdgeBiCut, the goal is to find
the smallest number of edges whose deletion ensures that there exist two distinct nodes s
and t such that s cannot reach t and t cannot reach s in the resulting digraph.

The dichotomy between global cut problems and fixed-terminal cut problems in undirected
graphs is well-known. For concreteness, we recall Edge-3-Cut and Edge-3-way-Cut. In
Edge-3-Cut, the goal is to find the smallest number of edges to delete so that the resulting

APPROX/RANDOM’17

2:4 Global and Fixed-Terminal Cuts in Digraphs

graph has at least 3 connected components. In Edge-3-way-Cut, the input is an undirected
graph with 3 specified nodes and the goal is to find the smallest number of edges to delete
so that the resulting graph has at least 3 connected components with at most one of the 3
specified nodes in each. While Edge-3-way-Cut is NP-hard [10], Edge-3-Cut is solvable
efficiently [14]. However, such a dichotomy is unknown for directed graphs. In particular, it
is unknown whether EdgeBiCut is solvable efficiently. Our next result shows evidence of
such a dichotomic behaviour.

Results for bicut. While {s, t}-EdgeBiCut is inapproximable to a factor better than 2
assuming UGC, we show that EdgeBiCut is approximable to a factor strictly better than 2.

I Theorem 4. There exists an efficient (2− 1/448)-approximation algorithm for EdgeBi-
Cut.

We also consider the node-weighted variant of bicut, denoted NodeBiCut: Given a directed
graph, find the smallest number of nodes whose deletion ensures that there exist nodes s and
t such that s cannot reach t and t cannot reach s in the resulting graph. Every directed graph
that does not contain a tournament has a feasible solution to NodeBiCut. NodeBiCut is
non-monotonic under node deletion, and it admits a 2-approximation by a simple reduction
to {s, t}-EdgeBiCut. We show the following inapproximability result.

I Theorem 5. NodeBiCut is NP-hard, and has no efficient (3/2− ε)-approximation for
any ε > 0 assuming the Unique Games Conjecture.

We observe that our approximability and inapproximability factors for NodeDoubleCut
and NodeBiCut coincide – 2 and (3/2− ε) respectively (Theorems 2, 3 and 5).

1.1 Additional Results on Sub-problems and Variants

In what follows, we describe additional results that concern sub-problems in our algorithms/hard-
ness results, and also variants of these sub-problems which are of independent interest.

Node weighted 3-Cut. We show the NP-hardness of NodeDoubleCut in Theorem 3 by a
reduction from the node-weighted 3-cut problem in undirected graphs. In the node weighted
3-cut problem, denoted Node-3-Cut, the input is an undirected graph and the goal is to
find the smallest subset of nodes whose deletion leads to at least 3 connected components in
the remaining graph. A classic result of Goldschmidt and Hochbaum [14] showed that the
edge-weighted variant, denoted Edge-3-Cut (see above for definition) – more commonly
known as 3-cut – is solvable in polynomial time. Intriguingly, the complexity of Node-3-Cut
remained open until now. We present the first results on the complexity of Node-3-Cut.

I Theorem 6. Node-3-Cut is NP-hard, and has no efficient (4/3− ε)-approximation for
any ε > 0 assuming the Unique Games Conjecture.

The inapproximability factor of 4/3 mentioned in the above theorem is tight: the 4/3-
approximation factor can be achieved by guessing 3 terminals that are separated and then
using well-known approximation algorithms to solve the resulting node-weighted 3-terminal
cut instance [13].

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:5

(s, ∗, t)-EdgeLin3Cut. As a sub-problem in the algorithm for Theorem 4, we consider the
following, denoted (s, ∗, t)-EdgeLin3Cut (abbreviating edge-weighted linear 3-cut): Given
a directed graph D = (V,E) and two specified nodes s, t ∈ V , find the smallest number
of edges to delete so that there exists a node r with the property that s cannot reach r

and t, and r cannot reach t in the resulting graph. This problem is a global variant of
(s, r, t)-EdgeLin3Cut, introduced in [11], where the input specifies three terminals s, r, t
and the goal is to find the smallest number of edges whose removal achieves the property
above. A simple reduction from Edge-3-way-Cut shows that (s, r, t)-EdgeLin3Cut is
NP-hard. The approximability of (s, r, t)-EdgeLin3Cut was studied by Chekuri and Madan
[5]. They showed that the inapproximability factor coincides with the flow-cut gap of an
associated path-blocking linear program assuming the Unique Games Conjecture.

There exists a simple combinatorial 2-approximation algorithm for (s, r, t)-EdgeLin3Cut.
A 2-approximation for (s, ∗, t)-EdgeLin3Cut can be obtained by guessing the terminal r and
using the above-mentioned approximation. For our purposes, we need a strictly better than
2-approximation for (s, ∗, t)-EdgeLin3Cut; we obtain the following improved approximation
factor.

I Theorem 7. There exists an efficient 3/2-approximation algorithm for (s, ∗, t)-EdgeLin-
3Cut.

{s, t}-SepEdgekCut. In contrast to (s, r, t)-EdgeLin3Cut, we do not have a hardness
result for (s, ∗, t)-EdgeLin3Cut. Upon encountering cut problems in directed graphs, it is
often insightful to consider the complexity of the analogous problem in undirected graphs.
Our next result shows that the following analogous problem in undirected graphs is in fact
solvable in polynomial time: given an undirected graph with two specified nodes s, t, remove
the smallest subset of edges so that the resulting graph has at least 3 connected components
with s and t being in different components. More generally, we consider {s, t}-SepEdgekCut,
where the goal is to delete the smallest subset of edges from a given undirected graph so
that the resulting graph has at least k connected components with s and t being in different
components. The complexity of {s, t}-SepEdgekCut was posed as an open problem by
Queyranne [25]. We show that {s, t}-SepEdgekCut is solvable in polynomial-time for every
constant k.

I Theorem 8. For every constant k, there is an efficient algorithm to solve {s, t}-SepEdge-
kCut.

{s, ∗}-EdgeBiCut. While Theorem 4 shows that EdgeBiCut is approximable to a factor
strictly smaller than 2, we do not have a hardness result. We could prove hardness for the
following intermediate problem, denoted {s, ∗}-EdgeBiCut: Given a directed graph with a
specified node s, find the smallest number of edges to delete so that there exists a node t
such that s cannot reach t and t cannot reach s in the resulting graph. {s, ∗}-EdgeBiCut
admits a 2-approximation by guessing the terminal t and then using the 2-approximation for
{s, t}-EdgeBiCut. We show the following inapproximability result:

I Theorem 9. {s, ∗}-EdgeBiCut is NP-hard, and has no efficient (4/3− ε)-approximation
for any ε > 0 assuming the Unique Games Conjecture.

Due to space constraints, we outline our techniques for the proof of Theorem 4 and for the
hardness of approximation results in Sections 2 and 3, and refer the reader to the complete
version of this work [2] for all complete proofs. The proofs of Theorems 7 and 8 are presented
in Section 4.

APPROX/RANDOM’17

2:6 Global and Fixed-Terminal Cuts in Digraphs

Table 1 Global Variants in Directed Graphs. Text in gray refer to known results while text in
black refer to the results from this work. All hardness of approximation results are under UGC.
Hardness results for Node weighted (s, ∗, t)-Lin3Cut are based on the fact that it is as hard to
approximate as Node weighted {s, t}-Sep3Cut by bidirecting the edges (Table 3).

Problem Edge-deletion Node-deletion
DoubleCut Poly-time [3] 2-approx (Thm 2)

(3/2− ε)-inapprox (Thm 3)
BiCut (2− 1/448)-approx (Thm 4) 2-approx

(3/2− ε)-inapprox (Thm 5)
(s, ∗)-BiCut 2-approx 2-approx

(4/3− ε)-inapprox (Thm 9) (3/2− ε)-inapprox
(s, ∗, t)-Lin3Cut 3/2-approx (Thm 7) 2-approx

(4/3− ε)-inapprox

Table 2 Fixed-Terminal Variants in Directed Graphs. Text in gray refer to known results while
text in black refer to the results from this work. All hardness of approximation results are under
UGC. We include {s, t}-BiCut and (s, r, t)-Lin3Cut for comparison with the global variants in
Table 1.

Problem Edge-deletion Node-deletion
(s, t)-DoubleCut Poly-time [3] 2-approx (Thm 2)

(2− ε)-inapprox (Thm 1)
(s, t)-BiCut 2-approx [Equivalent to edge-deletion]

(2− ε)-inapprox [4, 19]
(s, r, t)-Lin3Cut 2-approx [Equivalent to edge-deletion]

(α− ε)-inapprox [5]
(where α is the flow-cut gap)

Table 3 Global Variants in Undirected Graphs. Text in gray refer to known results while text in
black refer to the results from this work. All hardness of approximation results are under UGC.

Problem Edge-deletion Node-deletion
k-cut Poly-time [14, 18] (2− 2/k)-approx [13]

(where k is constant) (2− 2/k − ε)-inapprox (Thm 6)
{s, t}-SepkCut Poly-time (Thm 8) (2− 2/k)-approx [13]

(where k is constant) (2− 2/k − ε)-inapprox (Thm 6)

1.2 Related Work
In recent work, Bernáth and Pap [3] studied the problem of deleting the smallest number
of arcs to block all minimum cost arborescences of a given directed graph. They gave an
efficient algorithm to solve this problem through combinatorial techniques. However, their
techniques fail to extend to the node weighted double cut problem.

The node-weighted 3-cut problem – Node-3-Cut – is a generalization of the classic
Edge-3-Cut. Various other generalizations of Edge-3-Cut have been studied in the
literature showing the existence of efficient algorithms. These include the edge-weighted
3-cut in hypergraphs [30, 12] and the more general submodular 3-way partitioning [31, 24].
However, none of these known generalizations address Node-3-Cut as a special case. Feasible
solutions to Node-3-Cut are also known as shredders in the node-connectivity literature.

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:7

In the unit-weight case, shredders whose cardinality is equal to the node connectivity of the
graph play a crucial role in the problem of min edge addition to augment node connectivity
by one [6, 15, 20, 29]. There are at most linear number of such shredders and all of them
can be found efficiently [6, 15]. The complexity of finding a min cardinality shredder was
open until our results (Theorem 6).

In the edge-weighted multiway cut in undirected graphs, the input is an undirected graph
with k terminal nodes and the goal is to find the smallest cardinality subset of edges whose
deletion ensures that there is no path between any pair of terminal nodes. For k = 3, a
12/11-approximation is known [7, 16], while for constant k, the current-best approximation
factor is 1.2975 due to Sharma and Vondrák [27]. These results are based on an LP-relaxation
proposed by Călinescu, Karloff and Rabani [9], known as the CKR relaxation. Manokaran,
Naor, Raghavendra and Shwartz [21] showed that the inapproximability factor coincides
with the integrality gap of the CKR relaxation. Recently, Angelidakis, Makarychev and
Manurangsi [1] exhibited instances with integrality gap at least 6/(5 + (1/k − 1)) − ε for
every k ≥ 3 and every ε > 0 for the CKR relaxation.

The node-weighted multiway cut in undirected graphs exhibits very different structure
in comparison to the edge-weighted multiway cut. It reduces to edge-weighted multiway
cut in hypergraphs. Garg, Vazirani and Yannakakis [13] gave a (2 − 2/k)-approximation
for node-weighted multiway cut by exploiting the extreme point structure of a natural
LP-relaxation.

The edge-weighted multiway cut in directed graphs has a 2-approximation, due to Naor
and Zosin [23], as well as Chekuri and Madan [4]. Matching inapproximability results were
shown recently for k = 2 [19, 5]. The node-weighted multiway cut in directed graphs reduces
to the edge-weighted multiway cut by exploiting the fact that the terminals are fixed. Such
a reduction is unknown for the global version.

1.3 Preliminaries
Let D = (V,E) be a directed graph. For two disjoint sets X,Y ⊂ V , we denote δ(X,Y)
to be the set of edges (u, v) with u ∈ X and v ∈ Y and d(X,Y) to be the cut value
|δ(X,Y)|. We use δin(X) := δ(V \X,X), δout(X) := δ(X,V \X), din(X) := |δin(X)| and
dout(X) := |δout(X)|. We use a similar notation for undirected graphs by dropping the
superscripts. For two nodes s, t ∈ V , a subset X ⊂ V is called an st-set if t ∈ X ⊆ V − s.
The cut value of an st-set X is din(X).

We frequently use the following characterization of directed graphs with no arborescence
for the purposes of double cut.

I Theorem 10 (e.g., see [3]). Let D = (V,E) be a directed graph. The following are
equivalent:
1. D has no arborescence.
2. There exist two distinct nodes s, t ∈ V such that every node u can reach at most one node

in {s, t} in D.
3. There exist two disjoint non-empty sets S, T ⊂ V with δin(S) ∪ δin(T) = ∅.

2 Overview of approximation for EdgeBiCut

In this section, we present the high-level ideas of the (2− 1/448)-approximation algorithm
for EdgeBiCut (Theorem 4). We sketch the argument for a (2− ε)-approximation for some
small enough ε; the full algorithm and the proof of its approximation ratio are presented in
the complete version of this work [2].

APPROX/RANDOM’17

2:8 Global and Fixed-Terminal Cuts in Digraphs

Let D be a digraph. For two disjoint sets X,Y ⊂ V , we define δD(X,Y) to be the set
of edges (u, v) with u ∈ X and v ∈ Y and d(X,Y) to be the cut value |δD(X,Y)|. We use
δinD (X) := δD(V \X,X), δoutD (X) := δD(X,V \X). We drop the subscripts when the graph
D is clear from context.

Two sets A and B are called uncomparable if A \B 6= ∅ and B \A 6= ∅. Given a directed
graph D = (V,E), EdgeBiCut is equivalent to finding an uncomparable pair A,B ⊆ V

with minimum |δin(A) ∪ δin(B)|. Indeed, if A and B are uncomparable and we remove
δin(A) ∪ δin(B) from the directed graph, then nodes in A \B cannot reach nodes in B \A
and vice versa. On the other hand, if s cannot reach t and t cannot reach s, then the set of
nodes that can reach s and the set of nodes that can reach t are uncomparable, and have
in-degree 0.

I Definition 11. For A,B ⊆ V , let β(A,B) := |δin(A) ∪ δin(B)| and let σ(A,B) :=
|δin(A)|+ |δin(B)|. Furthermore, let

β := min{β(A,B) | A and B are uncomparable},
σ := min{σ(A,B) | A and B are uncomparable}.

As σ can be computed efficiently, we immediately have a (2−ε)-approximation if σ ≤ (2−ε)β.
Also, for fixed Z ⊆ V , we can efficiently find an uncomparable pair (A,B) satisfying A∩B = Z

that minimizes β(A,B) among pairs with this property, because this is an EdgeDoubleCut
problem. The same holds when V \ (A ∪B) is fixed. In particular, if there is a pair (A,B)
that minimizes β(A,B) and |A∩B| ≤ 2 or |V \ (A∪B)| ≤ 2, then we can find the minimizer
efficiently. Therefore we assume that every minimizer (A,B) for β(A,B) satisfies |A∩B| ≥ 3
and |V \ (A ∪B)| ≥ 3. Let us fix one such minimizer (A,B).

In the algorithm, we guess nodes x ∈ A \ B, y ∈ B \ A, w1, w2 ∈ V \ (A ∪ B), and
z1, z2 ∈ A ∩B (the reason for guessing two nodes in the intersection and in the complement
of the union is highly technical, and not relevant to this overview). We use the notation
X = A \B, Y = B \A, W = V \ (A ∪B), and Z = A ∩B.

The algorithm proceeds by making several attempts at finding pairs (A′, B′) that give
a (2 − ε)-approximation. Each unsuccessful attempt implies some structural property of
the minimum bicut. For example, the first candidate is (X ′, Y ′), where X ′ is the sink-
side of the minimum {w1, w2, y} → {x, z1, z2}-cut, and Y ′ is the sink-side of the minimum
{w1, w2, x} → {y, z1, z2}-cut. Notice that σ(X ′, Y ′) ≤ σ(A,B). If the attempt is unsuccessful,
i.e. β(X ′, Y ′) > (2− ε)β(A,B), then d(W,Z) > (1− ε)β(A,B) = (1− ε)β.

Our subsequent attempts are more complex. In our next attempt, we try to expand X ′
and Y ′ by the same node set Z ′ to find (A′ = X ′ ∪ Z ′, B′ = Y ′ ∪ Z ′). Also, we prefer not to
have many edges of E[X ′] ∪ E[Y ′] in the new bicut (A′, B′), because they enter only one
among the two sets A′ and B′, so we make these edges more expensive by duplicating them.
Let D1 be the digraph obtained by duplicating the edges in E[X ′]∪E[Y ′], and let Z ′ be the
sink-side of the minimum {w1, w2, x, y} → {z1, z2}-cut in D1. It can be shown that the pair
(X ′ ∪ Z ′, Y ′ ∪ Z ′) is a (2− ε)-approximation unless |δinD1

(Z)| > (2− 3ε)β.
An analogous attempt can be made by shrinking instead of expanding. Let D2 be the

digraph obtained by duplicating the edges in E[V \ X ′] ∪ E[V \ Y ′], and let W ′ be the
source-side of the minimum {w1, w2} → {x, y, z1, z2}-cut in D2. We obtain that the pair
(X ′ \W ′, Y ′ \W ′) is a (2− ε)-approximation unless |δoutD2

(W)| > (2− 3ε)β.
If the attempts so far are unsuccessful, then |δinD1

(Z)| > (2−3ε)β and |δoutD2
(W)| > (2−3ε)β.

From these, it can be shown that all but O(εβ) edges in δin(X ′)∪ δin(Y ′)∪ δout(W)∪ δin(Z)
are as positioned in Figure 1.

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:9

ZZ

X 0X 0 Y 0Y 0

WW

↵1↵1

↵3↵3

↵2↵2

↵5↵5 ↵6↵6

↵4↵4

Figure 1 The quantities α1, . . . , α6.

Let α1, . . . , α6 be the number of edges in each position indicated in Figure 1. We can
further show that the quantities α1, α3, α5 are within O(εβ) of each other, and so are
α2, α4, α6. Furthermore, (1 − O(ε))β ≤ α3 + α4 ≤ (1 + O(ε))β. W.l.o.g. we may assume
α3 ≥ α4.

Our final attempt at obtaining a good bicut is by adding some nodes in X ′ \ Y ′ to Y ′
and removing some other nodes of X ′ \ Y ′ from X ′. In other words, our candidate is a pair
(B′, Y ′ ∪A′) for some X ′ ∩ Y ′ ⊆ A′ (B′ ⊆ X ′ (we need the condition A′ (B′ because B′
and Y ′ ∪A′ should be uncomparable). When choosing A′ and B′, we ignore the edges whose
contribution does not depend on A′ and B′. Let H be the digraph obtained by removing the
edges in E[Y ′ ∪ (V \X ′)]. Our aim is to minimize |δinH (B′) ∪ δinH (Y ′ ∪ A′)|. However, this
quantity differs by O(εβ) from |δinH (A′) ∪ δinH (B′)|, so we may instead aim to minimize the
latter.

The crucial observation is that this minimization problem is an instance of (s, ∗, t)-Edge-
Lin3Cut. While we do not know how to solve (s, ∗, t)-EdgeLin3Cut optimally, we can
efficiently obtain a 3/2-approximation by Theorem 7. By the reformulation of (s, ∗, t)-Edge-
Lin3Cut in Lemma 13, we get a pair of subsets (A′, B′) for which X ′ ∩ Y ′ ⊆ A′ (B′ ⊆ X ′
and which is a 3/2-approximation. In particular, |δinH (A′) ∪ δinH (B′)| ≤ (3/2)|δinH ((X ′ ∩ (Z ∪
Y ′)) ∪ δinH (X ′ \ (W \ Y ′))| ≤ 3(α3 +O(ε)β)/2. Using this and the relationship between the
αi values, we can derive β(B′, Y ′ ∪A′) ≤ (7/4 +O(ε))β, concluding the proof.

3 Overview of the results on hardness of approximation

Our hardness results include Theorem 1 for {s, t}-NodeDoubleCut, Theorem 3 for Node-
DoubleCut, Theorem 5 for NodeBiCut, Theorem 6 for Node-3-Cut, and Theorem 9 for
{s, ∗}-EdgeBiCut. We obtain all of our NP-hardness results by reducing from VertexCo-
ver on k-regular Graphs, where the input is an undirected k-regular graph, and the
goal is to find the smallest subset S of nodes such that every edge in the graph has at least
one end-vertex in S. It is APX-hard even for k = 3 [8].

We use VertexCover on k-partite Graphs as an intermediate problem, where
the input is an undirected k-partite graph G = (V1 ∪ · · · ∪ Vk, E) (we emphasize that the
partitioning V1, . . . , Vk is specified explicitly in the input) and the goal is to find the smallest
subset S ⊂ V1 ∪ · · · ∪ Vk such that every edge in E has at least one end-vertex in S. Our
hardness results are structured as follows.

APPROX/RANDOM’17

2:10 Global and Fixed-Terminal Cuts in Digraphs

1. We first show approximation-preserving (combinatorial) reductions from VertexCover
on k-regular Graphs (for k = 3 or 4) to the above-mentioned problems. These
reductions prove all the NP-hardness results. Note that we also get an inapproximability
factor of 100/99 and 53/52 respectively under the assumption that P 6= NP .

2. For improved hardness of approximation results, we show that VertexCover on k-
partite Graphs is hard to approximate within a factor of 2 − 2/k − ε for any ε > 0
assuming the Unique Games Conjecture. Considering k = 3 and k = 4, this result in
conjunction with the combinatorial reductions show (4/3−ε)-inapproximability for Node-
DoubleCut and {s, ∗}-EdgeBiCut, and (3/2− ε)-inapproximability for NodeBiCut
assuming the Unique Games Conjecture.

3. We further improve the hardness of approximation for NodeDoubleCut and {s, t}-
NodeDoubleCut by directly reducing from UniqueGames via the length-control
dictatorship tests introduced in [19]. We obtain (3/2− ε)-inapproximability for Node-
DoubleCut and (2− ε)-inapproximability for {s, t}-NodeDoubleCut.

In the following section, we sketch the ideas behind the hardness result for {s, t}-Node-
DoubleCut assuming the Unique Games Conjecture.

3.1 (2− ε)-Inapproximability for {s, t}-NodeDoubleCut
Our results for {s, t}-NodeDoubleCut and NodeDoubleCut are based on length-control
dictatorship tests introduced by Lee [19]. Length-control dictatorship tests provide a sys-
tematic way to convert integrality gap instances for a natural LP relaxation to dictatorship
tests that can be used to prove matching hardness of approximation under the Unique
Games Conjecture. In this section we illustrate the high-level ideas behind this conversion
for {s, t}-NodeDoubleCut.

Consider the integrality gap instanceDa,b = (VD, AD) introduced in Section A (Lemma 20)
which shows that the integrality gap of a natural Path-Blocking-LP for {s, t}-NodeDouble-
Cut is 2− o(1). We note that VD = {s, t}∪ ([a]× [b]). Let r = b−2a+ 1, and ID = ([a]× [b])
be the set of internal vertices. Furthermore, a good fractional feasible solution as obtained in
the proof of Lemma 20 sets dv := 1/r for every internal vertex v while every integral feasible
solution has at least 2a− 1 vertices in it.

Based on Da,b, we define the dictatorship test graph Dst
a,b,R,ε = (V,A) as follows, for a

positive integer R and ε > 0. Consider the probability space (Ω, µ) where Ω := {0, . . . , r−1, ∗},
and µ : Ω→ [0, 1] with µ(∗) = ε and µ(x) = (1− ε)/r for x 6= ∗.

1. We define V := {s, t} ∪ {vαx }α∈ID,x∈ΩR . Let vα denote the set of vertices {vαx }x∈ΩR . We
also call each vα as a hypercube.

2. For α ∈ ID and x ∈ ΩR, define the weight as c(vαx) =
∏R
i=1 µ(xi). We note that the

weight of each hypercube is 1, and the sum of weight of all vertices except s and t is ab.
Define the weight of the terminals s and t to be infinite.

3. For each arc between s and α ∈ ID in AD, for each x ∈ ΩR, add an arc with the same
direction between s and vαx . Do the same for each arc between t and α ∈ ID in AD.

4. For each arc (α, β) ∈ AD with α = (α1, α2), β = (β1, β2) ∈ ID and x, y ∈ ΩR, we have an
arc from vαx to vβy according to the following rule (note that α2 6= β2).
a. α2 < β2: add an arc if for any 1 ≤ j ≤ R: [yj = (xj +1) mod r] or [yj = ∗] or [xj = ∗].

Call them forward arcs.
b. α2 > β2: add an arc if for any 1 ≤ j ≤ R: [yj = (xj−1) mod r] or [yj = ∗] or [xj = ∗].

Call them backward arcs.
c. If (α, β) ∈ AD is a jumping arc (as defined in Lemma 20), call (vαx , vβy) also a jumping

arc.

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:11

We provide some intuitions behind this conversion. First, we replace each internal vertex
v ∈ ID by a R-dimensional hypercube vα = {vαx }x∈ΩR . Intuitively, our dictatorship test
Dst
a,b,R,ε = (V,A), as an instance of {s, t}-NodeDoubleCut, needs to satisfy the following

properties:
1. Completeness: there exists an integral solution C∗ ⊆ V of low weight that reveals an

influential coordinate for each hypercube.
2. Soundness: a subset C ⊆ V is an integral solution of low weight only if it reveals an

influential coordinate for some hypercube.

To formalize the notion of influence, given C ⊆ V and a hypercube vα for some α ∈ ID,
let f = fC,α : ΩR → {0, 1} be such that f(x) = 1 if and only if vαx ∈ C. Then for each
i ∈ [R], the influence of the ith coordinate is defined by

Infi[f] := Ex1,...,xi−1,xi+1,...,xR
[Varxi

[f(x1, . . . , xR)]],

where x1, . . . , xR are independently sampled from (Ω, µ). For example, suppose C and α are
such that f(x) = 1 if and only if xi = 0 for some i ∈ [R] (i.e., f only depends on the ith
coordinate), then Infi[f] = µ(0) − µ(0)2 = Ω(1/r) and Infj [f] = 0 for all j 6= i, so i is the
only influential coordinate. In contrast, suppose C and α are such that f(x) = 1 if and only
if x1 + · · ·+xR ≤ K for some K (ignoring xi with xi = ∗), then f depends on all coordinates
equally and Infi[f]→ 0 for all i as R→∞. We say that C reveals an influential coordinate
for the hypercube vα if Infi[fC,α] is large for some i ∈ [R]. Since we will eventually take R
to be a sufficiently large constant, a large influence means that the influence is some positive
constant that does not depend on R.

Given these intuitions, the completeness and soundness properties can be formalized and
proved as follows.

Completeness. For the completeness requirement, we need to argue that there exists an
integral solution C∗ ⊆ V of low weight that reveals an influential coordinate for each
hypercube. In particular, we show that a set of vertices that correspond to dictators behaves
the same as the fractional solution that gives 1/r to every vertex and moreover has low
weight. For any q ∈ [R], let Vq := {vαx : α ∈ ID, xq = ∗ or 0}. We note that the total weight
of Vq is

ab

(
ε+ 1− ε

r

)
≤ abε+ ab

b− 2a.

I Lemma 12. After removing vertices in Vq, no vertex in V can reach both s and t.

The proof appears in the full version [2]. The basic intuition is that for any arc from vαx to
vβy for some α = (α1, α2), β = (β1, β2), x ∈ ΩR, y ∈ ΩR, we have xq = yq + 1 if this arc is
going forward (α2 < β2), and xq = yq − 1 if this arc is going backward (α2 > β2). This relies
on our construction and the fact that we removed all vαx with xq = ∗ or xq = 0 since they
are in Vq. Since xq ∈ {1, . . . , r − 1}, it means that for any path p,

|(number of forward arcs in p)− (number of backward arcs in p)| < r.

As a consequence, this integral solution Vq behaves similar to the fractional solution in D
where each internal vertex gets 1/r, and we can conclude that no vertex can reach both s
and t.

APPROX/RANDOM’17

2:12 Global and Fixed-Terminal Cuts in Digraphs

Soundness. Suppose that we removed some vertices C such that no vertex w ∈ V \ C can
reach both s and t. Our soundness property requires that C either reveals an influential
coordinate for some hypercube vα or c(C) ≥ (2a − 1)(1 − ε). Formally, let τ, d be some
constants that depend only on ε and r (not R). We prove that if C is a feasible integral
solution of {s, t}-NodeDoubleCut, then either c(C) ≥ (2a− 1)(1− ε), or Inf≤di [fC,α] ≥ τ
for some α ∈ ID and i ∈ [R]. For technical reasons, we use low-degree influence Inf≤di instead
of Infi.

The main component of the proof is that if there is an arc from α to β in the integrality
gap instance Da,b, and both fC,α, fC,β do not reveal an influential coordinate, then we can
always find an arc from vα \C to vβ \C in Dst unless C almost completely contains both vα
and vβ (i.e., c(C ∩ vα) > 1− ε and c(C ∩ vβ) > 1− ε). The proof involves interpreting the
set of arcs between two hypercubes as a suitably designed correlated probability space, and
using the invariance principle by Mossel [22].

Suppose that C does not reveal an influential coordinate for any hypercube vα. Then the
above fact ensures that for a hypercube vα, unless it is almost completely contained in C
(i.e., c(C ∩ vα) > 1− ε), it behaves as if no vertices were contained in C. This observation
shows that c(C) must be as large as that of an integral solution in the gap instance Da,b.
Using the fact that any integral solution of Da,b contains at least 2a− 1 vertices, we conclude
that c(C) ≥ (2a− 1)(1− ε).

In summary, in the completeness case, there exists a subset of vertices of total weight at
most abε+ ab/(b− 2a), so that after removing the subset, no vertex can reach both s and t.
In the soundness case, unless we reveal an influential coordinate or we remove vertices of
total weight at least (2a− 1)(1− ε), there exists a vertex that can reach both s and t. The
gap between the two cases is at least

(2a− 1)(1− ε)
abε+ ab/(b− 2a) ,

which approaches to 2 as a increases, by setting b = a2 and ε = 1/a4.

4 EdgeLin3Cut problems

Given a directed graph D = (V,E), a feasible solution to (s, r, t)-EdgeLin3Cut in D is a
subset F of arcs whose deletion from the graph eliminates all directed s → r, r → t and
s→ t paths. One of our main tools used in the approximation algorithm for EdgeBiCut is
a 3/2-approximation algorithm for (s, ∗, t)-EdgeLin3Cut. We present this algorithm now.
For two sets A,B ⊆ V , let β(A,B) := |δin(A) ∪ δin(B)|.

Proof of Theorem 7. We first rephrase the problem in a more convenient way.

I Lemma 13. (s, ∗, t)-EdgeLin3Cut in a directed graph D = (V,E) is equivalent to

min {β(A,B) : t ∈ A ⊂ B ⊆ V − {s}} .

Proof. Let F ⊆ E be an optimal solution for (s, ∗, t)-EdgeLin3Cut in D and let (A,B) :=
argmin{β(A,B) : t ∈ A ⊂ B ⊆ V − s}. Fix an arbitrary node r ∈ B −A. Since the deletion
of δin(A)∪ δin(B) results in a graph with no directed path from s to r, from r to t and from
s to t, the edge set δin(A)∪ δin(B) is a feasible solution to (s, r, t)-EdgeLin3Cut in D, thus
implying that |F | ≤ β(A,B).

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:13

On the other hand, F is a feasible solution for (s, r, t)-EdgeLin3Cut in D for some
r ∈ V − {s, t}. Let A be the set of nodes that can reach t in D − F , and R be the set of
nodes that can reach r in D− F . Then, F ⊇ δin(A). Moreover, F ⊇ δin(R ∪A) since R ∪A
has in-degree 0 in D − F , and s is not in R ∪A because it cannot reach r and t in D − F .
Therefore, taking B = R ∪A we get F ⊇ δin(A) ∪ δin(B). J

Our algorithm for determining an optimal pair (A,B) := argmin{β(A,B) : t ∈ A ⊂ B ⊆
V − s} proceeds as follows: We build a chain C of st-sets with the property that, for some
value k ∈ Z+,
(i) C contains only cuts of value at most k, and
(ii) every st-set of cut value strictly less than k is in C.

We start with k being the minimum st-cut value and C consisting of a single minimum
st-cut. In a general step, we find two st-sets: a minimum st-cut Y compatible with the
current chain C, i.e. C ∪ {Y } forming a chain, and a minimum st-cut Z not compatible with
the current chain C, i.e. crossing at least one member of C. These two sets can be found in
polynomial time. Indeed, let t ∈ C1 ⊂ . . . ,⊂ Cq ⊆ V − s denote the members of C. Find a
minimum cut Yi with Ci ⊆ Yi ⊆ V \ Ci+1 for i = 1, . . . , q, and choose Y to be a minimum
one among these cuts. Concerning Z, for each pair x, y of nodes with y ∈ Ci ⊆ V − x for
some i ∈ {1, . . . , q}, find a minimum cut Zxy with {t, x} ⊆ Zxy ⊆ V − {s, y}, and choose Z
to be a minimum one among these cuts. If din(Y) ≤ din(Z), then we add Y to C, and set k
to din(Y); otherwise we set k to din(Z), and stop.

Let C denote the chain constructed by the algorithm, and let Y be an arbitrary set
crossing some of its members.

I Claim 14. din(Y) ≥ din(C) for all C ∈ C.

Proof. Suppose indirectly that din(Y) < din(C) for some C ∈ C. Let C′ denote the chain
consisting of those members of C that were added before C. As C is a set of minimum cut
value compatible with C′, Y crosses at least one member of C′. Hence, by din(Y) < din(C),
the algorithm stops before adding C, a contradiction. J

The claim implies that C satisfies (1) and (2) with the k obtained at the end of the
algorithm. Indeed, (1) is obvious from the construction, while (2) follows from the claim and
the fact that C contains all cuts of value strictly less than k that are compatible with C.

By the above, the procedure stops with a chain C containing all st-sets of cut value less
than k, and an st-set Z of cut value exactly k which crosses some member X of C. If the
optimum value of our problem is less than k, then both members of the optimal pair (A,B)
belong to the chain C, and we can find them by taking the minimum of β(A′, B′) where
A′ ⊂ B′ with A′, B′ ∈ C.

We can thus assume that the optimum is at least k. As din(Z) = k and din(X) ≤ k, the
submodularity of the in-degree function implies din(X∩Z)+din(X∪Z) ≤ din(Z)+din(X) ≤
2k. Hence at least one of din(X ∩ Z) ≤ k and din(X ∪ Z) ≤ k holds. As d(X \ Z,X ∩ Z) +
d(Z \X,X∩Z) ≤ din(X∩Z) and d(V \ (X∪Z), X \Z)+d(V \ (X∪Z), Z \X) ≤ din(X∪Z),
at least one of the following four possibilities is true:
1. din(X ∩ Z) ≤ k and d(X \ Z,X ∩ Z) ≤ 1

2k. Choose A = X ∩ Z, B = X. Then
β(A,B) = d(X \ Z,X ∩ Z) + din(X) ≤ 1

2k + k = 3
2k.

2. din(X ∩ Z) ≤ k and d(Z \ X,X ∩ Z) ≤ 1
2k. Choose A = X ∩ Z, B = Z. Then

β(A,B) = d(Z \X,X ∩ Z) + din(Z) ≤ 1
2k + k = 3

2k.
3. din(X ∪ Z) ≤ k and d(V \ (X ∪ Z), X \ Z) ≤ 1

2k. Choose A = Z, B = X ∪ Z. Then
β(A,B) = din(Z) + d(V \ (X ∪ Z), X \ Z) ≤ k + 1

2k = 3
2k.

4. din(X ∪ Z) ≤ k and d(V \ (X ∪ Z), Z \X) ≤ 1
2k. Choose A = X, B = X ∪ Z. Then

β(A,B) = din(X) + d(V \ (X ∪ Z), Z \X) ≤ k + 1
2k = 3

2k.

APPROX/RANDOM’17

2:14 Global and Fixed-Terminal Cuts in Digraphs

Thus a pair (A,B) can be obtained by taking the minimum among the four possibilities
above and β(A′, B′) where A′ ⊂ B′ with A′, B′ ∈ C, concluding the proof of the theorem. J

Next, we show that {s, t}-SepEdgekCut is solvable in polynomial time if k is a fixed
constant.

Let G = (V,E) be an undirected graph. Let the minimum size of an {s, t}-cut in G be
denoted by λG(s, t). For two subsets of nodes X,Y , let d(X,Y) denote the number of edges
between X and Y and let d(X) := d(X,V \X). The cut value of a partition {V1, . . . , Vq}
of V is defined to be the total number of crossing edges, that is, (1/2)

∑q
i=1 d(Vi), and is

denoted by γ(V1, . . . , Vq). Let γq(G) denote the value of an optimum Edge-q-Cut in G, i.e.,

min {γ(V1, . . . , Vq) : Vi 6= ∅ ∀ i ∈ [q], Vi ∩ Vj = ∅ ∀ i, j ∈ [q],∪qi=1Vi = V } .

Proof of Theorem 8. Let γ∗ denote the optimum value of {s, t}-SepEdgekCut in G =
(V,E) and let H denote the graph obtained from G by adding an edge of infinite capacity
between s and t. The algorithm is based on the following observation (we recommend the
reader to consider k = 3 for ease of understanding):

I Proposition 15. Let {V1, . . . , Vk} be a partition of V corresponding to an optimal solution
of {s, t}-SepEdgekCut, where s is in Vk−1 and t is in Vk. Then γ(V1, . . . , Vk−2, Vk−1∪Vk) ≤
2γk−1(H).

Proof. Let W1, . . . ,Wk−1 be a minimum (k − 1)-cut in H. Clearly, s and t are in the same
part, so we may assume that they are in Wk−1. Let U1, U2 be a minimum {s, t}-cut in
G[Wk−1]. Then {W1, . . . ,Wk−2, U1, U2} gives an {s, t}-separating k-cut, showing that

γ∗ ≤ γ(W1, . . . ,Wk−2, U1, U2) = γk−1(H) + λG[Wk−1](s, t). (1)

By Menger’s theorem, we have λG(s, t) pairwise edge-disjoint paths P1, . . . , PλG(s,t)
between s and t in G. Consider one of these paths, say Pi. If all nodes of Pi are from
Vk−1 ∪ Vk, then Pi has to use at least one edge from δ(Vk−1, Vk). Otherwise, Pi uses at least
two edges from δ(V1 ∪ · · · ∪Vk−2)∪

⋃
i,j≤k−2
i 6=j

δ(Vi, Vj). Hence the maximum number of pairwise

edge-disjoint paths between s and t is

λG(s, t) ≤ d(Vk−1, Vk) + 1
2

d(V1 ∪ · · · ∪ Vk−2) +
∑

i,j≤k−2
i 6=j

d(Vi, Vj)

 .

Thus, we have

γ∗ = d(Vk−1, Vk) + d(V1 ∪ · · · ∪ Vk−2) +
∑

i,j≤k−2
i 6=j

d(Vi, Vj)

≥ λG(s, t) + 1
2

d(V1 ∪ · · · ∪ Vk−2) +
∑

i,j≤k−2
i 6=j

d(Vi, Vj)

= λG(s, t) + 1

2γ(V1, . . . , Vk−2, Vk−1 ∪ Vk)

≥ λG[Wk−1](s, t) + 1
2γ(V1, . . . , Vk−2, Vk−1 ∪ Vk)

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:15

that is,

γ∗ ≥ λG[Wk−1](s, t) + 1
2γ(V1, . . . , Vk−2, Vk−1 ∪ Vk). (2)

By combining (1) and (2), we get γ(V1, . . . , Vk−2, Vk−1 ∪ Vk) ≤ 2γk−1(H), proving the
proposition. J

Karger and Stein [18] showed that the number of feasible solutions to Edge-k-cut in G with
value at most 2γk(G) is O(n4k). All these solutions can be enumerated in polynomial-time for
fixed k [18, 17]. This observation together with Proposition 15 gives the following algorithm
for finding an optimal solution to {s, t}-SepEdgekCut:

Step 1. Let H be the graph obtained from G by adding an edge of infinite capacity between
s and t. In H, enumerate all feasible solutions to Edge-(k− 1)-Cut – namely the vertex
partitions {W1, . . . ,Wk−1} – whose cut value γH(W1, . . . ,Wk−1) is at most 2γk−1(H).
Without loss of generality, assume s, t ∈Wk−1.

Step 2. For each feasible solution to Edge-(k−1)-Cut in H listed in Step 1, find a minimum
{s, t}-cut in G[Wk−1], say U1, U2.

Step 3. Among all feasible solutions {W1, . . . ,Wk−1} to Edge-(k − 1)-Cut listed in Step 1
and the corresponding U1, U2 found in Step 2, return the k-cut {W1, . . . ,Wk−2, U1, U2}
with minimum γ(W1, . . . ,Wk−2, U1, U2).

The correctness of the algorithm follows from Proposition 15: one of the choices enumer-
ated in Step 1 will correspond to the partition (V1, . . . , Vk−2, Vk−1 ∪ Vk), where (V1, . . . , Vk)
is the partition corresponding to the optimal solution. J

Acknowledgements. Karthik would like to thank Chandra Chekuri, Neil Olver and Chait-
anya Swamy for helpful discussions at various stages of this work.

References
1 H. Angelidakis, Y. Makarychev, and P. Manurangsi. An Improved Integrality Gap for the

Călinescu-Karloff-Rabani Relaxation for Multiway Cut. Preprint arXiv:1611.05530, 2016.
URL: https://arxiv.org/abs/1611.05530.

2 K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu. Global and fixed-terminal
cuts in digraphs. Preprint arXiv:1612.00156, 2017. URL: https://arxiv.org/abs/1612.
00156.

3 A. Bernáth and G. Pap. Blocking optimal arborescences. In Proceedings of the 16th In-
ternational Conference on Integer Programming and Combinatorial Optimization (IPCO),
pages 74–85, 2013.

4 C. Chekuri and V. Madan. Simple and fast rounding algorithms for directed and node-
weighted multiway cut. In Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA’16, pages 797–807, 2016.

5 C. Chekuri and V. Madan. Approximating multicut and the demand graph. In Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’17, 2017.

6 J. Cheriyan and R. Thurimella. Fast algorithms for k-shredders and k-node connectivity
augmentation. Journal of Algorithms, 33(1):15–50, 1999.

7 K. Cheung, W. Cunningham, and L. Tang. Optimal 3-terminal cuts and linear program-
ming. Mathematical Programming, 106(1):1–23, 2006.

8 M. Chlebík and J. Chlebíková. Complexity of approximating bounded variants of optimiz-
ation problems. Theoretical Computer Science, 354(3):320–338, 2006.

APPROX/RANDOM’17

https://arxiv.org/abs/1611.05530
https://arxiv.org/abs/1612.00156
https://arxiv.org/abs/1612.00156

2:16 Global and Fixed-Terminal Cuts in Digraphs

9 G. Călinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for multi-
way cut. Journal of Computer and System Sciences, 60(3):564–574, 2000.

10 E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis. The com-
plexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894, 1994.

11 R. Erbacher, T. Jaeger, N. Talele, and J. Teutsch. Directed multicut with linearly ordered
terminals. Preprint arXiv:1407.7498, 2014. URL: https://arxiv.org/abs/1407.7498.

12 T. Fukunaga. Computing minimum multiway cuts in hypergraphs. Discrete Optimization,
10(4):371–382, 2013.

13 N. Garg, V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted graphs. Journal
of Algorithms, 50(1):49–61, 2004.

14 O. Goldschmidt and D. Hochbaum. A polynomial algorithm for the k-cut problem for fixed
k. Math. Oper. Res., 19(1):24–37, Feb 1994.

15 T. Jordán. On the number of shredders. Journal of Graph Theory, 31(3):195–200, 1999.
16 D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young. Rounding algorithms for a

geometric embedding of minimum multiway cut. Mathematics of Operations Research,
29(3):436–461, 2004.

17 D. Karger and R. Motwani. Derandomization through approximation. In Proceedings of
the 26th annual ACM symposium on Theory of computing, STOC’94, pages 497–506, 1994.

18 D. Karger and C. Stein. A new approach to the minimum cut problem. Journal of ACM,
43(4):601–640, July 1996.

19 E. Lee. Improved Hardness for Cut, Interdiction, and Firefighter Problems. Preprint
arXiv:1607.05133, 2016. URL: https://arxiv.org/abs/1607.05133.

20 G. Liberman and Z. Nutov. On shredders and vertex connectivity augmentation. Journal
of Discrete Algorithms, 5(1):91–101, 2007.

21 R. Manokaran, J. Naor, P. Raghavendra, and R. Schwartz. SDP Gaps and UGC Hardness
for Multiway Cut, 0-extension, and Metric Labeling. In Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, STOC’08, pages 11–20, 2008.

22 E. Mossel. Gaussian bounds for noise correlation of functions. Geometric and Functional
Analysis, 19(6):1713–1756, 2010.

23 J. Naor and L. Zosin. A 2-approximation algorithm for the directed multiway cut problem.
SIAM Journal on Computing, 31(2):477–482, 2001.

24 K. Okumoto, T. Fukunaga, and H. Nagamochi. Divide-and-conquer algorithms for parti-
tioning hypergraphs and submodular systems. Algorithmica, 62(3):787–806, 2012.

25 M. Queyranne. On Optimum k-way Partitions with Submodular Costs and Minimum Part-
Size Constraints. Talk Slides, 2012. URL: https://smartech.gatech.edu/bitstream/
handle/1853/43309/Queyranne.pdf.

26 A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and
Combinatorics. Springer, 2003.

27 A. Sharma and J. Vondrák. Multiway cut, pairwise realizable distributions, and descending
thresholds. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC’14, pages 724–733, 2014.

28 L. Tseng and N. Vaidya. Fault-Tolerant Consensus in Directed Graphs. In Proceedings of
the 2015 ACM Symposium on Principles of Distributed Computing (PODC 2015), pages
451–460, 2015.

29 L. Végh. Augmenting undirected node-connectivity by one. SIAM J. Discrete Math.,
25(2):695–718, 2011.

30 M. Xiao. Finding minimum 3-way cuts in hypergraphs. Information Processing Letters,
110(14):554–558, 2010.

31 L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approximating
multiway partition problems. Mathematical Programming, 102(1):167–183, 2005.

https://arxiv.org/abs/1407.7498
https://arxiv.org/abs/1607.05133
https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf
https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:17

A Approximation for NodeDoubleCut

In this section, we present an efficient 2-approximation algorithm for {s, t}-NodeDoubleCut
which also leads to a 2-approximation for NodeDoubleCut by guessing the pair of nodes
s, t.

Remark. Our algorithm is LP-based. Although, alternative combinatorial algorithms can be
designed for this problem, we provide an LP-based algorithm since it also helps to illustrate
an integrality gap instance which is the main tool underlying the hardness of approximation
for the problem. Furthermore, it is also easy to round an optimum solution to our LP to
obtain a solution whose cost is at most twice the optimum LP-cost (using complementary
slackness conditions). Here, we present a rounding algorithm which starts from any feasible
solution to the LP (not necessarily optimal) and gives a solution whose cost is at most twice
the LP-cost of that feasible solution.

At the end of this section, we give an example showing that the integrality gap of the LP
nearly matches the approximation factor achieved by our rounding algorithm.

Proof of Theorem 2. We recall the problem: Given a directed graph D = (V,E) with two
specified nodes s, t ∈ V and node costs c : V \ {s, t} → R+, the goal is to find a least cost
subset U ⊆ V \ {s, t} of nodes such that every node u ∈ V \U can reach at most one node in
{s, t} in the subgraph D − U . We will denote a path P by the set of nodes in the path and
the collection of paths from node u to node v by Pu→v. For a fixed function d : V → R+,
the d-distance of a path P is defined to be

∑
u∈P du and the shortest d-distance from node

u to node v is the minimum d-distance among all paths from node u to node v. We use the
following LP-relaxation, where we have a variable du for every node u ∈ V :

min
∑

v∈V \{s,t}

cvdv (Path-Blocking-LP)

∑
v∈P

dv +
∑
v∈Q

dv − du ≥ 1 ∀ P ∈ Pu→s, Q ∈ Pu→t, ∀ u ∈ V

ds, dt = 0
dv ≥ 0 ∀ v ∈ V

We first observe that Path-Blocking-LP can be solved efficiently. The separation problem
is the following: given d : V → R+, verify if there exists a node u ∈ V such that the sum of
the shortest d-distance path from u to s and the shortest d-distance path from u to t is at
most 1 + du. Thus, the separation problem can be solved efficiently by solving the shortest
path problem in directed graphs.

Let d : V → R+ be a feasible solution to Path-Blocking-LP. We now present a rounding
algorithm that achieves a 2-factor approximation. We note that our algorithm rounds an
arbitrary feasible solution d to obtain an integral solution whose cost is at most twice the
LP-cost of the solution d. For a subset U of nodes, let ∆in(U) be the set of nodes v ∈ V \ U
that have an edge to a node u ∈ U .

The rounding algorithm in Figure 2 can be implemented to run in polynomial-time. We
first show the feasibility of the solution returned by the rounding algorithm. We use the
following claim.

I Claim 16. For every θ ∈ (0, 1/2), we have Bin(s, θ) ∩ Bin(t, θ) = ∅.

APPROX/RANDOM’17

2:18 Global and Fixed-Terminal Cuts in Digraphs

Rounding Algorithm for {s, t}-NodeDoubleCut

1. Pick θ uniformly from the interval (0, 1/2).
2. Let Bin(s, θ) and Bin(t, θ) be the set of nodes whose shortest d-distance to s and t

respectively, is at most θ.
3. Return U := ∆in(Bin(s, θ)) ∪∆in(Bin(t, θ)).

Figure 2 The rounding algorithm for {s, t}-NodeDoubleCut.

Proof. Say u ∈ Bin(s, θ) ∩ Bin(t, θ). Then there exists a path P ∈ Pu→s and a path
Q ∈ Pu→t such that

∑
v∈P dv +

∑
v∈Q dv ≤ 2θ < 1, a contradiction to the fact that d is

feasible for Path-Blocking-LP. J

I Claim 17. The solution U returned by the algorithm is such that every node u ∈ V \ U
can reach at most one node in {s, t} in the subgraph D − U .

Proof. Suppose not. Then there exists u ∈ V \ U that can reach both s and t in D − U . If
u 6∈ Bin(s, θ), then u cannot reach s in D−U since Bin(s, θ) has no entering edges in D−U .
Thus, u ∈ Bin(s, θ). Similarly, u ∈ Bin(t, θ). However, this contradicts the above claim that
Bin(s, θ) ∩ Bin(t, θ) = ∅. J

We next bound the expected cost of the solution returned by the rounding algorithm.
Let d̄(v, a) denote the shortest d-distance from node v to node a in D. We use the following
claim.

I Claim 18. Let θ ∈ (0, 1/2). If v ∈ ∆in(Bin(s, θ)) then θ < d̄(v, s) ≤ θ + dv and dv 6= 0.

Proof. If d̄(v, s) ≤ θ, then v ∈ Bin(s, θ), a contradiction to v ∈ ∆in(Bin(s, θ)). If d̄(v, s) >
θ + dv, then v 6∈ ∆in(Bin(s, θ)), a contradiction. If dv = 0, then θ < d̄(v, s) ≤ θ + dv = θ, a
contradiction. J

I Claim 19. For every v ∈ V , the probability that v is chosen in U is at most 2dv.

Proof. The claim holds if v ∈ {s, t}. Let us fix v ∈ V \ {s, t}. By the claim above, if
v ∈ ∆in(Bin(s, θ)) then θ < d̄(v, s) ≤ θ+dv and dv 6= 0. Similarly, if v ∈ ∆in(Bin(t, θ)), then
θ < d̄(v, t) ≤ θ + dv and dv 6= 0. Now, the probability that v is in U is at most

Pr
(
θ ∈

(
d̄(v, s)− dv,min{d̄(v, s), 1/2}

)
∪
(
d̄(v, t)− dv,min{d̄(v, t), 1/2}

))
.

Without loss of generality, let d̄(v, s) ≤ d̄(v, t). We may assume that dv > 0 and d̄(v, s)−dv <
1/2, since otherwise, the probability that v is in U is 0 and the claim is proved. Now, by the
feasibility of the solution d to Path-Blocking-LP, we have that d̄(v, s) + d̄(v, t)− dv ≥ 1 and
hence d̄(v, t) ≥ 1/2. Therefore,

Pr(v ∈ U) ≤ Pr
(
θ ∈

(
d̄(v, s)− dv,min(d̄(v, s), 1/2)

))
+ Pr

(
θ ∈

(
d̄(v, t)− dv, 1/2

))
= 1

(1/2)
(
1/2− d̄(v, s) + dv + 1/2− d̄(v, t) + dv

)
= 2

(
1− (d̄(v, s) + d̄(v, t)− dv) + dv

)
≤ 2dv.

The first equality in the above is because θ is chosen uniformly from the interval (0, 1/2) while
the last inequality is because of the feasibility of the solution d to Path-Blocking-LP. J

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:19

bb

aa
(i, j)(i, j)

ss tt

Figure 3 Da,b in the proof of Lemma 20 and (2−ε)-inapproximability of {s, t}-NodeDoubleCut.

By the above claim, the expected cost of the returned solution is

E

(∑
v∈U

cv

)
=
∑
v∈V

Pr(v ∈ U)cv ≤ 2
∑
v∈V

cvdv.

Although our rounding algorithm is a randomized algorithm, it can be derandomized using
standard techniques. J

Our next lemma shows a lower bound on the integrality gap that nearly matches the
approximation factor achieved by our rounding algorithm.

I Lemma 20. The integrality gap of the Path-Blocking-LP for directed graphs containing n
nodes is at least 2− 7/n1/3.

Our integrality gap instance is also helpful in understanding the hardness of approx-
imation of {s, t}-NodeDoubleCut. So, we define the instance below and summarize its
properties which will be used in the proof of Lemma 20 as well as in the proof of hardness of
approximation.

For two integers a, b ∈ N, consider the directed graph Da,b = (VD, AD) obtained as follows
(see Figure 3): Let VD := {s, t} ∪ ([a]× [b]). There are ab+ 2 nodes. Let ID := [a]× [b] and
call them as the internal nodes. The set of arcs AD are as follows:
1. For each 1 ≤ i ≤ a, there is a bidirected arc between s and (i, 1), and a bidirected arc

between (i, b) and t.
2. For each 1 ≤ i ≤ a and 1 ≤ j < b, there is a bidirected arc between (i, j) and (i, j + 1).
3. For each 1 ≤ i < a and 2 ≤ j ≤ b− 1, there is an arc from (i, j) to (i+ 1, j − 2), and an

arc from (i, j) to (i+ 1, j + 2) (let (i, 0) := s and (i, b+ 1) := t for every i). Call them
jumping arcs.

I Lemma 21. Da,b has the following properties:
1. For each internal node α = (α1, α2) ∈ ID, each α→ s path has at least α2 − a internal

nodes other than α. Similarly, each α→ t path has at least b− α2 − a+ 1 internal nodes
other than α.

2. If S ⊆ ID is such that the subgraph induced by VD \ S has no node v that has paths to
both s and t, then |S| ≥ 2a− 1.

APPROX/RANDOM’17

2:20 Global and Fixed-Terminal Cuts in Digraphs

Proof.
1. Jumping arcs are the only arcs that change α2 by 2 while all other arcs change α2 by 1.

However, a path to s can use at most a− 1 jumping arcs because they strictly increase
α1. The first property follows from these observations.

2. Suppose that S ⊆ ID is such that the subgraph induced by VD \S has no node v that has
paths to both s and t. For i = 1, . . . , a, let si := |S ∩ {{i} × [b]}|. We note that si ≥ 1
for each i, otherwise s can reach t and t can reach s.
Suppose si = 1 for some 1 < i ≤ a and let j be such that S ∩ {{i}× [b]} = (i, j). If j = 1,
then (i, 2) ∈ VD \ S and (i, 2) can reach both s and t. If j = b, then (i, b− 1) ∈ VD \ S
and (i, b − 1) can reach both s and t. Therefore, we have 1 < j < b. Then si−1 ≥ 3
because (i− 1, j − 1), (i− 1, j), (i− 1, j + 1) can reach both s and t using one jumping
arc followed by regular arcs in the ith row.
Therefore, |S| =

∑a
i=1 si ≥ 1 + 2(a− 1) = 2a− 1. J

Proof of Lemma 20. The integer optimum of Path-Blocking-LP on Da,b is at least 2a− 1
by the second property of Lemma 21. Let r := b− 2a+ 1. We set dv := 1/r for every internal
node v. The resulting solution is feasible to Path-Blocking-LP: Indeed, consider α = (α1, α2).
By the first property of Lemma 21, any α→ s path and α→ t path have to together traverse
at least α2 − a+ (b− α2 − a+ 1) = r internal nodes.

Setting b = a2, the integrality gap is at least (2a− 1)/(a3/r) = 2− 1/a3 + 4/a2 − 5/a ≥
2− 6/a for a ≥ 2. Using the fact that a = (|V (Da,b)| − 2)1/3, we get the desired bound on
the integrality gap. J

	Introduction
	Additional Results on Sub-problems and Variants
	Related Work
	Preliminaries

	Overview of approximation for EdgeBiCut
	Overview of the results on hardness of approximation
	2 - epsilon-Inapproximability for {s,t}-NodeDoubleCut

	EdgeLin3Cut problems
	Approximation for NodeDoubleCut

