
PPSZ for General k-SAT – Making Hertli’s
Analysis Simpler and 3-SAT Faster∗

Dominik Scheder1 and John P. Steinberger2

1 Department of Computer Science and Engineering, Shanghai Jiaotong
University, Shanghai, China
dominik@cs.sjtu.edu.cn

2 Institute for Interdisciplinary Information Sciences, Tsinghua University,
Beijing, China
jpsteinb@gmail.com

Abstract
The currently fastest known algorithm for k-SAT is PPSZ named after its inventors Paturi,
Pudlák, Saks, and Zane [7]. Analyzing its running time is much easier for input formulas with a
unique satisfying assignment.

In this paper, we achieve three goals. First, we simplify Hertli’s 2011 analysis [1] for input
formulas with multiple satisfying assignments. Second, we show a “translation result”: if you
improve PPSZ for k-CNF formulas with a unique satisfying assignment, you will immediately
get a (weaker) improvement for general k-CNF formulas.

Combining this with a result by Hertli from 2014 [2], in which he gives an algorithm for
Unique-3-SAT slightly beating PPSZ, we obtain an algorithm beating PPSZ for general 3-SAT,
thus obtaining the so far best known worst-case bounds for 3-SAT.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Boolean satisfiability, exponential algorithms, randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.9

1 Introduction

The problem of SAT, deciding whether a proposition formula conjunctive normal form has a
satisfying assignment (or even constructing such a solution) enjoys a central position among
NP-complete problems. The case of k-SAT, in which the input is restricted to k-CNF
formulas, i.e., formulas of clause width bounded by k, has drawn special attention. An
obvious brute-force algorithm solves SAT in time O (2npoly(n)), where n is the number of
variables. For k-SAT, this running time has been improved quite a bit. Two approaches
stand out: local search algorithms and encoding based algorithms. In 1999, Schöning [11]
gave a simple local search algorithm for k-SAT. Paturi, Pudlák, and Zane [8] came up with
an encoding-based algorithm, called PPZ in their honor. PPZ is not as good as Schöning,
but has interesting applications in circuit complexity [8] and complexity of exponential
algorithms [4].

Most importantly for this paper, there exists a “PPZ 2.0 version” called PPSZ (Paturi,
Pudlák, Saks, and Zane [7]). This is the currently fastest randomized algorithm for k-SAT.

∗ Dominik Scheder gratefully acknowledges support by the National Natural Science Foundation of China
under grant 61502300.

© Dominik Scheder and John P. Steinberger;
licensed under Creative Commons License CC-BY

32nd Computational Complexity Conference (CCC 2017).
Editor: Ryan O’Donnell; Article No. 9; pp. 9:1–9:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 PPSZ for General k-SAT – Simpler Analysis

It is quite simple to state but challenging to analyze. We should state that its actual worst-
case running time is not understood at all: Chen, Scheder, Talebanfard, Tang [10] construct
exponentially hard instances, but their bounds are quite poor. Perhaps counterintuitively,
the analysis in [7] incurs an exponential loss if the input formula has multiple solutions.
Only in 2011, Timon Hertli [1] closed this gap in a breakthrough paper by a better (and
simpler, yet still quite challenging) analysis. Still, PPSZ continued to be the best algorithm.
A first crack in the wall appeared in 2014, when Hertli [2] combined PPSZ with several other
algorithms, and showed that this improves the running time of Unique-3-SAT by a small
but exponential amount. By Unique-k-SAT we mean k-SAT where the input formula F can
have at most one satisfying assignment. If F may have multiple solutions, we write general
k-SAT.

In this paper we first give a simpler analysis of Hertli’s 2011 result [1]. This analysis
also yields a translation result: if you improve PPSZ for Unique-k-SAT, you immediately
get a (smaller) improvement for general k-SAT. Thus, researchers who want to “crack the
PPSZ barrier” can focus on Unique-k-SAT for the time being. This, together with Hertli’s
2014 improvement for Unique-3-SAT [2], gives the currently fastest known running time for
general 3-SAT.

To give the reader an impression of which running time we are talking about, let
us state some bounds for 3-SAT, ignoring subexponential factors. PPZ [8] runs in time
O
(
22n/3) ≈ O (1.59n), Schöning [11] in time O

((4
3
)n) ≈ O (1.334n), and PPSZ [7] in time

O
(
2(2 ln(2)−1)n) ≈ O (1.308n). The improvements by Hertli [2] and this paper are quite small

(think of in the ballpark of tenth digit after the dot) and serve more as a demonstration
that PPSZ can be improved, even if they do not improve it by much.

1.1 The PPSZ Algorithm
PPSZ is a probabilistic algorithm that tries to incrementally construct a satisfying assign-
ment of F . The “generic PPSZ algorithm” is easy to state. Given a k-CNF formula F ,
choose a variable x therein uniformly at random; then choose a value b ∈ {0, 1}. Choose b
uniformly at random, unless we can determine the “correct” truth value of x by some correct
yet incomplete proof heuristic.

Let us state things more formally. A proof heuristic is a deterministic procedure P which
on input F and x outputs a value b ∈ {0, 1, ?}. Correctness means that P (F, x) = b ∈ {0, 1}
means that F |= (x = b), i.e., b is really the correct value of x; incompleteness means that
we allow P (F, x) to output “?”, even if only one value b ∈ {0, 1} for x is feasible. From now
on, when we say proof heuristic, we always mean a correct but possibly incomplete heuristic.

Suppose now that α ∈ sat(F), i.e., it is a satisfying assignment. Below we give procedure
Encode that, given access to α, F , the heuristic P , and a permutation π of the variables
of F , encodes α into a bit string c, hopefully using fewer than n bits. Intuitively, it iterates
through the variables in the order given by π and outputs α(x) for every variable, unless
this value is already implied by F and the bits output so far. This encoding is reversible:
the procedure Decode can recover α when given access to F , P , π, and the encoding c.
The generic algorithm RandomDecode then is simply to choose π and c randomly, start
decoding and hoping for the best.

Note that the running time of RandomDecode is dominated by the running time of P .
Thus, as long as P runs in polynomial (subexponential) time, so does RandomDecode.
Consequently, we measure the goodness of RandomDecode not in terms of running time,
but in terms of success probability, which will usually be of the form 2−pn for some constant
p. To make RandomDecode into an algorithm, we still have to specify P . Here are some
examples:

D. Scheder and J. Steinberger 9:3

Algorithm 1 Generic Encoding Procedure
1: procedure Encode(α, π, F, P)
2: β := the empty assignment on V
3: for x ∈ V in the order of π do
4: if P (F |β , x) =? then
5: output α(x)
6: end if
7: add [x 7→ α(x)] to β
8: end for
9: end procedure

Algorithm 2 Generic Decoding Procedure
1: procedure Decode(c, π, F, P)
2: β := the empty assignment on V
3: for x ∈ V in the order of π do
4: if P (F |β , x) = b ∈ {0, 1} then
5: β(x) := b

6: else
7: β(x) := the next bit of c
8: end if
9: end for
10: return β

11: end procedure

Algorithm 3 Generic Random Decoding Procedure
1: procedure RandomDecode(F, P)
2: π := a random permutation on V
3: c := a random string in {0, 1}n
4: β := Decode(c, π, F, P)
5: return β if it satisfies F , else failure
6: end procedure

Example: P0. This heuristic always outputs “?”. Obviously, RandomDecode(F, P0) is
just random guessing, and each solution α appears with probability 2−n. This is not a very
good algorithm.

Example: P1. This heuristic answers P1(F, x) = b ∈ {0, 1} if F is a CNF formula and F
contains the unit clause (x = b)1 RandomDecode(F, P1) is the algorithm PPZ, invented
by Paturi, Pudlák, and Zane [7]. Its success probability on k-CNF formulas is 2−(1−1/k)n.

Example: Pd. This heuristic generalizes P1. It answers Pd(F, x) = b if F is a CNF formula
and it contains a subset G of at most d clauses for which G |= (x = b). With this heuristic,
RandomDecode(F, Pd) becomes PPSZ, although Paturi, Pudlák, Saks, and Zane[7] state

1 If F contains both (x = 0) and (x = 1) then P1(F, x) can be either 0 or 1, but in this case F is
unsatisfiable anyway.

CCC 2017

9:4 PPSZ for General k-SAT – Simpler Analysis

it slightly differently. Its success probability is much higher than that of PPZ (we will give
more details below) but it is still not completely understood.

Example: P∞. This heuristic employs the whole power of propositional logic. It answers
P∞(F, x) = b ∈ {0, 1} if F implies (x = b). Obviously, determining this is itself NP-hard,
so this is not an efficient heuristic. Still, it will be important in this paper. Note that
for satisfiable F , RandomDecode(F, P∞) always outputs a solution. Thus, it defines a
distribution Q on pairs (π, α), where π is the permutation is chooses and α the solution it
outputs. The distribution Q will be very important in our proofs below.

1.2 Gauging the Strength of the Proof Heuristic P

Towards an analysis of its success probability time, let Cx(α, π) be the indicator variable
which is 1 if Encode outputs a bit for x., i.e., if P (F |β , x) = ? in Line 4 of Encode. So
C(π, α) :=

∑
x Cx(π, α) is the length of the encoding, i.e., |c| = C(π, α). Note that Cx(π, α)

also depends on F and P . Since they are usually fixed throughout, we choose to drop them
for the sake of readability.

I Observation 1. Pr[RandomDecode(F, P) returns α] = Eπ
[
2−C(π,α)].

Proof. Let c∗ := Encode(α, π, F, P). RandomDecode returns α iff the first C(π, α) bits
of its random string c ∈ {0, 1}n agree with c∗. J

We write F |= T as a shorthand of “F implies T”, i.e., every satisfying assignment of
F satisfies T . If F |= (x = 0) or F |= (x = 1) we say that x is frozen in F . Equivalently,
all satisfying assignments of F agree on x. Otherwise, we say that x is liquid. Note that
Cx(π, α) can be 1 for two reasons. First, it could be that in Line 4 of Encode, x is liquid
in F |β and thus every correct proof heuristic P must answer P (F |β , x) = ?. In this case we
set Ix(π, α) = 1. Second, it could be that x is frozen in F |β and therefore P (F |β , x) = ?
is due to the incompleteness of P . In this case we set Jx(π, α) = 1. Thus, Cx(π, α) =
Ix(π, α) + Jx(π, α). We also set I(π, α) =

∑
x Ix(π, α) and J(π, α) =

∑
x J(π, α)x. Note

that I(π, α) = 0 if F has a unique satisfying assignment, since all variables are frozen. Also,
J(π, α) = 0 for P∞, since this heuristic never fails. Here is a plausible notion of strength for
proof heuristics: if P is a strong proof heuristic, then Jx(π, α) = 1 should not happen too
often:

I Definition 2 (Error of P). Let C be a class of formulas and P be a proof heuristic. P has
error at most p against C if Eπ [Jx(π, α)] ≤ p for every F ∈ C, solution α, and variable x
in F .

I Theorem 3 ([8]). P1 has error 1− 1/k against k-CNF formulas.

Paturi, Pudlák, Saks, and Zane[7] prove the following bound on the error of Pd (although
they do not use this exact wording). Consider the infinite (k − 1)-ary rooted tree. For
each vertex v in this tree, choose πv ∈ [0, 1] uniformly at random. Delete each vertex v

with πv < πroot. Let sk be probability that the root is contained in an infinite connected
component. It is easy to see that s2 = 0. A simple calculation shows that s3 = 2 ln(2)− 1.

I Theorem 4 ([7]). Pd has error sk + εd,k against k-CNF formulas, where εd,k → 0 as
d→∞.

D. Scheder and J. Steinberger 9:5

I Observation 5. Let P be a proof heuristic of error at most p against C. If F ∈ C has a
unique satisfying assignment α, then RandomDecode(F, P) = α with probability at least
2−pn.

Proof. We use Observation 1 and Jensen’s Inequality:

Pr[PPSZ succeeds] = E
π

[
2−C(π,α)

]
≥ 2−Eπ [C(π,α)] (Jensen’s Inequality)

= 2−Eπ [J(π,α)] (I = 0 since only one assignment)
≥ 2−pn (P has error at most p)

J

1.3 Previous Work
In case F has multiple satisfying assignments, the proof of Observation 5 breaks down, and
it is not clear why a proof heuristic of error at most p should give an algorithm of success
probability 2−pn. A series of authors have improved PPSZ for the general case of multiple
satisfying assignments. Paturi, Pudlák, Saks, and Zane [7] already gave an analysis, which
has an exponential loss for k = 3, 4. Iwama and Tamaki [6] combine PPSZ for Schöning’s
random walk algorithm [11] to obtain a better algorithm. This combination was then further
explored by Rolf [9], Iwama, Seto, Takai, and Tamaki [5], and Hertli, Moser, and Scheder [3].
All these improvements have serious drawbacks: they still have an exponential loss compared
to the Unique-k-SAT bound for k = 3, 4; they are extremely technical; they use detailed
knowledge of the proof heuristic P ; finally, the latter four have to combine PPSZ with a
second algorithm (Schöning’s random walk algorithm [11]) to achieve their improvement. In
2011, Timon Hertli achieved a breakthrough by proving the following theorem:

I Theorem 6 (Hertli [1]). Suppose P has error at most p against C, and p ≥ p∗ := 2−log(e)
2 ≈

0.279. For every satisfiable F ∈ C, RandomDecode(F, P) returns a satisfying assignment
with probability at least 2−pn.

Note the mysterious p∗ in the theorem. We suspect that it is an artefact of the proof and
make the following conjecture:

I Conjecture 7. Theorem 6 holds for all p ≥ 0.

Currently, the only supporting evidence for the conjecture is (1) our failure to construct
a counterexample, despite some trying, and (2) that it would simply be very weird if it
were false. Anyway, since 1 − sk ≥ p∗ for all k ≥ 3, Hertli’s theorem works for the current
version of PPSZ, for all k ≥ 3. It might be, however, that future research brings about proof
heuristics of error probability less than p∗, in which case the above theorem would again
incur an exponential loss. Ingenious as it is, Hertli’s proof is quite long and tedious.

1.4 Our Contribution
The first contribution of this paper is to give a much simpler proof of Theorem 6. Our proof
in fact highlights why certain previous attempts fail, demonstrates more clearly “what is
going on”, and also points towards further improvements.

As a second contribution, we show that any improvement of PPSZ for Unique-k-SAT
translates into a (weaker) improvement for General k-SAT. In particular, we will prove a
stronger version of Theorem 6, which we now explain.

CCC 2017

9:6 PPSZ for General k-SAT – Simpler Analysis

I Definition 8. A class C of formulas or circuits is closed under restrictions if F ∈ C implies
that F |x=b ∈ C, for every variable x and value b ∈ {0, 1}.

Note that this applies to most “reasonable” circuit classes, in particular to k-CNF formulas.

I Definition 9. A proof heuristic P is called monotone if P (F, x) ∈ {0, 1} implies that
P (F |y=b, x) ∈ {0, 1}, for every F , y 6= x, and b ∈ {0, 1}.

In other words, if P can deduce the value of x, then it can also do so after we add the
additional information that y = b. Note that P0, P1, Pd, P∞ define above are all monotone.
Recall that RandomDecode(F, P∞) chooses a uniformly random permutation π ∈ Sym(V)
and always outputs a satisfying assignment. Thus, it defines a distribution Q on Sym(V)×
sat(F) with Q(π, α) = 1

n! · 2
−I(π,α).

I Theorem 10. Suppose P has error at most p against C, and set q := p − p∗ for p∗ :=
2−log(e)

2 ≈ 0.279. Let F ∈ C be satisfiable. Then RandomDecode returns a satisfying
assignment with probability at least 2−pn+q E(π,α)∼Q[I(π,α)], where q := p− p∗.

Since sk > p∗ for all k ≥ 3, the value q above is positive, which immediately reproves
Hertli’s Theorem (Theorem 6). As pointed out by one of the referees, the “bonus term”
E(π,α)∼Q[I(π, α)] has an information-theoretic interpretation: it is the conditional entropy
H(α|π). Our theorem has a nice by-product, a “translation result” from Unique-k-SAT to
General k-SAT: suppose you have an algorithm A which is exponentially better than PPSZ
for Unique-k-SAT. Given an input k-CNF formula F , there are two cases: first, it could
be that EQ[I] is “large” for this F , in which case Theorem 10 already gives an exponential
bonus; or it is “small”, in which case there is a small restriction ρ such that F |ρ has a unique
satisfying assignment. We can now guess ρ and apply A to F |ρ. Formally, we obtain the
following theorem:

I Theorem 11. Suppose P is a monotone proof heuristic with error probability at most p
against class C. We assume that C is closed under restrictions.
1. If RandomDecode(P, ·) solves Unique-C-SAT with probability at least 2(−p+ε)n, then

it solves C-SAT with probability at least 2(−p+ε′)n.
2. If there is an algorithm A for Unique-C-SAT with success probability 2(−p+ε)n, then there

is an algorithm A′ for C-SAT with success probability at least 2(−p+ε′)n and running time
n times that of A.

3. If there is Monte Carlo algorithm B solving Unique-C-SAT running in time 2(p−ε)n,
then there exists a Monte Carlo algorithm B′ solving C-SAT in time 2(p−ε′)n.

Here, ε′ > 0 if ε > 0.

I Theorem 12 (Hertli [2]). There exists a Monte-Carlo algorithm solving Unique-3-SAT in
time O

(
2(s3−ε)n

)
for some ε > 0.

Together with Theorem 11 we immediately obtain improvement for general 3-SAT and
achieve the currently best running time.

I Theorem 13. There is a Monte-Carlo algorithm solving 3-SAT in time O
(

2(s3−ε′)n
)
for

some ε′ > 0.

D. Scheder and J. Steinberger 9:7

2 Proof of Theorem 10

In addition toQ(π, α) = 1
n! ·2

−I(π,α), we consider another distribution R on Sym(V)×sat(F).
We estimate the success probability of RandomDecode:

Pr[success] =
∑

α∈sat(F)

E
π

[
2−C(π,α)

]
=

∑
α∈sat(F)

1
n!
∑
π

2−I(π,α)−J(π,α)

=
∑

α∈sat(F)

∑
π

R(π, α)2−I(π,α)−J(π,α)

n!R(π, α)

= E
(π,α)∼R

[
Q(π, α)
R(π, α) · 2

−J(π,α)
]

≥ 2ER
[
− log2

(
R(π,α)
Q(π,α)

)
−J(π,α)

]
(by Jensen’s inequality)

= 2−D(R||Q)−ER[J(π,α)] ,

where D(R||Q) is called the Kullback-Leibler divergence from Q to R. We can now plug in
any distribution R and aim to minimize the expression

D(R||Q) + E
(π,α)∼R

[J(π, α)] . (1)

Here we face a tradeoff. If we choose R to be uniform over Sym(V) × sat(F), we get
ER[J(π, α)] = Eα [

∑
x Eπ[Jx(π, α)]] ≤ pn, since P has error at most p; however, D(R||Q)

might be too large. Choosing R = Q makes D(R||Q) = 0, but the second term can become
larger than pn. Informally speaking, the problem is that for certain F , P , and α, if we sample
π from the conditional distribution Q|α, frozen variables x tend to come earlier (compared
to a uniformly sampled π). Thus, when we call P (F |β , x), we have less information (β tends
to be a shorter partial assignment), and Jx is more likely to be 1. In Section B we provide
examples where these phenomena actually happen.

The process Sample-R below defines a distribution R on pairs (π, α) that resembles
Q (and thus keeps the divergence D(R||Q) small) while showing a moderate preference
for moving frozen variables to the back of π (keeping ER[J(π, α)] small). Note that unlike
under Q, the marginal distribution on permutations induced by R is not necessarily uniform.
Indeed, if we call sample-R(F, V) for F = x and V = {x, y} then π is (y, x) with probability
2/3 and (x, y) with probability 1/3. On the other hand, R and Q induce the same marginal
distribution on satisfying assignments. The reader is encouraged to verify this, but this
property is not required for the proof. We call the resulting distribution RF to highlight its
dependency on F . If F is understood from the context, we simply write R.

I Lemma 14. D(R||Q) ≤ p∗ ER[I] for every F .

This is where the mysterious p∗ =
(

2−log(e)
2

)
comes from. The proof of Lemma 14 is a

little bit technical but rather straightforward for somebody familiar with information theory,
and can be found in the appendix.

I Lemma 15. Let C be a formula class closed under restrictions, P a monotone proof
heuristic with error at most p against C. Then for every F ∈ C and every frozen variable x
of F it holds that ER[Jx] ≤ p.

This lemma is in some way the heart of our proof. Its proof studies how the conditional
distribution R(π|α) differs from the uniform distribution over π and applies two careful

CCC 2017

9:8 PPSZ for General k-SAT – Simpler Analysis

Algorithm 4 Sampling from the distribution R
1: procedure Sample-R(F, V)
2: if V = ∅ then
3: return (∅, ∅)
4: end if
5: S(F) := {(x, b) ∈ V × {0, 1} | F |x=b is satisfiable }
6: (x, b) := a random element from S

7: (π, α) := sample-R(F |x=b, V \ {x})
8: return (xπ, α ∪ [x = b])
9: end procedure

coupling arguments. It is also the place where we use that P is monotone. Lemma 15 has
the following consequence:

I Lemma 16. ER[pIx + Jx] ≤ p for every x ∈ V , and ER[pI + J] ≤ pn.

Proof. Imagine we run the process Sample-R but pause when (1) x becomes frozen or (2)
x, as a non-frozen variable, is chosen in line 6. Everything what happens before the pause
is called the past. If (2) happens, then Ix = 1, Jx = 0 and thus ER[pIx + Jx|the past] =
ER[p · 1 + 0] = p. Otherwise, if (1) happens, then I = 0 since x becomes frozen, and
ER[pIx+Jx|the past] = ER[Jx|the past]. After the past has happened, the sampling process
has arrived at a new formula F ′ ∈ C, and x is frozen in F ′. Since C is closed under restrictions,
F ′ ∈ C, too, and we can apply Lemma 15 to conclude that ERF [Jx|the past] = ERF ′ [Jx] ≤ p.
Thus, ER[pIx + Jx] ≤ p. J

I Lemma 17. ER[I] = EQ[I].

Let us put everything together. D(R||Q) + ER[J] ≤ p∗ ER[I] + ER[J] = ER[pI + J] −
(p − p∗)ER[I] ≤ pn − q EQ[I]. Thus, RandomDecode succeeds with probability at least
2−pn+q EQ[I]. This proves Theorem 10.

3 Unique to General

We are now ready to prove Theorem 11, which claims that if you can beat PPSZ for Unique-
C-SAT, then you can beat it for C-SAT.

Proof of Theorem 11. Let δ > 0 be a fixed number, to be determined later. If EQ[I] ≥ δ ·n,
then

Pr[RandomDecode(F, P) successful] ≥ 2−pn+δcn , (2)

which is exponentially larger than 2−pn.
Otherwise, assume that EQ[I] ≤ δn. In particular, I(π, α) ≤ δn for some permutation

π and assignment α. This means that there is a partial assignment ρ fixing δn variables
such that F |ρ has a unique satisfying assignment. We prove Point 1 of the theorem. When
running RandomDecode on F , with probability

(
n
≤δn
)−1 · 2δn the first δn steps produce

exactly ρ, and the remaining (1− δ)n steps are like running RandomDecode(F |ρ, P). F |ρ,
has the unique solution α, and thus RandomDecode(F |ρ, P) finds α with probability at
least 2(−p+ε)(n−δ). Altogether,

Pr[RandomDecode(F, P) = α] ≥
(
n

δn

)−1
· 2−δn · 2(−p+ε)(n−δ) . (3)

D. Scheder and J. Steinberger 9:9

By choosing δ > 0 optimally, we can make sure that both (2) and (3) are at least 2(−p+ε′)n,
for some ε′ > 0. This proves Point 1 of the theorem. The proofs of the other two points are
similar. J

4 Open Questions

Can we show that formulas with a unique solution are the worst case for RandomDecode
under every “reasonable” heuristic P?

Can we show that the success probability of RandomDecode is exponentially larger
than 2−pn if F has an exponential number of solutions? Unfortunately, the current “bonus
term” EQ[I]” can be constant for some formulas with a large number of solutions, for example
for F = (x1 ∧ · · · ∧ xn/2) ∨ (|x| ≤ 100) (note that EQ[I] only depends on the underlying
boolean function, not on its representation as a CNF formula).

Acknowledgements. Dominik Scheder want to thank Navid Talebanfard for inspiring dis-
cussions.

References
1 Timon Hertli. 3-SAT faster and simpler – unique-SAT bounds for PPSZ hold in general. In

2011 IEEE 52nd Annual Symposium on Foundations of Computer Science – FOCS 2011,
pages 277–284. IEEE Computer Soc., Los Alamitos, CA, 2011. doi:10.1109/FOCS.2011.
22.

2 Timon Hertli. Breaking the PPSZ Barrier for Unique 3-SAT. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming – 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages
600–611. Springer, 2014. doi:10.1007/978-3-662-43948-7_50.

3 Timon Hertli, Robin A. Moser, and Dominik Scheder. Improving PPSZ for 3-SAT using
critical variables. In Proceedings of STACS, pages 237–248, 2011. URL: http://arxiv.
org/abs/1009.4830.

4 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

5 Kazuo Iwama, Kazuhisa Seto, Tadashi Takai, and Suguru Tamaki. Improved randomized
algorithms for 3-SAT. In Algorithms and Computation, volume 6506 of Lecture Notes in
Comput. Sci., pages 73–84. Springer Berlin / Heidelberg, 2010.

6 Kazuo Iwama and Suguru Tamaki. Improved upper bounds for 3-SAT. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 328–329
(electronic), New York, 2004. ACM.

7 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364 (electronic), 2005. doi:
10.1145/1066100.1066101.

8 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chicago
J. Theoret. Comput. Sci., pages Article 11, 19 pp. (electronic), 1999.

9 Daniel Rolf. Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 1:111–122, 2006.

10 Dominik Scheder, Bangsheng Tang, Shiteng Chen, and Navid Talebanfard. Exponential
lower bounds for the PPSZ k-sat algorithm. In Sanjeev Khanna, editor, Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,

CCC 2017

http://dx.doi.org/10.1109/FOCS.2011.22
http://dx.doi.org/10.1109/FOCS.2011.22
http://dx.doi.org/10.1007/978-3-662-43948-7_50
http://arxiv.org/abs/1009.4830
http://arxiv.org/abs/1009.4830
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1145/1066100.1066101
http://dx.doi.org/10.1145/1066100.1066101

9:10 PPSZ for General k-SAT – Simpler Analysis

New Orleans, Louisiana, USA, January 6-8, 2013, pages 1253–1263. SIAM, 2013. doi:
10.1137/1.9781611973105.91.

11 Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, pages
410–414. IEEE Computer Society, Los Alamitos, CA, 1999. doi:10.1109/SFFCS.1999.
814612.

A Proof of the lemmas

For a formula F over variable set V , recall that S(F, V) is the set of all pairs (x, b) ∈ V ×{0, 1}
for which F |x=b is satisfiable. Note that if F is satisfiable then |S(F, V)| is n plus the number
of liquid variables.

I Lemma 14 (restated). D(R||Q) ≤
(

2−log(e)
2

)
ER[I], for every formula F .

Proof. Let us spell out a pair (π, α) as (x1 . . . xn, b1 . . . bn), where xi is the ith variable under
π and bi = α(xi). Let τi := (x1 . . . xi, b1 . . . bi) be a “prefix” of (π, α). Define Rτi be the
distribution of (bi+1, xi+1) under R conditioned on τi. Similarly define Qτi . By the chain
rule for the divergence we get

D(R||Q) =
n−1∑
i=0

E
τi∼R

[D(Rτi ||Qτi) .

So let us fix a “past” τi and bound D(Rτi ||Qτi). Let Fi := F |x1 7→b1...xi 7→bi and Vi :=
{xi+1, . . . , xn}. So Fi is a CNF formula over Vi, and it is exactly the formula for which
Sample-R is called in its ith call. Let ni = |Vi|, si := |S(Fi, Vi)|, fi the number of frozen
variables in Vi and li the number of liquid variables. Thus fi + li = ni and fi + 2li = si.
Note that Ri is uniform over S(Fi, Vi). Qτi picks xi+1 uniformly at random from Vi and
assigns it a random value from the (one or two) allowed values. Thus, Qτi(x, b) is 0 if
(x, b) 6∈ S(Fi, Vi); otherwise, it is 1/ni if x is frozen and 1/2ni if x is liquid.

D(Rτi ||Qτi) =
∑

(x,b)∈S(Fi,Vi)

Rτi(x, b) log
(
Rτi(x, b)
Qτi(x, b

)

=
∑

(x,b)∈S(Fi,Vi)

1
si

log
(

1/si
[1/ni if x frozen, 1/2ni if x liquid]

)

= 2li
si

log
(

1/si
1/2ni

)
+ fi
si

log
(

1/si
1/ni

)
= 2li

s
log
(

2ni
si

)
+ fi
si

log
(
ni
si

)
= 2li

s
+ log

(
ni
si

)
= 2li

s
+ log

(
1− li

si

)
≤ 2li

s
− log(e) li

si
= li
si

(2− log(e)) .

Let Ĩi(π, α) := Ixi(π, α), i.e., an indicator variable which is 1 if the ith variable under
π is liquid in Fi−1. We observe that ERτi [Ĩi+1] = 2li

si
, since there are exactly 2li pairs

(x, b) ∈ S(Fi, Vi) for which the variable x is liquid. Putting everything together, we get

D(R||Q) ≤
n−1∑
i=0

E
τi∼R

[
li
si

(2− log(e))
]

= 2− log(e)
2

n−1∑
i=0

E
τi∼R

[
2li
si

]
.

As we have just seen, the latter sum equals ER
[∑n

i=1 Ĩi
]
, which again equals ER[I], since

Ĩi, i = 1, . . . , n simply counts Ix, x ∈ V in a different order. J

http://dx.doi.org/10.1137/1.9781611973105.91
http://dx.doi.org/10.1137/1.9781611973105.91
http://dx.doi.org/10.1109/SFFCS.1999.814612
http://dx.doi.org/10.1109/SFFCS.1999.814612

D. Scheder and J. Steinberger 9:11

A.1 Permutations that delay x – Proof of Lemma 15

Before we prove Lemma 15, we have to introduce some notation. We call a function g :
2V → R monotone if g(A) ≤ g(B) for any A ⊆ B ⊆ V . Let x ∈ V be a fixed variable,
π ∈ Sym(V) a permutation. We denote by W (π) the set of variables appearing after x in π.
Observe that Jx(π, α) only depends on W (π), not on the particular order of the variables
coming before x and of those coming after x.

I Observation 18. Jx is a monotone function in W , since P is a monotone heuristic.

For two strings σ, π, we write σ � π if σ is a prefix of π. A permutation π on set V of
size n can be viewed as a string in V n without repeated letters. A string σ ∈ V ∗ without
repeated letters is called a partial permutation. If D is a distribution over permutations on
V and σ is a partial permutation, we write D(σ) := Prπ∼D(σ � π).

I Definition 19. Let D be a distribution over permutations on V , and let x ∈ V . We say
D delays x if for all y ∈ V and all partial permutations σ not containing x or y, it holds
that D(σx) ≤ D(σy).

Informally, at every stage, x is among the least likely elements to come next. For example,
the uniform distribution delays x; so does the distribution that samples a permutation of
V \ {x} and places x at the end. Lemma 15 will follow from the next two lemmas:

I Lemma 20. The distribution (R|α) delays x, for every frozen variable x.

Here, (R|α) is the distribution on permutations conditioned on this fixed satisfying assign-
ment α, i.e., (R|α)(π) = R(π, α|α).

I Lemma 21. Let V be a finite set, x ∈ V , D a distribution over permutations of V that
delays x, and f : V → R a monotone function. Denote by W = W (π) the set of elements
coming after x in π. Then

E
π∼D

[f(W)] ≤ E
π∼U

[f(W)] ,

where U is the uniform distribution over permutations.

Proof Idea. Since D delays x, the set W tends to be smaller under D than under U . Since
f is monotone this means the expectation f(W) is smaller, too. This is the intuition. The
formal proof uses a coupling argument. J

I Lemma 15 (restated). Let C be a formula class closed under restrictions, P a monotone
proof heuristic with error at most p against C. Then for every F ∈ C and every frozen
variable x of F it holds that ER[Jx] ≤ p.

Proof. By assumption on P we have Eπ[Jx(π, α)] ≤ p when π is uniform. Thus, we have
to compare how the uniform distribution and (R|α) differ in their treatment of x, and how
Jx(π, α) reacts to these differences. By Lemma 20, (R|α) delays x. By Observation 18, J
is a monotone function in W , where W = W (π) is the set of elements coming after x in π.
Thus, by Lemma 21 we obtain that Eπ∼R[Jx(π, α)] ≤ Eπ∼U [Jx(π, α)] ≤ p. J

CCC 2017

9:12 PPSZ for General k-SAT – Simpler Analysis

A.2 Remaining proofs – Lemma 20 and Lemma 21

Proof of Lemma 20. By assumption, x is frozen and σ is a partial permutation not con-
taining x nor y. Assume first that σ is empty. We have to show that R(x|α) ≤ R(y|α) or,
equivalently, R(x, α) ≤ R(y, α).2

Consider the following alternative but equivalent way to sample R: order the s elements
of S(F, V) randomly into a sequence τ = (x1, b1), . . . , (xs, bs) and then add the unit clauses
(xi = bi) to F , in this order, skipping a unit clause if adding it would make F unsatisfiable.
This adds n unit clauses in some order (xi1 = bi1), . . . , (xin = bin) and thus defines a
permutation π of V and an assignment α. The pair (π, α) has distribution R.

Let Tz,α denote the set of all such sequences τ that (1) result in α and (2) place z at the
beginning of π. So R(z, α) = |Tz,α|

|S(F,V)|! . Since the first unit clause (x1 = b1) in a sequence
is always consistent with F , every sequence in Tz,α starts with (z = α(z)). For a sequence
τ ∈ Tx,α define f(τ) to be the sequence τ ′ where we switch the positions of (x = α(x)) and
(y = α(y)) (note that both must appear in τ , and (x = α(x)) appears at the beginning).
A minute of thought shows that the sequence f(τ) leads to α as well (the key observation
is that x is frozen, so logically (x = α(x)) is already present in F , whether it occurs at the
beginning of τ or not). Thus f(τ) ∈ Ty,α and we have just defined an injection from Tx,α
into Ty,α. This shows that |Tx,α| ≤ |Ty,α| and thus R(x, α) ≤ R(y, α).

If σ is not empty we write α = ασασ̄, where ασ is the α restricted to the variables
appearing in σ, and ασ̄ is the rest. Write F ′ := F |ασ Now R(σz, α) is the probability that
Sample-R follows σ and α in its first |σ| steps, times RF ′(z, ασ̄). Thus, we have reduced
non-empty σ case to the empty σ case. J

I Lemma 21 (restated). Let V be a finite set, x ∈ V , D be a distribution over permutations
of V that delays x, and f : V → R be a monotone function. Denote by W = W (π) the set
of elements coming after x in π. Then

E
π∼D

[f(W)] ≤ E
π∼U

[f(W)] ,

where U is the uniform distribution over permutations.

Proof. Let WD denote a random variable distributed like W (π) with π ∼ D, and similarly
WU = W (π) where π is uniform. Below, we define a process Sample-W which simultan-
eously samples WD and WU and guarantees WD ⊆WU . In other words, Sample-W defines
a coupling under which WD ⊆ WU We write D(z|σ) := D(σz|σ) = D(σz)

D(σ) . This is the
probability that z is chosen next, conditioned on σ having been sampled so far.

The process Sample-W clearly samples WD from the correct distribution. Note that
an element z gets removed from WU whenever t < D(x|σ), and then a uniformly random
element is removed. Also, the process terminates when x has been removed from WD.
Obviously, it will be removed from WU in the same iteration. So WD and WU have the
correct distribution. Lastly, since D(x|σ) ≤ D(z|σ), when the element z is removed from
WU , it has already been removed from WD. Thus, WD ⊆ WU holds in every step. Thus,
f(WD) ≤ f(WU) with probability 1 and therefore Eπ∼D[f(W)] ≤ Eπ∼U [f(W)]. J

2 We have not formally introduced this notation. It is the probability that Sample-R outputs α and a
permutation π starting with x (respectively, y)

D. Scheder and J. Steinberger 9:13

Algorithm 5 Sampling WD and WU
1: procedure sample-W(V, x)
2: σ := the empty string
3: WD = WU = V

4: while x ∈WD do
5: (z, t) ∈ V × [0, 1], uniformly at random
6: if t < D(z|σ) and z ∈WD then
7: remove z from WD

8: append z to σ
9: end if
10: if t < D(x|σ) then
11: remove z from WU
12: end if
13: end while
14: return WD,WU
15: end procedure

B Bad Examples

B.1 Why s Direct Application of Jensen’s Does Not Work
We will demonstrate why proving Theorem 6 requires nontrivial effort. Let us proceed as
in the proof of Observation 5. Let sat(F) be the set of all satisfying assignments of F . The
success probability of Decode is

Pr
c,π

[success] =
∑

α∈sat(F)

Pr
c,π

[Decode(c, π, F, P) = α]

=
∑

α∈sat(F)

E
π

[
2−C(π,α)

]
(4)

≥
∑

α∈sat(F)

2−Eπ [C(π,α)] , (5)

where last line follows from Jensen’s inequality.
We will construct an example in which Pr[success] = 1 but (5) is exponentially small.

Consider P = P∞, the complete proof heuristic, which has error 0 against, well, every circuit
class. Also note that (4) is 1, as Decode always returns a satisfying assignment if given
access to P∞. Let F be the Boolean function defined by F (x) = 1 if |x| = 1, i.e., exactly one
of the n positions of x is 1. So sat(F) = {e1, . . . , en}. Note that since P∞ is the complete
prover, it does not really matter in which way we represent F .

By symmetry, Pr[Decode(c, π, F) = ei] = 1/n for every i. What is C(ei, π)? Let j be
the position of xi in π. A minute of thought shows that C(ei, π) = min(j, n− 1). Therefore

E
π

[C(ei, π)] = 1
n
·
n−1∑
j=1

j + 1
n

(n− 1) ≥
(
n
2
)
n

= n− 1
2 .

Summing up over all sat(F) we see that

(5) =
∑

α∈sat(F)

2−Eπ [C(π,α)] ≤ n · 2−
n−1

2 .

CCC 2017

9:14 PPSZ for General k-SAT – Simpler Analysis

Thus, there is an exponential gap between (5) and 2−pn = 2−0·n = 1, the bound in the
conjecture. We conclude that this “naive” application of Jensen’s inequality will not work.

B.2 A Smarter Application of Jensen’s Inequality
Suppose we run Decode(c, π, F) with random c and π and the complete prover P∞. It will
always return a satisfying assignment, and thus defines a probability distribution Q over
Sym(V)× sat(F). It is easy to see that

Q(π, α) = Q(π) ·Q(α|π) = 1
n! · 2

−I(π,α) .

We can now rewrite the success probability of Decode (using some incomplete proof heur-
istic P) as

Pr[success] =
∑

α∈sat(F)

E
π

[
2−C(π,α)

]
=
∑
π,α

1
n! 2
−I(π,α)−J(π,α)

= E
(π,α)∼Q

[
2−J

]
(6)

≥ 2−EQ[J] . (7)

Sadly, (7) can be exponentially smaller than 2−pn, as we will show now.

B.3 Another Bad Example
Consider the following function:

Exactly-Two(x, y, z) ∧
n∧
i=1

(At-Least-Two(x, y, z)→ ai) .

We can express this as a 3-CNF formula:

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄)∧
n∧
i=1

((x̄ ∨ ȳ ∨ ai) ∧ (x̄ ∨ z̄ ∨ ai) ∧ (ȳ ∨ z̄ ∨ ai)) .

Enumerating our variables as x, y, z, a1, . . . , an, the satisfying assignments are α1 = (0111n),
α2 = (1011n), and α3 = (1101n). Consider the prover P = P1, i.e., it checks whether the
variable in question is contained in a unit clause. Since this is a 3-CNF, the error probability
of P is at most 2/3. What is EQ[J]?

E
Q

[J] = E
α∼Q

[E
π∼Q|α

[J]] = E
π∼Q|α1

[J(α1, π)] (by symmetry between the αi)

≥ n E
π∼Q|α1

[Ja1(α1, π)] . (by symmetry between the ai)

One can now show by a straightforward calculation that Eπ∼Q|α1 [Ja1(α1, π)] = 11
16 > 2/3.

Thus, the expression 2−EQ[J] can be exponentially smaller than 2− 2
3 ·n, which is the true

worst-case success probability of PPZ (i.e., PPSZ with proof heuristic P1) on 3-CNF for-
mulas. We strongly encourage the reader to compute Eπ∼Q|α1 [Ja1(α1, π)] for the above
example.

D. Scheder and J. Steinberger 9:15

Problem Assessment

Since π is uniform under Q, it holds that Q(π|α) is proportional to Q(α|π) = 2−I(π,α). For
α1 = (0111n), the latter term is largest when x comes first (as setting x to 0 implies the
values of both y and z). Informally speaking, y and z tend to come later among x, y, z. When
can P1 tell the value of a1? The clause (ȳ∨ z̄∨a1) reduces to the unit clause (a1) if y, z come
before a1. Normally, this happens with probability 1/3. Under Q|α1, however, y and z tend
to come later, and the probability decreases to 5/16, and thus Eπ∼Q|α1 [Ja1(α1, π)] = 11/16.

CCC 2017

	Introduction
	The PPSZ Algorithm
	Gauging the Strength of the Proof Heuristic P
	Previous Work
	Our Contribution

	Proof of Theorem 10
	Unique to General
	Open Questions
	Proof of the lemmas
	Permutations that delay x – Proof of Lemma 15
	Remaining proofs – Lemma 20 and Lemma 21

	Bad Examples
	Why s Direct Application of Jensen's Does Not Work
	A Smarter Application of Jensen's Inequality
	Another Bad Example

