
Representations of Monotone Boolean Functions
by Linear Programs∗

Mateus de Oliveira Oliveira1 and Pavel Pudlák2

1 University of Bergen, Bergen, Norway
mateus.oliveira@uib.no

2 Czech Academy of Sciences, Prague, Czech Republic
pudlak@math.cas.cz

Abstract
We introduce the notion of monotone linear-programming circuits (MLP circuits), a model of
computation for partial Boolean functions. Using this model, we prove the following results.
1. MLP circuits are superpolynomially stronger than monotone Boolean circuits.
2. MLP circuits are exponentially stronger than monotone span programs.
3. MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovász-

Schrijver proof systems, and for mixed Lovász-Schrijver proof systems.
4. The Lovász-Schrijver proof system cannot be polynomially simulated by the cutting planes

proof system. This is the first result showing a separation between these two proof systems.

Finally, we discuss connections between the problem of proving lower bounds on the size of
MLPs and the problem of proving lower bounds on extended formulations of polytopes.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Complexity
of Proof Procedures

Keywords and phrases Monotone Linear Programming Circuits, Lovász-Schrijver Proof System,
Cutting-Planes Proof System, Feasible Interpolation, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.3

1 Introduction

Superpolynomial lower bounds on the size of Boolean circuits computing explicit Boolean
functions have only been proved for circuits from some specific families of circuits. A
prominent role among these families is played by monotone Boolean circuits. Exponential
lower bounds on monotone Boolean circuits were proved already in 1985 by Razborov [26].
In 1997 Krajíček discovered that lower bounds on monotone complexity of particular partial
Boolean functions can be used to prove lower bounds on resolution proofs [18]. Incidentally,
the functions used in Razborov’s lower bound were just of the form needed for resolution
lower bounds. Exponential lower bounds on resolution proofs had been proved before
(coincidentally about at the same time as Razborov’s lower bounds). Krajíček came up
with a new general method, the so called feasible interpolation, that potentially could
be used for other proof systems. Indeed, soon after his result, this method was used to
prove exponential lower bounds on the cutting-planes proof system [22, 15]. That lower

∗ Mateus de Oliveira Oliveira acknowledges support from the ERC Advanced Grant 339691 (FEALORA)
and from the Bergen Research Foundation. Pavel Pudlák acknowledges support from the ERC Advanced
Grant 339691 (FEALORA).

© Mateus de Oliveira Oliveira and Pavel Pudlák;
licensed under Creative Commons License CC-BY

32nd Computational Complexity Conference (CCC 2017).
Editor: Ryan O’Donnell; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Representations of Monotone Boolean Functions by Linear Programs

bound is based on a generalization of Razborov’s lower bounds to a more general monotone
computational model, the monotone real circuits. Another monotone computational model
for which superpolynomial lower bounds have been obtained is the monotone span program
model [2, 11]. An exponential lower bound on the size of monotone span programs have
been recently obtained in [7]. For a long time the best known lower bound for this model
of computation was of the order of nΩ(logn) [2]. Again, superpolynomial lower bounds on
the size of monotone span programs can be used to derive lower bounds on the degree of
Nullstellensatz proofs, as shown in [23].1

The results listed above suggest that proving lower bounds on stronger and stronger
models of monotone computation may be a promising approach towards proving lower bounds
on stronger proof systems. Indeed, in his survey article [27] Razborov presents the problem
of understanding feasible interpolation for stronger systems as one of the most challenging
ones.

In this work we introduce several computational models based on the notion of monotone
linear program. In particular, we introduce the notion of monotone linear-programming gate
(MLP gate). In its most basic form, an MLP gate is a partial function g : R → R of the
form g(y) = max{c · x | Ax ≤ b+By, x ≥ 0} where y is a set of input variables, and B is a
non-negative matrix. The complexity of such a gate is defined as the number of rows plus
the number of columns in the matrix A. For each assignment α ∈ Rn of the variables y,
the value g(α) is the optimal value of the linear program with objective function c · x, and
constraints Ax ≤ b+Bα. The requirement that B ≥ 0 guarantees monotonicity, i.e., that
g(α) ≤ g(α′) whenever g(α) is defined and α ≤ α′. We note that the value g(α) is considered
to be undefined if the associated linear program max{c · x | Ax ≤ b+Bα} has no solution.
Other variants of MLP gates are defined in a similar way by allowing the input variables to
occur in the objective function, and by allowing the corresponding linear programs to be
minimizing or maximizing. We say that an MLP gate is weak if the input variables occur
either in the objective function or in the constraints. We say that an MLP gate is strong if
the input variables occur in both the objective function and in the constraints.

An MLP circuit is a straightforward generalization of the notion of unbounded-fan-in
(monotone) Boolean circuit where MLP gates are used instead of Boolean gates. In Theorem 3
we show that if all gates of an MLP circuit C are weak, then this circuit can be simulated by
a single weak MLP gate `C whose size is polynomial on the size of C. Since the AND and
OR gates can be faithfully simulated by weak MLP gates, we have that monotone Boolean
circuits can be polynomially simulated by weak MLP circuits (Theorem 4). In contrast, we
show that weak MLP gates are super-polynomially stronger than monotone Boolean circuits.
On the one hand, Razborov has shown that that any monotone Boolean circuit computing
the bipartite perfect matching function BPMn : {0, 1}n2 → {0, 1} must have size at least
nΩ(logn). On the other hand, a classical result in linear programming theory [29] can be used
to show that the same function can be computed by weak MLP gates of polynomial size.

In [2], Babai, Gál and Wigderson showed that there is a function that can be computed
by span programs of linear size but which requires superpolynomial-size monotone Boolean
circuits. Recently, Cook et al. [7] showed that there is a function that can be computed
by polynomial-size monotone Boolean circuits, but that requires exponential-size monotone
span programs over the reals. Therefore, monotone span programs (which we will abbreviate
by MSPs) and monotone Boolean circuits are incomparable in the sense that neither of these

1 We note however that strong degree lower bounds for Nullstellensatz proofs can be proved using more
direct methods [3, 6, 13, 1].

M. de Oliveira Oliveira and P. Pudlák 3:3

models can polynomially simulate the other. In Theorem 7 we show that a particular type
of weak MLP gate can polynomially simulate monotone span programs over the reals. On
the other hand, by combining the results in [7] with Theorem 7, we have that these weak
MLP gates are exponentially stronger than monotone span programs over reals. Therefore,
while monotone Boolean circuits are incomparable with MSPs, weak MLP-gates are strictly
stronger than both models of computation.

Next we turn to the problem of proving a monotone interpolation theorem for Lovász-
Schrijver proof systems [20]. Currently, size lower bounds for these systems have been
proved only with respect to tree-like proofs [21], and therefore, it seems reasonable that a
monotone interpolation theorem for this system may be a first step towards proving size
lower bounds for general LS proof systems. Towards this goal we show that MLP circuits
which are constituted by strong MLP gates can be used to provide a monotone feasible
interpolation theorem for LS proof systems. In other words, we reduce the problem of proving
superpolynomial lower bounds for the size of LS proofs, to the problem of proving lower
bounds on the size of MLP circuits with strong gates.

While circuits with weak MLP gates can be collapsed to a single weak MLP gate, we do not
know how to collapse MLP circuits with strong gates into a single strong gate. Nevertheless,
in Theorem 10 we show that a single weak MLP gate suffices in a monotone interpolation
theorem for mixed LS proofs. These are proofs in which, on top of variables representing 0s
and 1s, there are also variables that range over real numbers. This interpolation theorem
implies two things. First, the cutting-planes proof system cannot polynomially simulate the
LS proof system (Corollary 18). Understanding the mutual relation between the power of the
cutting-planes proof system and the LS proof system is a longstanding open problem in proof
complexity theory. Our result solves one direction of this mutual relation by showing that
for some tautologies, LS proofs can be superpolynomially more concise than cutting-planes
proofs. Second, using this interpolation theorem, and a size lower bound for monotone real
circuits due to Fu [10], we can show that MLP-circuits cannot be polynomially simulated by
monotone real circuits (Theorem 19).

Monotone linear programs programs may be regarded as a generalization of both monotone
Boolean circuits and monotone span programs. Since superpolynomial lower bounds for these
two latter formalisms were proved via rather distinct formalisms, it is reasonable to expect
that new lower bound methods will need to be developed in order to prove superpolynomial
lower bounds for the size of weak monotone linear programs. A possible approach is to try
to strength recent lower bounds obtained for the extension complexity of polytopes whose
vertices correspond to minterms of certain monotone Boolean functions [28, 9, 4, 5]. To prove
a lower bound on the size of weak MLP gates, it will be necessary to prove lower bounds on
the size of extended formulations for all polytopes of a certain form that separate minterms
from maxterms. This is clearly a harder problem than proving lower bounds on the extension
complexity of a single polytope. Nevertheless, there are certain results that point in this
direction [4, 5]. In any case, Theorem 19 suggests that this will not be an easy task. The
theorem gives an example of a monotone function whose set of ones requires exponentially
large extended formulation, but whose minterms can be separated from a large subset of
maxterms by a polynomial size weak MLP gate.

In this extended abstract all proofs are omitted.

CCC 2017

3:4 Representations of Monotone Boolean Functions by Linear Programs

2 Monotone Linear-Programming Gates

I Definition 1 (MLP Gate). A monotone linear-programming gate, or MLP gate, is a partial
function ` : Rn → R ∪ {∗} whose value at each point y ∈ Rn is specified via a monotone
linear program. More precisely, we consider the following six types of MLP gates:

max-right: `(y) = max{cT · x | Ax ≤ b + By, x ≥ 0}

min-right: `(y) = min{cT · x | Ax ≥ b + By, x ≥ 0}

max-left: `(y) = max{(c + Cy)T · x | Ax ≤ b, x ≥ 0}

min-left: `(y) = min{(c + Cy)T · x | Ax ≥ b, x ≥ 0}

max: `(y) = max{(c + Cy)T · x | Ax ≤ b + By, x ≥ 0}

min: `(y) = min{(c + Cy)T · x | Ax ≥ b + By, x ≥ 0}

where A is a matrix in Rm×k, b is a vector in Rm, c is a vector in Rk, and B and C are
nonnegative matrices in Rm×n, i.e., B ≥ 0 and C ≥ 0.

Intuitively, the variables y should be regarded as input variables, while the variables x
should be regarded as internal variables. If the linear program specifying a gate `(y) has no
solution when setting y to a particular point α ∈ Rn, then we set `(α) = ∗. In other words,
in this case we regard the value `(α) as being undefined. We note that the requirement
B ≥ 0, C ≥ 0 guarantees that the gates introduced above are monotone. More precisely, if
α ≤ α′, and both `(α) and `(α′) are well defined, then `(α) ≤ `(α′). The size |`| of an MLP
gate ` is defined as the number of rows plus the number of columns in the matrix A.

The gates of type max-right, max-left, min-right and min-left are called weak gates.
Note that in these gates, the input variables y occur either only in the objective function, or
only in the constraints. The gates of type max and min are called strong gates. The input
variables in strong gates occur both in the constraints and in the objective function.

Circuits that are constituted of MLP gates are called MLP circuits.

I Definition 2 (MLP-Circuit Representation). We say that an MLP circuit C represents a
partial Boolean function F : {0, 1}n → {0, 1, ∗} if the following conditions are satisfied for
each a ∈ {0, 1}n.
1. C(a) > 0 if F (a) = 1.
2. C(a) ≤ 0 if F (a) = 0.

We say that an MLP-circuit C sharply represents F : {0, 1}m → {0, 1, ∗} if C(a) = 1
whenever F (a) = 1 and C(a) = 0 whenever F (a) = 0. We define the size of an MLP circuit
C as the sum of the sizes of MLP gates occurring in C. The next theorem states that if all
gates in an MLP circuit C are weak MLP gates with the same type τ , then this circuit can
be polynomially simulated by a single MLP gate `C of type τ .

I Theorem 3 (From Circuits to Gates). Let C be an MLP circuit of size s where all gates
in C are weak MLP gates of type τ . Then there is an MLP gate `C of type τ and size O(s)
such that for each a ∈ Rn for which C(a) is defined, `C(a) = C(a).

M. de Oliveira Oliveira and P. Pudlák 3:5

3 Weak MLP Gates vs Monotone Boolean Circuits

In this section we show that partial Boolean functions that can be represented by monotone
Boolean circuits of size s can also be sharply represented by weak MLP gates of size O(s).
On the other hand, we exhibit a partial function that can be represented by polynomial-size
max-right MLP gates, but which require Boolean circuits of superpolynomial size.

I Theorem 4. Let F : {0, 1}n → {0, 1, ∗} be a partial Boolean function, and let C be
a Boolean circuit of size s representing F . Then for any weak type τ , F can be sharply
represented by an MLP gate of type τ and size O(s).

Let BPMn : {0, 1}n2 → {0, 1} be the Boolean function that evaluates to 1 on an input
p ∈ {0, 1}n2 if and only if p represents a bipartite graph with a perfect matching. The next
theorem, whose proof is based on a classical result in linear programming theory (Theorem
18.1 of [29]) states that the function BPMn has small max-right MLP representations.

I Theorem 5. The Boolean function BPMn : {0, 1}n2 → {0, 1} can be represented by a
max-right MLP gate of size nO(1).

In a celebrated result, Razborov proved a lower bound of nΩ(logn) for the size of monotone
Boolean circuits computing the function BPMn [26]. By combining this result with Theorem 5,
we have the following corollary.

I Corollary 6. max-right MLP gates cannot be polynomially simulated by monotone Boolean
circuits.

We note that the gap between the complexity of max-right MLP gates and the complexity
of Boolean formulas computing the BPMn function is even exponential, since Raz and
Wigderson have shown a linear lower-bound on the depth of monotone Boolean circuits
computing BPMn [24].

3.1 Monotone Span Programs
Monotone span programs (MSP) were introduced by Karchmer and Wigderson [17]. Such
a program, which is defined over an arbitrary field F, is specified by a vector c ∈ Fk and a
labeled matrix Aρ = (A, ρ) where A is a matrix in Fm×k, and ρ : {1, ...,m} → {p1, ..., pn, ∗}
labels rows in A with variables in pi or with the symbol ∗ (meaning that the row is unlabeled).
For an assignment p := w, let Aρ〈w〉 be the matrix obtained from A by deleting all rows
labeled with variables which are set to 0. A span program (Aρ, c) represents a partial Boolean
function F : {0, 1}n → {0, 1, ∗} if the following conditions are satisfied for each w ∈ {0, 1}n.

F (w) =
{

1 ⇒ ∃y, yTAρ〈w〉 = cT

0 ⇒ ¬∃y, yTAρ〈w〉 = cT
(1)

That is, if F (p) = 1 then c is a linear combination of the rows of A〈w〉, while if F (p) = 0, then
c cannot be cast as such linear combination. We define the size of a span program (Aρ, c) as
the number of rows plus the number of columns in the matrix A. The next theorem states
that functions that can be represented by small MSPs over the reals can also be represented
by small min-right MLP gates.

I Theorem 7. Let F : {0, 1}n → {0, 1} be a Boolean function. If F can be represented by
an MSP of size s over the reals, then F can be represented by a min-right MLP gate of size
O(s).

CCC 2017

3:6 Representations of Monotone Boolean Functions by Linear Programs

It has been recently shown that there is a family of functions GENn : {0, 1}n → {0, 1}
which can be computed by polynomial-size monotone Boolean circuits but which require
monotone span programs over the reals of size exp(nΩ(1)) [7]. On the other hand, since by
Theorem 4, monotone Boolean circuits can be polynomially simulated by weak MLP gates of
any type, we have that weak MLP gates of size polynomial in n can represent the function
GENn : {0, 1}n → {0, 1}. Therefore, we have the following corollary.

I Corollary 8. Weak MLP gates cannot be polynomially simulated by monotone span programs
over the reals.

4 Lovász-Schrijver and Cutting-Planes Proof Systems

4.1 The Lovász-Schrijver Proof System
The Lovász-Schrijver proof system is a refutation system based on the Lovász-Schrijver
method for solving integer linear programs [20]. During the past two decades several variants
(probably nonequivalent) of this system have been introduced. In this work we will be only
concerned with the basic system LS. In Lovász-Schrijver systems the domain of variables is
restricted to {0, 1}, i.e., they are Boolean variables. Given an unfeasible set of inequalities Φ,
the goal is to use the axioms and rules of inference defined below to show that the inequality
0 ≥ 1 is implied by Φ.

Axioms:
1. 0 ≥ 0, 1 ≥ 0, 1 ≥ 1,
2. 0 ≤ pj ≤ 1,
3. p2

i − pi = 0 (integrality).
Rules:
1. Positive linear combinations of linear and quadratic inequalities,
2. Multiplication: Given a linear inequality

∑
i cipi − d ≥ 0, and a variable pj , derive

pj(
∑
i

cipi − d) ≥ 0 and (1− pj)(
∑
i

cipi − d) ≥ 0.

Note that using multiplication we may produce quadratic inequalities, but we can only
apply the multiplication rule to linear inequalities, hence all inequalities are at most quadratic.
Axiom (3) corresponds to two inequalities, but it suffices to use p2

i − pi ≥ 0, since the other
inequality p2

i − pi ≤ 0 follows from Axiom (2) and Rule (2). We also observe that the
inequality 1 ≥ 0 can be derived from the axioms pi ≥ 0 and 1− pi ≥ 0.

A proof Π of an inequality
∑
i cipi − d ≥ 0 from Φ is a sequence of inequalities such that

every inequality in the sequence is either an element of Φ or is derived from previous ones
using some LS rule. We say that Π is a refutation of the set of inequalities Φ, if the last
inequality is −d ≥ 0 for some d > 0.

The LS proof system is implicationally complete. This means that if an inequality∑
i cipi − d ≥ 0 is semantically implied by an initial set of inequalities Φ, then

∑
i cipi−d ≥ 0

can be derived from Φ by the application of a sequence of LS-rules [20].
Superpolynomial lower bounds on the size of LS proofs have been obtained only in the

restricted case of tree-like proofs [21]. The problem of obtaining superpolynomial lower
bounds for the size of DAG-like LS proofs remains a tantalizing open problem in proof
complexity theory.

The LS proof system is stronger than Resolution. It can be shown that resolution proofs
can be simulated by LS proofs with just a linear blow up in size. Additionally, the Pigeonhole

M. de Oliveira Oliveira and P. Pudlák 3:7

principle has LS proofs of polynomial size, while this principle requires exponentially long
resolution proofs [14]. On the other hand, the relationship between the power of the LS proof
system and other well studied proof system is still elusive. For instance, previous to this work,
nothing was known about how the LS proof system relates to the cutting-planes proof system
with respect to polynomial-time simulations. In Subsection 4.4 we will show that there is a
family of sets of inequalities which have polynomial-size DAG-like LS refutations, but which
require superpolynomial-size cutting-planes refutations. This shows that the cutting-planes
proof system cannot polynomially simulate the LS proof system. The converse problem, of
determining whether the LS proof system polynomially simulates the cutting-planes proof
system, remains open.

4.2 Feasible interpolation
Feasible interpolation is a method that can sometimes be used to translate circuit lower
bounds into lower bounds for the size of refutations of Boolean formulas and linear inequalities.
Let Φ(p, q, r) be an unsatisfiable Boolean formula which is a conjunction of formulas Φ1(p, q)
and Φ2(p, r) where q and r are disjoint sets of variables. Since Φ(p, q, r) is unsatisfiable, it
must be the case that for each assignment a of the variables p, either Φ1(a, q) or Φ2(a, r) is
unsatisfiable, or both. Given a proof Π of unsatisfiability for Φ(p, q, r), an interpolant is a
Boolean circuit C(p) such that for every assignment a to the variables p:
1. if C(a) = 0, then Φ1(x, a) is unsatisfiable, and
2. if C(a) = 1, then Φ2(y, a) is unsatisfiable.

If both formulas are unsatisfiable, then C(a) can be either of the two values. Krajíček has
shown that given a resolution refutation Π of a CNF formula, one can construct an interpolant
C(p) whose size is polynomial in the size of Π [18]. Krajíček ’s interpolation theorem has
been generalized, by himself and some other authors, to other proof systems such as the
cutting-planes proof system and the Lovász-Schrijver proof system [8].

In principle, such feasible interpolation theorems could be used to prove lower bounds
on the size of proofs if we could prove lower bounds on circuits computing some particular
functions. But since we are not able to prove essentially any lower bounds on general Boolean
circuits, feasible interpolation gives us only conditional lower bounds. For instance, the
assumption that P 6= NP ∩ coNP, an apparently weaker assumption than NP 6= coNP,
implies that certain tautologies require superpolynomial-size proofs on systems that admit
feasible interpolation.

However, in some cases, one can show that there exist monotone interpolating circuits of
polynomial size provided that all variables p appear positively in Φ1(p, q), (or negatively in
Φ2(p, r)). In the case of resolution proofs, such circuits are simply monotone Boolean circuits
[18, 19]. In the case of cutting-planes proofs, the interpolants are monotone real circuits [22].
Monotone real circuits are circuits with Boolean inputs and outputs, but whose gates are
allowed to be arbitrary 2-input functions over the reals. Razborov’s lower bound on the
clique function has been generalized to monotone real circuits [22, 15]. Another proof system
for which one can prove superpolynomial lower bounds using monotone feasible interpolation
is the Nullstellensatz Proof System [23]. In this proof system, the monotone interpolants are
given in terms of monotone span programs2 [23].

2 In the context of polynomial calculus, alternative methods (e.g. [1, 16]) yield stronger lower bounds
than the monotone interpolation technique.

CCC 2017

3:8 Representations of Monotone Boolean Functions by Linear Programs

The results mentioned above suggest that if a proof system has the feasible interpolation
property, then it may also have monotone feasible interpolation property for a suitable kind
of monotone computation. The next theorem states that LS-proofs can be interpolated using
MLP circuits constituted of max MLP gates.

I Theorem 9. Let Φ(p, q)∪Γ(p, r) be an unsatisfiable set of inequalities such that the variables
p = (p1, ..., pn) occur in Φ only with negative coefficients. Let Π be an LS refutation of
Φ(p, q)∪ Γ(p, r). Then one can construct an MLP circuit C containing only max MLP gates
which represents a Boolean function F : {0, 1}n → {0, 1} such that for each a ∈ {0, 1}n:
1. if F (a) = 1, then Φ(a, q) is unsatisfiable,
2. if F (a) = 0, then Γ(a, r) is unsatisfiable,
and the size of the circuit C is polynomial in the size of Π.

4.3 Lovász-Schrijver Refutations of Mixed LP Problems

While proof systems for integer linear programming have been widely studied, very little is
known about proof systems for mixed linear programming. In mixed linear programming
part of variables range over integers and part of them range over reals. The Lovász-Schrijver
system can naturally be adapted for mixed linear programming by disallowing the use of
axioms and of the multiplication rule for variables ranging over reals. One can easily prove
that the such a system is a complete refutation system (i.e., a family of inequalities is
unsatisfiable iff a contradiction is derivable).

We will prove a monotone interpolation theorem for systems of mixed linear inequalities
(inequalities with both types of variables) of a particular form. The advantage of this
theorem, compared with the previous one, is that is uses a single max-left MLP gate (or,
by linear-programming duality, a single min-right MLP gate). While proving lower bounds
on the size of general MLP circuits may be beyond the reach of current methods, proving a
lower bound on the size of single weak MLP gate seems to be feasible, because this problem
is closely related to lower bounds on extended formulations.

I Theorem 10. Let Φ(p, q) ∪ Γ(p, r) be a set of inequalities where p, q range over 0s and 1s,
r range over reals, and the common variables p = (p1, ..., pn) occur in Φ only with negative
coefficients. Let Π be an LS-refutation of Φ(p, q) ∪ Γ(p, r). Then there exists a max-left
MLP gate ` that represents a Boolean function F : {0, 1}n → {0, 1} such that for every
a ∈ {0, 1}n:
1. if F (a) = 1, then Φ(a, q) is unsatisfiable, and
2. if F (a) = 0, then Γ(a, r) is unsatisfiable,
and the size of the MLP gate ` is polynomial in the size of Π.

In the next subsection we will give a natural example of a set of inequalities of the form
used in the theorem. We will show that it has polynomial-size mixed LS-refutations, but it
requires superpolynomial-size cutting-plane refutations.

4.4 Cutting-Planes vs. Lovász-Schrijver Refutations and Monotone
Real Circuits vs MLP Gates

In this subsection we will define a family Ψn of unsatisfiable sets of inequalities that admit
polynomial-size mixed LS-refutations, but which require superpolynomial refutations in the
cutting-planes proof system.

M. de Oliveira Oliveira and P. Pudlák 3:9

I Definition 11 (Monotone Real Circuit). A monotone real circuit is a circuit C whose gates
are monotone real functions of at most two variables. The size of the circuit is the number
of the gates.

The following theorem can be used to translate superpolynomial lower bounds on the size
of monotone real circuits computing certain partial Boolean functions into superpolynomial
lower bounds for the size of cutting plane proofs.

I Theorem 12 (Monotone Interpolation for the cutting-planes Proof System [22]). Let Ψ(p, q, r) ≡
Φ(p, q) ∪ Γ(p, r) be an unsatisfiable set of inequalities where the common variables p =
(p1, ..., pn) occur in Φ only with negative coefficients. Let Π be a cutting-planes refutation for
Ψ. Then one can construct a monotone real circuit C such that for every a ∈ {0, 1}n:
1. if C(a) = 1 then Φ(p, q) is unsatisfiable,
2. if C(a) = 0 then Γ(p, q) is unsatisfiable,
and the size of the circuit is at most constant time the size of the proof.

Let Kn = {{i, j} | 1 ≤ i < j ≤ n} be the complete undirected graph with vertex set
[n] = {1, ..., n}. We say that a subgraph X ⊆ Kn is a perfect matching if the edges in
X are vertex-disjoint and each vertex i ∈ [n] belongs to some edge of X. We say that a
subgraph B ⊆ Kn is an unbalanced complete bipartite graph if there exist sets V,U ⊆ [n]
with V ∩ U = ∅, |V | > |U |, and B = {{i, j} | i ∈ V, j ∈ U}. Let W ⊆ Kn be a graph. We
let V(W) = {i | ∃j ∈ [n], {i, j} ∈ W} be the vertex set of W . For each vertex i ∈ V(W),
we let N (i) = {j | {i, j} ∈ W} be the set of neighbors of i in W . For a subset V ⊆ V(W),
we let N (V) =

⋃
v∈V N (v) be the set of neighbors of vertices in N (V). We say that W is

unbalanced if there exists V,U ⊆ V(W) such that N (V) ⊆ U and |V | > |U |. Note that such
an unbalanced graph W cannot contain a perfect matching X, since the existence of such a
perfect matching would imply the existence of an injective mapping from V to U . We also
note that unbalanced complete bipartite graphs are by definition a special case of unbalanced
graphs.

Razborov showed that any monotone Boolean circuit which decides whether a graph has
a perfect matching must have size at least nΩ(logn) [25]. This lower bound was generalized by
Fu to the context of monotone real circuits [10]. More precisely, Fu proved that any monotone
real circuit distinguishing graphs with a perfect matching from unbalanced complete bipartite
graphs must have size at least nΩ(logn).

I Theorem 13 ([10]). Let F : {0, 1}(
n
2) → {0, 1, ∗} be a partial Boolean function such that

for each w ∈ {0, 1}(
n
2):

F (w) = 1 if w encodes a graph with a perfect matching,
F (w) = 0 if w encodes an unbalanced complete bipartite graph.

Then any monotone real circuit computing F must have size at least nΩ(logn).

Since unbalanced complete bipartite graphs are a special case of unbalanced graphs,
monotone real circuits distinguishing graphs with a perfect matching from unbalanced graphs
must have size at least nΩ(logn) gates.

I Corollary 14. Let g : {0, 1}(
n
2) → {0, 1, ∗} be a partial Boolean function such that for each

w ∈ {0, 1}(
n
2):

g(w) = 1 if w has a perfect matching.
g(w) = 0 if w is unbalanced.

Then any monotone real circuit computing g must have size at least nΩ(logn).

CCC 2017

3:10 Representations of Monotone Boolean Functions by Linear Programs

Below we will define a set Ψn of unsatisfiable inequalities on variables:

p = {wi,j | 1 ≤ i < j ≤ n},
q = {ui, vi | i ∈ [n]},
r = {xij | 1 ≤ i < j ≤ n}.

Intuitively each assignment of the variables in p defines a graphW ⊆ Kn such that {i, j} ∈W
if and only if wij = 1. Each assignment to the variables in q defines subsets U, V ⊆ [n] where
i ∈ U if and only if ui = 1, and i ∈ V if and only if vi = 1. Finally, each assignment to the
variables in r defines a subset of edges X in such a way that {i, j} ∈ X if and only if xij = 1.
The set of inequalities Ψn would be satisfiable by an assignment α of the variables in p,q and
r only if α defined a graph W ⊆ Kn which contained, at the same time, a perfect matching
X and a pair of subsets of vertices V,U ⊆ V(W) certifying that W is unbalanced. Since no
such graph exists, the set Ψn is unsatisfiable.

I Definition 15 (Unbalanced Graphs vs Perfect Matching Inequalities). Let Ψn(p, q, r) =
Φn(p, q) ∪ Γn(p, r) be a set of inequalities on variables p = {wij}, q = {ui, vi} and r = {xij}
defined as follows.

Inequalities in Φ(p, q): W is unbalanced.

1) uj − vi − wij + 1 ≥ 0 N (V) ⊆ U . If i ∈ V ∧ {i, j} ∈W ⇒ j ∈ U .

2)
∑

j
vj −

∑
i
ui − 1 ≥ 0 |V | > |U |.

Inequalities in Γ(p, r): Existence of a perfect matching.

3) wij − xij ≥ 0 X is a subset of edges of W .

4)
∑

i,i 6=j
xij − 1 = 0 X defines a perfect matching.

Note that we can interpret the system in two alternative ways. First, all variables range over
0s and 1s. Second, variables p, q range over 0s and 1s, while r range over reals. In the second
case the meaning of Γ(p, q) is that X defines a fractional perfect matching. The system is,
clearly, unsatisfiable also in the second case.

Note also that the variables in wij ∈ p, which occur both in Φn(p, q) and in Γn(p, r),
only occur negatively in Φn(p, q). A combination of Fu’s size lower-bound for monotone
real circuits (Theorem 13) with the monotone interpolation theorem for cutting-planes
(Theorem 12) was used in [10] to show that a suitable unsatisfiable set of inequalities Ψ′n
requires cutting-planes refutations of size nΩ(logn). The next theorem states that a similar
lower bound can be proved with respect to the inequalities introduced in Definition 15.

I Theorem 16. Let Ψ(p, q, r) be the set of inequalities of Definition 15 . Then any cutting-
planes refutation of Ψ(p, q, r) must have size at least nΩ(logn).

On the other hand, the following theorem states that the set inequalities Ψn(p, q, r) has
LS-refutations of size polynomial in n. In fact, these refutations are for the case where
variables r are real (which means that axioms and the multiplication rule is not used for
variables r).

M. de Oliveira Oliveira and P. Pudlák 3:11

I Theorem 17. Let Ψn(p, q, r) = Φn(p, q)∪Γn(p, r) be the set of inequalities of Definition 15.
Then Ψn(p, q, r) has a mixed LS-refutation of size polynomial in n where r are the real
variables.

By combining Theorem 16 with Theorem 17 we have the following corollary separating
cutting-planes from LS proof systems.

I Corollary 18. The cutting-planes proof system does not polynomially simulate the Lovász-
Schrijver proof system.

Previous to our work, the problem of determining whether the cutting-planes proof system
can polynomially simulate the LS-proof system had been open for almost two decades. We
note that to the best of our knowledge, the converse problem, of determining whether the
LS-proof system can polynomially simulate the cutting-planes proof system remains open.

By combining Theorem 17 with Theorem 10, we have that max-left MLP gates can
separate graphs with a perfect matching from unbalanced graphs superpolynomially faster
than monotone real circuits. In other words, monotone real circuits cannot polynomially
simulate max-left MLP gates. We leave open the question of whether MLP gates (of any
type) can polynomially simulate monotone real circuits.

I Theorem 19. Let gn : {0, 1}(
n
2) → {0, 1, ∗} be the partial Boolean function of Corollary 14.

Then gn can be represented by a single max-left MLP gate of size polynomial in n.

5 Monotone Linear Programs and Extended Formulations

A polytope is the convex hull of a nonempty finite set of vectors in Rn; in particular, a
polytope is nonempty and bounded. If a polytope P ⊆ Rn is given by a polynomial number of
inequalities3, then we can easily decide whether a vector v ∈ Rn belongs to P . An important
observation is that even if P requires an exponential number of inequalities to be defined, we
may still be able to test whether v ∈ P efficiently if we can find a polytope R ⊆ Rn+m in a
higher dimension with m = nO(1) such that P is a projection of P ′ and P ′ can be described
by a polynomial number of inequalities3.

More precisely, let P ⊆ Rn be a polytope, and let P ′ ⊆ Rn+m be a polytope defined via a
system of inequalities4 A(v, y) ≤ b. Then we say that the system A(v, y) ≤ b is an extended
formulation of P if for each v ∈ Rn, v ∈ P ⇔ ∃y ∈ Rm, A(v, y) ≤ b. We define the size of such
extended formulation as the number of rows plus the number of columns in A. For instance, it
can be shown that the permutahedron polytope Pn ⊆ Rn, which is defined as the convex-hull
of all permutations of the set [n] = {1, ..., n}, requires exponentially many inequalities to be
defined. Nevertheless, Pn has extended formulations of size O(n logn) [12]. On the other
hand, it has been shown that for some polytopes, such as the cut polytope, the TSP polytope,
etc., even extended formulations require exponentially many inequalities [9, 28].

The process of defining partial Boolean functions via linear programs is closely related,
but not equivalent, to the process of defining polytopes via extended formulations. For a
partial Boolean function F , let Ones(F), and Zeros(F) denote the set of all inputs a ∈ {0, 1}n
such that F (a) = 1, and F (a) = 0 respectively. Let P 1

F denote the convex hull of Ones(F)
and P 0

F denote the convex hull of Zeros(F). Defining F via a linear program is equivalent
to finding an extended formulation of some polyhedron Q1 that contains P 1

F and is disjoint

3 With coefficients specified by nO(1) bits.
4 For column vectors v ∈ Rn and y ∈ Rm, (v, y) denotes the column vector (v1, ..., vn, y1, ..., ym).

CCC 2017

3:12 Representations of Monotone Boolean Functions by Linear Programs

from Zeros(F), or an extended formulation of some polyhedron Q0 that contains P 0
F and is

disjoint from Ones(F). Finding such an extended formulation for Q1 (resp. Q0) with a small
number of inequalities is clearly, a simpler task than finding a small extended formulation
for the polyhedron P 1

F (resp. P 0
F) itself. For instance, if F is the matching function for

general graphs, then F is computable by a polynomial-size Boolean circuit (containing
negation gates), and hence this function can be defined via (not necessarily monotone) linear
programs of polynomial size5. Nevertheless, the corresponding polytope P 1

F requires extended
formulations of exponential size [28].

Let F : {0, 1}n → {0, 1, ∗} be a partial monotone Boolean function. A minterm of F is a
vector v ∈ {0, 1}n such that F (v) = 1 and such that F (v′) 6= 1 for each v′ ≤ v. Intuitively, a
minterm is a minimal vector which causes F to evaluate to 1. Analogously, a maxterm is a
vector v ∈ {0, 1}n such that F (v) = 0 and F (v′) 6= 0 for each v ≥ 0. Intuitively, a maxterm is
a maximal vector that causes F to evaluate to 0. We let P̂ 1

F be the convex-hull of minterms
of F , and let P̂ 0

F be the convex-hull of maxterms of F . Let H1 be a hyperplane containing
P̂ 1
F . For each maxterm v we define the set S1

v = H1 ∩ {u | u ≤ v}. Analogously, let H0 be
an hyperplane containing P̂ 0

F . We define the set S0
v = H0 ∩ {u | u ≥ v}.

I Definition 20 (Monotone Extension Complexity). Let F : {0, 1}n → {0, 1, ∗} be a partial
monotone Boolean function. Below we define two notions of monotone extension complexity
(mxc) for F .
1. We let mxc1 (F) denote the minimum size of an extended formulation for a polytope Q1

such that

P̂ 1
F ⊆ Q1, and Q ∩

⋃
v

S1
v = ∅. (2)

2. We let mxc0 (F) denote the minimum size of an extended formulation for a polytope Q0

such that

P̂ 0
F ⊆ Q0, and Q ∩

⋃
v

S0
v = ∅. (3)

The next theorem relates the monotone extension complexity of a partial monotone
Boolean function F to the size of MLP representations for F .

I Theorem 21. Let F : {0, 1}n → {0, 1, ∗} be a partial monotone Boolean function. Then
mxc1 (F) is up to a constant factor equal to the minimum size of a max-right MLP
representation of F . Analogously, the mxc0 (F) is up to a constant factor equal to the
minimum size of a min-left MLP representation of F .

6 Conclusion

In this work we introduced several models of computation based on the notion of monotone
linear programs. In particular, we introduced the notions of weak and strong MLP gates.
We reduced the problem of proving lower bounds for the size of LS proofs to the problem
of proving lower bounds for the size of MLP circuits with strong gates, and the problem of
proving lower bounds on the size of mixed LS proofs to the problem of proving lower bounds
on the size of single weak MLP gates.

5 Note that any function in PTIME can be defined by polynomial-size non-monotone LP programs, due
to the fact that linear programming is PTIME complete.

M. de Oliveira Oliveira and P. Pudlák 3:13

When it comes to comparing MLP gates with other models of computation, we have
shown that weak MLP gates are strictly more powerful than monotone Boolean circuits and
monotone span programs. Additionally, these gates cannot be polynomially simulated by
monotone real circuits. Finally, by combining some results mentioned above, we proved that
the cutting-planes proof system is not powerful enough to polynomially simulate the LS proof
system. This is the first result showing a separation between the power of these two systems.

Acknowledgments. We would like to thank Pavel Hrubeš and Massimo Lauria for discussion
and their valuable suggestions.

References
1 Michael Alekhnovich and Alexander A. Razborov. Satisfiability, branch-width and Tseitin

tautologies. In Proc. of the 43rd Symposium on Foundations of Computer Science, pages
593–603, 2002.

2 László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for monotone
span programs. Combinatorica, 19(3):301–319, 1999.

3 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs. Proceedings of the London
Mathematical Society, 3(1):1–26, 1996.

4 Gábor Braun, Samuel Fiorini, Sebastian Pokutta, and David Steurer. Approximation limits
of linear programs (beyond hierarchies). Mathematics of Operations Research, 40(3):756–
772, 2015.

5 Mark Braverman and Ankur Moitra. An information complexity approach to extended
formulations. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing,
pages 161–170. ACM, 2013.

6 Samuel R. Buss and Toniann Pitassi. Good degree bounds on Nullstellensatz refutations of
the induction principle. Journal of Computer and System Sciences, 57(2):162–171, 1998.

7 Stephen A. Cook, Toniann Pitassi, Robert Robere, and Benjamin Rossman. Exponential
lower bounds for monotone span programs. ECCC, TR16-64, 2016.

8 Sanjeeb Dash. Exponential lower bounds on the lengths of some classes of branch-and-cut
proofs. Mathematics of Operations Research, 30(3):678–700, 2005.

9 Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald De Wolf.
Exponential lower bounds for polytopes in combinatorial optimization. Journal of the ACM
(JACM), 62(2):17, 2015.

10 Xudong Fu. Lower bounds on sizes of cutting planes proofs for modular coloring principles.
Proof Complexity and Feasible Arithmetics, pages 135–148, 1998.

11 Anna Gál and Pavel Pudlák. A note on monotone complexity and the rank of matrices.
Information Processing Letters, 87(6):321–326, 2003.

12 Michel X. Goemans. Smallest compact formulation for the permutahedron. Mathematical
Programming, 153(1):5–11, 2015.

13 Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus proofs for the
parity. Theoretical Computer Science, 259(1):613–622, 2001.

14 Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308,
1985.

15 Armin Haken and Stephen A. Cook. An exponential lower bound for the size of monotone
real circuits. Journal of Computer and System Sciences, 58(2):326–335, 1999.

16 Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. Lower bounds for the polynomial calculus
and the gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

CCC 2017

3:14 Representations of Monotone Boolean Functions by Linear Programs

17 M. Karchmer and A. Wigderson. On span programs. In Proceedings of the 8th Annual
Structure in Complexity Theory Conference, pages 102–111. IEEE CS, 1993.

18 Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. The Journal of Symbolic Logic, 62(02):457–486, 1997.

19 Jan Krajíček. Interpolation and approximate semantic derivations. Mathematical Logic
Quarterly, 48(4):602–606, 2002.

20 László Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0-1 optim-
ization. SIAM Journal on Optimization, 1(2):166–190, 1991.

21 Toniann Pitassi and Nathan Segerlind. Exponential lower bounds and integrality gaps for
tree-like lovasz-schrijver procedures. SIAM Journal on Computing, 41(1):128–159, 2012.

22 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone compu-
tations. The Journal of Symbolic Logic, 62(03):981–998, 1997.

23 Pavel Pudlak and Jiri Sgall. Algebraic models of computation and interpolation for algeb-
raic proof systems. In Proc. of Feasible Arithmetic and Proof Complexity, DIMACS Series
in Discrete Math. and Theoretical Comp. Sci., volume 39, pages 279–295, 1998.

24 Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. Journal
of the ACM (JACM), 39(3):736–744, 1992.

25 Alexander A. Razborov. Lower bounds on monotone complexity of the logical permanent.
Mathematical Notes, 37(6):485–493, 1985.

26 Alexander A. Razborov. Lower bounds for monotone complexity of boolean functions.
American Mathematical Society Translations, 147:75–84, 1990.

27 Alexander A. Razborov. Proof complexity and beyond. ACM SIGACT News, 47(2):66–86,
2016.

28 Thomas Rothvoß. The matching polytope has exponential extension complexity. In Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 263–272.
ACM, 2014.

29 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer, 2003.

	Introduction
	Monotone Linear-Programming Gates
	Weak MLP Gates vs Monotone Boolean Circuits
	Monotone Span Programs

	Lovász-Schrijver and Cutting-Planes Proof Systems
	The Lovász-Schrijver Proof System
	Feasible interpolation
	Lovász-Schrijver Refutations of Mixed LP Problems
	Cutting-Planes vs. Lovász-Schrijver Refutations and Monotone Real Circuits vs MLP Gates

	Monotone Linear Programs and Extended Formulations
	Conclusion

