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Abstract
We analyse how the standard reductions between constraint satisfaction problems affect their
proof complexity. We show that, for the most studied propositional and semi-algebraic proof
systems, the classical constructions of pp-interpretability, homomorphic equivalence and addition
of constants to a core preserve the proof complexity of the CSP. As a result, for those proof
systems, the classes of constraint languages for which small unsatisfiability certificates exist can
be characterised algebraically. We illustrate our results by a gap theorem saying that a constraint
language either has resolution refutations of bounded width, or does not have bounded-depth
Frege refutations of subexponential size. The former holds exactly for the widely studied class
of constraint languages of bounded width. This class is also known to coincide with the class of
languages with Sums-of-Squares refutations of sublinear degree, a fact for which we provide an
alternative proof. We hence ask for the existence of a natural proof system with good behaviour
with respect to reductions and simultaneously small size refutations beyond bounded width. We
give an example of such a proof system by showing that bounded-degree Lovász-Schrijver satisfies
both requirements.
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1 Introduction

The notion of efficient reduction is at the heart of all subareas of computational complexity.
However, in some subareas such as proof complexity, even though the concept exists, it is
much less developed. The study of the lengths of proofs has developed mostly by studying
combinatorial statements, each somewhat in isolation. There is little theory, for instance,
explaining why the best studied families of propositional tautologies are encodings of the
pigeonhole principle or those derived from systems of linear equations over the 2-element
field. Whether there is any connection between the two is an even less explored mystery.

Luckily this fact is subject to revision, especially if proof complexity exports its methods
to the study of problems beyond universal combinatorial statements. Consider the NP-hard
optimization problem called MAX-CUT. The objective is to find a partition of the vertices
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of a given graph which maximizes the number of edges that cross the partition. The best
efficient approximation algorithm known for this problem relies on certifying a bound on the
optimum of its semidefinite programming relaxation. Once the certificate for the relaxation
is in place, a rounding procedure gives an approximate integral solution: at worst 87% of the
optimum in this case [12].

In the example of the previous paragraph, the problem that is subject to proof complexity
analysis is that of certifying a bound on the optimum of an arbitrary MAX-CUT instance.
The celebrated Unique Games Conjecture (UGC) can be understood as a successful approach
to explaining why current algorithms and proof complexity analyses stop being successful
where they do, and reductions play an important role there [26]. One of the interesting open
problems in this area is whether the analysis of the Sums-of-Squares semidefinite programming
hierarchy of proof systems (SOS) could be used to improve over the 87% approximation ratio
for MAX-CUT. Any improvement on this would improve the approximation status of all
problems that reduce to it, and refute the UGC [16]. For the constraint satisfaction problem,
in which all constraints must be satisfied, the analogue question was resolved very recently
also by exploiting the theory of reducibility: in that arena, low-degree SOS unsatisfiability
proofs exist only for problems of bounded width [11, 25].

The goal of this paper is to develop the standard theory of reductions between constraint
satisfaction problems in a way that it applies to many of the proof systems from the literature,
including but not limited to SOS. Doing this requires a good amount of tedious work, but at
the same time has some surprises to offer that we discuss next.

Consider a constraint language B given by a finite domain of values, and relations over
that domain. The instances of the constraint satisfaction problem (CSP) over B are given
by a set of variables and a set of constraints, each of which binds some tuple of the variables
to take values in one of the relations of B. The literature on CSPs has focussed on three
different types of conditions that, if met by two constraint languages, give a reduction from
the CSP of one language to the CSP of the other. These conditions are a) pp-interpretability,
b) homomorphic equivalence, and c) addition of constants to the core (see [9, 5]). What
makes these three types of reductions important is that they correspond to classical algebraic
constructions at the level of the algebras of polymorphisms of the constraint languages. Indeed,
pp-interpretations correspond to taking homomorphic images, subalgebras and powers. The
other two types of reductions put together ensure that the algebra of the constraint language
is idempotent. Thus, for any fixed algorithm, heuristic, or method M for deciding the
satisfiability of CSPs, if the class of constraint languages that are solvable byM is closed
under these notions of reducibility, then this class admits a purely algebraic characterization
in terms of identities.

Our first result is that, for most proof systems P in the literature, each of these methods
of reduction preserves the proof complexity of the problem with respect to proofs in P .
Technically, what this means is that if B is obtained from B′ by a finite number of con-
structions a), b) and c), then, for an appropriate fixed encoding scheme of the statement
that an instance is unsatisfiable, efficient proofs of unsatisfiability in P for instances of B′
translate into efficient proofs of unsatisfiability in P for instances of B. The propositional
proof systems for which we prove this include DNF-resolution with terms of bounded size,
bounded-depth Frege, and Frege. The semi-algebraic proof systems for which we prove
it include Sherali-Adams, Lasserre/SOS, and Lovász-Schrijver of bounded and unbounded
degree.

Our second main result is an application: we obtain unconditional gap theorems for the
proof complexity of CSPs. Building on the bounded-width theorem for CSPs [4, 8], the
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known correspondance between local consistency algorithms, existential pebble games and
bounded width resolution [17, 2], the lower bounds for propositional and semi-algebraic proof
systems [1, 19, 6, 7, 13, 10], and a modest amount of additional work to fill in the gaps, we
prove the following strong gap theorem:

I Theorem 1. Let B be a finite constraint language. Then exactly one of the following
holds:
1. B has resolution refutations of bounded width and hence polynomial size,
2. B has neither Frege refutations of bounded depth and subexponential size, nor Lasser-

re/SOS refutations of sublinear degree.

Moreover, case 1. in Theorem 1 happens precisely if B has bounded width. As noted
earlier, the collapse of Lasserre/SOS to bounded width was already known; here we give a
different proof. As an immediate corollary we get that resolution is also captured by algebra,
despite the fact that our methods fall short to prove that it is closed under reductions.

I Corollary 2. Let B be a finite constraint language. Then B has resolution refutations of
subexponential size if and only if B has resolution refutations of polynomial size, if and only
if B has resolution refutations of bounded width.

Our third main result is about proof systems that operate with polynomial inequalities
beyond Lasserre/SOS. Theorem 1 raises a question of identifying a proof system that can
surpass bounded width. In other words: is there a natural proof system for which the class of
languages that have efficient unsatisfiability proofs is closed under the standard reducibility
methods for CSPs, and that at the same time has efficient unsatisfiability proofs beyond
bounded width? By the bounded-width theorem for CSPs, one way, and indeed the only
way, of surpassing bounded width is by having efficient proofs of unsatisfiability for systems
of linear equations over some finite Abelian group. In view of the limitations of certain
semi-algebraic proof systems that are imposed by Theorem 1, it is perhaps a surprise that,
as we show, bounded degree Lovász-Schrijver (LS) is such a proof system.

I Theorem 3. Unsatisfiable systems of linear equations over the 2-element group have LS
refutations of bounded degree and polynomial size.

Proving this amounts to showing that Gaussian elimination over Z2 can be simulated
by reasoning with low-degree polynomial inequalities over R. The proof of this counter-
intuitive fact relies on earlier work in proof complexity for reasoning about gaps of the type
(−∞, c] ∪ [c+ 1,+∞), for c ∈ Z, through quadratic polynomial inequalities [15].

We want to close by pointing out that another proof system that can efficiently solve
CSPs of bounded width, and that at the same time goes beyond bounded width, is the proof
system that operates with ordered binary decision diagrams from [3]. Although it looks
unlikely that our methods could be used for this proof system, whether it is closed under the
standard CSP reducibilities is something that was not checked, neither in [3], nor here.

2 Preliminaries

2.1 Propositional logic and proofs
A literal is a variable X or the negation of a variable X. We think of ∧ and ∨ as commutative,
associative and idempotent. Negation is allowed only on literals, so formulas are in negation
normal form. If A is a formula, we define its complement A by exchanging ∨ and ∧ and
negating literals. The size of a formula A is the number of symbols in it.

ICALP 2017



110:4 Proof Complexity Meets Algebra

We work with a Tait-style proof system for propositional logic that we call Frege. Its
rules are axiom, cut, introduction of conjunction, and weakening:

A ∨A
C ∨A D ∨A

C ∨D
C ∨A D ∨B
C ∨D ∨ (A ∧B)

C

C ∨A
. (1)

In these rules, C and D could be the empty formula 0 or its complement 1, and A is a
formula. A Frege proof of A from a set of formulas H is a sequence of formulas ending with
A each of which is either in H, or follows from previous formulas in the sequence by one of
the inference rules. The proof is called a refutation of H if the last formula is the empty
formula 0. As a proof system, Frege is sound and implicationally complete. If C is a class of
formulas, a C-Frege proof is one that has all its formulas in the class C. The size of a proof is
the sum of the sizes of the formulas in it.

A k-term is a conjunction of at most k literals and a k-clause is a disjunction of at most k
literals. A k-DNF is a disjunction of k-terms and a k-CNF is a conjunction of k-clauses. We
define the classes of Σt,k- and Πt,k-formulas inductively. For t = 1, these are just the classes
of k-DNF and k-CNF formulas, respectively. For t ≥ 2, a formula is Σt,k if it is a disjunction
of Πt−1,k-formulas, and it is Πt,k if it is a conjunction of Σt−1,k-formulas. We write Σt and
Πt for Σt,1 and Πt,1, respectively. The t and the k in Σt,k and Πt,k are called the depth and
the bottom fan-in, respectively.

Observe that Σ1-Frege is essentially resolution, and Σ1,k-Frege is the system R(k) intro-
duced by Krajicek [18], also known as Res(k), k-DNF resolution, and k-DNF Frege. This
proof system is important for us because it is the weakest for which we can prove closure
under reductions. It is a sound and implicationally complete proof system for proving k-DNFs
from k-DNFs. A resolution proof has width k if all clauses in it are k-clauses.

In this paper, we use the expression Frege proof of depth d and bottom fan-in k to mean
a Σd,k-Frege proof. Bounded-depth Frege means Σd-Frege for some d. This coincides with
other definitions in the literature. Again, Frege of depth d and bottom fan-in k, as a proof
system, is sound and implicationally complete for proving Σd,k-formulas from Σd,k-formulas.

2.2 Polynomials and algebraic proofs
Let X1, . . . , Xn be n algebraic commuting variables ranging over R. We define proof systems
for inequalities P ≥ 0, where P is a polynomial in R[X1, . . . , Xn]. We think of equations
P = 0 as two inequalities P ≥ 0 and −P ≥ 0. For our purposes it will suffice to have the
variables range over {0, 1}. Accordingly, we introduce twin variables X̄1, . . . , X̄n with the
meaning that X̄i = 1−Xi for i = 1, . . . , n.

In all proof systems, the following axioms will be imposed on these variables:

X2
i −Xi = 0 X̄2

i − X̄i = 0 Xi + X̄i − 1 = 0, (2)
Xi ≥ 0 X̄i ≥ 0 1−Xi ≥ 0 1− X̄i ≥ 0 1 ≥ 0. (3)

Observe that XiX̄i = 0 follows from these axioms: multiply Xi + X̄i − 1 = 0 by Xi and use
X2

i −Xi = 0. This sort of reasoning is captured by the proof systems we are about to define.
Let P and Q denote polynomials. In addition to the axioms in (2), we consider rules of

inference for deriving polynomial inequalities: from P ≥ 0 and Q ≥ 0, derive P +Q ≥ 0, and
from P ≥ 0 and Q ≥ 0 derive PQ ≥ 0. Also we allow square inequalities for free: P 2 ≥ 0.
These are called addition, multiplication and positivity of squares.

If H denotes a system of polynomial inequalities P1 ≥ 0, . . . , Pr ≥ 0, a semi-algebraic
proof of P ≥ 0 from H is a sequence of polynomial inequalities ending with P ≥ 0 each of
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which is either in H, or is an axiom inequality from (2) and (3), or follows from previous
inequalities in the sequence by one of the inference rules. The semi-algebraic proof is called a
refutation of H if the last inequality is −1 ≥ 0. As a proof system for inequalities evaluated
over {0, 1}, this is sound and implicationally complete (we note, however, that without some
restrictions on the domain of evaluation, completeness is not true).

The main complexity measures for semi-algebraic proofs are size and degree. Polynomials
are typically represented as explicit sums of monomials, or as algebraic formulas or circuits.
Using formulas or circuits as representations requires some additional technicalities that we
want to avoid (see [22, 14]). For all our examples below, we use the representation of an
explicit sum of monomials; its size includes the sizes of the coefficients.

The proofs in the Lovász-Schrijver (LS) proof system are semi-algebraic proofs for which
the following restrictions apply: 1) the polynomial Q in the multiplication rule is either a
positive real or a variable, and 2) the positivity-of-squares is not allowed. When it is allowed,
the system is called Positive Semidefinite Lovász-Schrijver and is denoted LS+. Originally
the Lovász-Schrijver proof system was defined to manipulate quadratic polynomials only
(see [21, 23]). We follow [15] and consider the extension to arbitrary degree. For LS- and
LS+-proofs, an important complexity measure originally studied by Lovász and Schrijver is
its rank, which is the maximum nesting depth of multiplication by a variable in the proof.
Note that, due to possible cancellations, the degree of an LS-proof could in principle be much
smaller than its rank.

We define two additional proof systems called Sherali-Adams (SA) and Lasserre/Sums-of-
Squares (SOS). One way to do that is by thinking of them as subsystems LS and LS+ proof
systems, respectively, with the additional restriction that all applications of the multiplication
rule must precede all applications of the addition rule. Due to the structural restriction
in which multiplications precede additions, we can think of a proof of P ≥ 0 from H as a
polynomial identity of the form

r∑
i=1

ci · Pi ·
∏
j∈Ji

Xj

∏
k∈Ki

X̄k = P, (4)

where c1, . . . , cr are non-negative real numbers, and P1, . . . , Pr are polynomials such that
either the inequality Pi ≥ 0 is in the set of hypothesis H, or they are axiom polynomials
from (2) and (3), or they are squares of polynomials, when these are allowed. Note that the
size of an SA or SOS proof thought of as a semi-algebraic proof is polynomially related to
the sum of the sizes of the non-zero ci’s in (4).

We close this section by noting the relationships between LS and SA proofs on one hand,
and LS+ and SOS proofs on the other. Clearly, each SA proof of degree d is also an LS
proof of degree d. The converse is certainly not true, but what is true is that every LS proof
of degree d and rank k can be converted into an SA proof of degree d+ k, where the rank
is the complexity measure for LS proofs that we defined earlier. The same relationships
hold between LS+ and SOS: every SOS-proof of degree d is an LS+ of degree d, and every
LS+ proof of degree d and rank k can be converted into an SOS-proof of degree d+ k. The
conversions go by swapping the order in which the addition and the multiplication rules are
applied in LS proofs, when they appear in the wrong order. See [20] for a related discussion.

2.3 Constraint satisfaction problem
There are many equivalent definitions of the constraint satisfaction problem. Here we use
the definition in terms of homomorphisms. Below we introduce the necessary terminology.

ICALP 2017
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A relational vocabulary L is a set of symbols, each symbol has an associated arity. A
structure B over L is a set B, called a domain together with a set of relations over B. For
each R ∈ L or arity r, there is a relation R(B) ⊆ Br sometimes called an interpretation of
R in B. We say that a relational structure is finite if its domain is finite and it has finitely
many non-empty relations. For two structures B and B′ over the same vocabulary L, a
homomorphism from B to B′ is a function h : B → B′, which preserves all the relations, that
is, if (b1, . . . , br) ∈ R(B), then (h(b1), . . . , h(br)) ∈ R(B′), for each R ∈ L.

For a fixed L-structure B over a relational vocabulary L, the constraint satisfaction
problem of B, denoted CSP(B), is the following computational problem: given a finite
L-structure A, decide whether there exists a homomorphism from A to B. In the context
of CSP the structure B is often called a constraint language. We usually assume that the
constraint language B is finite.

To reason about propositional proof systems for CSP we use the following fixed encoding.
By CNF(A,B) we denote the CNF formula which has clauses
1.
∨

b∈B X(a, b) for each a ∈ A,
2. X(a, b0) ∨X(a, b1) for each a ∈ A and (b0, b1) ∈ B2 with b0 6= b1,
3. X(a1, b1) ∨ · · · ∨ X(ar, br) for each natural number r, each R ∈ L of arity r, each

(a1, . . . , ar) ∈ R(A), and each (b1, . . . , br) ∈ Br \R(B).
It is not difficult to see that the formula CNF(A,B) is satisfiable if and only if there is a
homomorphism from A to B.

To reason about semi-algebraic proof systems in the context of CSP we use the following
fixed encoding. By INEQ(A,B) we denote the system of linear inequalities defined as follows:
1.
∑

b∈B X(a, b)− 1 ≥ 0 for each a ∈ A,
2. X̄(a, b0) + X̄(a, b1)− 1 ≥ 0 for each a ∈ A and (b0, b1) ∈ B2 with b0 6= b1,
3.
∑r

i=1 X̄(a, bi)−1 ≥ 0 for each natural number r, each R ∈ L of arity r, each (a1, . . . , ar) ∈
R(A), and each (b1, . . . , br) ∈ Br \R(B).

It is easy to see that the above system of linear inequalities has a solution satisfying the
axioms from (2) and (3) if and only if there is a homomorphism from A to B.

The existential k-pebble game is played on two relational structures A and B over the
same vocabulary by two players called Spoiler and Duplicator. The players are given two
corresponding sets of pebbles {a1, . . . , ak} and {b1, . . . , bk}. In each round Spoiler picks one
of the k pebbles a1, . . . , ak, say ai, and puts it on an element of the structure A. Duplicator
responds by picking the corresponding pebble bi and placing it on some element of the
structure B. For simplicity, in any given configuration of the game let us identify a pebble
with the element of the structure that it is placed on. Spoiler wins if at any point during the
game the partial function f : A→ B defined by f(ai) = bi, for each pebbled element ai of A,
is either not well defined or is not a partial homomorphism. Otherwise, the Duplicator wins.

A finite relational structure B has width k if, for every finite structure A of the same
vocabulary as B, if there is no homomorphism from A to B, then Spoiler wins the existential
k-pebble game on A and B. The structure B has bounded width if it has width k for some k.
Structures of bounded width are exactly those structures for which CSP(B) can be solved by
a local consistency algorithm [17].

3 Closure under reductions

There are three types of reductions often considered in the context of CSPs: a) pp-
interpretability b) homomorphic equivalence c) addition of constants to a core.
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Let B and B′ be finite relational structures over finite vocabularies L and L′. The structure
B′ is pp-definable in B if is has the same domain and for every relation symbol T ∈ L′ the
relation T (B′) is definable in B by a pp-formula, i.e., a first order formula using only symbols
from L, conjunction, equality, and existential quantification. Formally, for every relation
symbol T ∈ L′ there exists a pp-formula φT (x1, . . . , xr), where r is the arity of T , such that
T (B′) = {(b1, . . . , br) ∈ Br : B |= φT (x1/b1, . . . , xr/br)}.

Pp-interpretability is a generalization of pp-definability which allows for changing the
domain of a CSP language. Given two relational structures B and B′, we say that B′ is
pp-interpretable in B if there exist a positive integer n and a surjective partial function
f : Bn → B′ such that the preimages of all relations in B′ (including the equality relation)
and the domain of f are pp-definable in B. One of the fundamental results of the algebraic
approach to the constraint satisfaction problem is that, whenever B′ is pp-interpretable in B,
the CSP of the language B′ is not harder than the CSP of the language B [9].

Structures B and B′ over a vocabulary L are homomorphically equivalent if there exist
homomorphisms from B to B′ and from B′ to B. Obviously, if L-structures B and B′ are
homomorphically equivalent, then any L-structure A maps homomorphically to B if and only
if it maps homomorphically to B′. So the CSP problems over both languages are the same.

Homomorphic equivalence allows us to focus on studying constraint satisfaction problems
of well-behaved structures which in this context turn out to be those exhibiting little symmetry.
A finite relational structure is called a core if all its endomorphisms are surjective. It is
known that every relational structure has a homomorphically equivalent substructure that is
a core. Core structures can be extended by one-element unary relations which we refer to as
constants, without increasing the complexity of the language [9].

It has been shown recently [5] that any class of constraint languages that is closed under
the constructions a), b) and c) has an algebraic characterization in terms of identities of
height 1. Here we show that DNF Frege, bounded-depth Frege, Frege, Sherali-Adams,
Sums-of-Squares and Lovász-Schrijver proof systems behave well with respect to those three
types of reductions.

Let us fix relational structures B and B′ such that B′ is obtained from B by a finite
sequence of constructions a), b) and c). There is a known polynomial-time computable
transformation that maps instances A′ of CSP(B′) to instances A of CSP(B) such that A
is satisfiable if and only if A′ is satisfiable, and the size of A is linear in the size of A′. We
prove that this transformation satisfies the following:

I Theorem 4. For any positive integers t, k and s, and any instance A′, if there is a
Frege refutation of CNF(A,B) of depth t, bottom fan-in k, and size s, then there is a Frege
refutation of CNF(A′,B′) of depth t, bottom fan-in polynomial in k, and size polynomial in
the size of A′ and s.

I Theorem 5. For any positive integers k and s, and any instance A′, if there is a Sherali-
Adams, Sums-of-Squares or Lovász-Schrijver refutation of INEQ(A,B) of degree k and size s,
then there is, respectively, a Sherali-Adams, Sums-of-Squares or Lovász-Schrijver refutation
of INEQ(A′,B′) of degree linear in k and size polynomial in the size of A′ and s.

We point out that Theorem 5 in the case of the Sherali-Adams and Sums-of-Squares
proof systems can be extracted from [24] and [25]. We include it here to illustrate the broad
applicability of the systematic proof-complexity approach.

The main idea in proving the above theorems for all the proof systems under consideration
is the same. The refutation for an instance A of CSP(B) is transformed into a refutation
for an instance A′ of CSP(B′) by substituting the variables of CNF(A,B) or INEQ(A,B) by

ICALP 2017



110:8 Proof Complexity Meets Algebra

DNFs with bounded terms and a bounded number of terms or by polynomials with bounded
degree, a bounded number of monomials and coefficients from a fixed, finite set, respectively.
The additional condition we need to ensure in order to control the growth of the size and
depth/degree of the refutations is that each formula from CNF(A,B) and every polynomial
inequality from INEQ(A,B) after applying the substitution is a logical consequence of a
bounded number of formulas/inequalities from CNF(A′,B′) or INEQ(A′,B′), respectively.

4 Upper bound

We say that a finite relational structure B has resolution refutations of bounded width if
there is a positive integer k such that, for every finite structure A over the same vocabulary,
if there is no homomorphism from A to B, then CNF(A,B) has a resolution refutation of
width k. The goal of this section is to prove the following:

I Theorem 6. Let B be a finite relational structure. The following are equivalent:
1. B has bounded width,
2. B has resolution refutations of bounded width.

In preparation for the proof we revisit the characterization of resolution width in terms
of existential pebble games from [2].

Let L = {R0, . . . , Rq} be a finite relational vocabulary consisting of q + 1 symbols of
arity q. Let Sq be an L-structure with two-element domain {0, 1}, where each relation Ri(Sq)
encodes the set of valuations that satisfy a q-clause with i negated variables. More precisely,
for 0 ≤ i ≤ q, let Ri(Sq) = {0, 1}q \ {(x1, . . . , xq)} where (x1, . . . , xq) ∈ {0, 1}q is the vector
defined by xj = 0 for j > i and xj = 1, otherwise. Now for every q-CNF F , we define an
L-structure AF . Its domain is the set of variables in F , and Ri(AF ) is the set of all tuples
(X1, . . . , Xq) such that the clause X1 ∨ . . . ∨Xi ∨Xi+1 ∨ . . . ∨Xq belongs to F . We allow
the variables in the clauses to repeat, so the definition covers clauses with less than q literals.
Observe that partial homomorphisms from AF to Sq correspond to partial truth assignments
to the variables of F that do not falsify any clause from F . Hence, for every q-CNF F , it
holds that F is satisfiable if and only if there is a homomorphism from AF to Sq.

I Theorem 7 ([2]). Let k and q be positive integers such that k ≥ q and let F be q-CNF.
Then F has a resolution refutation of width k if and only if Spoiler wins the existential
(k + 1)-pebble game on AF and Sq.

We use the above theorem to establish a similar correspondence between existential
pebble games on structures A and B and bounded width resolution refutations of CNF(A,B).

I Lemma 8. Let A and B be relational structures over the same vocabulary of maximum
arity r, let q = |B|, and let k be an integer such that k ≥ q and k ≥ r. Then:
1. if Spoiler wins the existential (k + 2)-pebble game on A and B, then CNF(A,B) has a

resolution refutation of width k + q,
2. if Duplicator wins the existential (k + 2)-pebble game on A and B, then CNF(A,B) does

not have a resolution refutation of width k + 1.

Proof of Theorem 6. For the implication 1 to 2, assume that B has bounded width, say l.
Let k = max{q, r, l}, where q = |B| and r is the maximum arity of the vocabulary of B. Let
A be a structure over the same vocabulary and assume that there is no homomorphism from
A to B. Then Spoiler wins the existential l-pebble game on A and B, and hence also the
existential (k + 2)-pebble game on A and B, since k + 2 ≥ l. The hypotheses of Lemma 8
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hold, so by part 1 CNF(A,B) has a resolution refutation of width k + q. This shows that B
has resolution refutations of width k + q, and hence resolution refutations of bounded width.

For the implication 2 to 1, assume that B has resolution refutations of width l. Again let
k = max{q, r, l}. Let A be a structure over the same vocabulary as B and assume that there
is no homomorphism from A to B. Then CNF(A,B) has a resolution refutation of width l,
and hence of width k + 1 since k + 1 ≥ l. The hypotheses of Lemma 8 hold, so by part 2 in
that lemma, Spoiler wins the existential (k+ 2)-pebble game on A and B. This shows that B
has width k + 2, and hence bounded width. J

5 Lower bounds

Let d(n) and s(n) be functions. We say that a finite relational structure B has Frege refutations
of depth d(n) and size s(n) if, for every finite structure A over the same vocabulary, if there
is no homomorphism from A to B, then CNF(A,B) has a Frege refutation of depth d(|A|)
and size s(|A|). We say that B has Frege refutations of bounded depth and subexponential
size if there exist d(n) = O(1) and s(n) = 2no(1) such that B has Frege refutations of depth
d(n) and size s(n).

Similarly, we say that a finite relational structure B has Sums-of-Squares refutations
of degree d(n) if, for every finite structure A over the same vocabulary, if there is no
homomorphism from A to B, then INEQ(A,B) has a Sums-of-Squares refutation of degree
d(|A|). We say that B has Sums-of-Squares refutations of sublinear degree if there exists
d(n) = o(n) such that B has Sums-of-Squares refutations of degree d(n). We prove:

I Theorem 9. Let B be a finite relational structure. The following are equivalent:
1. B has bounded width,
2. B has Frege refutations of bounded depth and subexponential size,
3. B has Sums-of-Squares refutations of sublinear degree.

The equivalence of 1 and 3 is known [11, 25]. Here we provide an alternative proof. The
implication 1 to 2 follows from Theorem 6: every resolution refutation is a Frege refutation
of depth one, and if the refutation has bounded width, then it has polynomial size and
hence subexponential size. The implication 1 to 3 follows from Theorem 6 via the fact
that bounded-degree SA simulates bounded-width resolution: bounded-width resolution is
simulated by bounded-degree SA, which implies Sums-of-Squares refutations of a constant,
and hence sublinear, degree.

For both implications 2 to 1 and 3 to 1 we use an algebraic characterization of unbounded
width. We begin with some definitions.

Let G = (G,+, 0) be a finite Abelian group. For each g ∈ G and every (z1, . . . , zk) ∈ Zk,
we define a relation R(g,z1,...,zk) = {(g1, . . . , gk) ∈ Gk : z1g1 + . . . + zkgk = g}, where zigi

is a shortcut for the sum of |zi| copies of sign(zi)gi. Let ∼ be the equivalence relation
on the set G × Zk that identifies tuples defining the same relation. Since there are only
finitely many k-ary relations on the finite set G, the equivalence relation ∼ has finitely many
equivalence classes. Let L(G, k) be the relational vocabulary that for every equivalence class
[(g, z1, . . . , zk)] has one k-ary relation symbol E[(g,z1,...,zk)], and let B(G, k) be the L(G, k)-
structure that has domain G and where each relation symbol E[(g,z1,...,zk)] is interpreted as
R(g,z1,...,zk). The CSP of B(G, k) is called kLIN(G). Instances of kLIN(G) are systems of
linear equations over the group G with k variables per equation.

I Theorem 10 ([4, 8]). Let B be a finite relational structure. The following are equival-
ent:

ICALP 2017



110:10 Proof Complexity Meets Algebra

1. B does not have bounded width,
2. there exists a non-trivial finite Abelian group G such that B(G, 3) is pp-interpretable in

B+, where B+ is the expansion of the core of B with all constants.

Thus, in view of Theorems 4 and 5, in order to prove that 2 implies 1, and that 3 implies
1 in Theorem 9, it suffices to prove lower bounds for 3LIN(G), for every non-trivial finite
Abelian group G.

For bounded-depth Frege we appeal to the lower bound for the pigeonhole principle [1, 6,
19]. To use that we need to be able to encode the pigeonhole principle as an unsatisfiable
system of equations over an arbitrary Abelian group G. In [7], such a reduction was obtained
for the so-called Tseitin formulas, that encode a certain system of linear equations over Z2
that is derived from an expander graph. Here we adapt the formulas to encode systems of
linear equations over arbitrary finite Abelian groups and then show that the reduction in [7]
can be adapted to our formulas. For Sums-of-Squares, unlike for bounded-depth Frege, we
do not need to adapt an existing lower bound proof from the literature for Z2 to all finite
Abelian groups because this was already done. The lower bound that we need to complete
the proof of Theorem 9 is the following.

I Theorem 11 ([10]). For every non-trivial finite Abelian group G there exists a positive δ
such that for every sufficiently large integer n there is an n-variable unsatisfiable instance A
of 3LIN(G) such that every SOS refutation of INEQ(A,B(G, 3)) has degree at least δn.

The exact statement from [10] is Theorem G.8 from Appendix G, which differs from the
version above. However, the original one implies the variant that we need.

6 Upper bounds in Lovász-Schrijver

In this section we show that all unsatisfiable instances of 3LIN(Z2) have LS refutation
of degree 6 and size polynomial in the number of variables. Indeed, the argument to get
polynomial-size upper bound in constant degree works equally well for 3LIN(Zp), when p is
prime, with some inessential complications. We focus on Z2 for simplicity.

6.1 Initial remarks on the encoding
We identify the elements of the two-element field Z2 with {0, 1}. Let E be an instance of
kLIN(Z2) with n variables. In the encoding INEQ(E,B(Z2, k)) of E as a system of linear
inequalities, there are four variables X(a, 0), X(a, 1), X̄(a, 0), X̄(a, 1) for each variable a in E.
Note, however, that they are restricted to satisfy X(a, 0) = X̄(a, 1) and X̄(a, 0) = X(a, 1) by
the inequality X(a, 0) +X(a, 1)− 1 ≥ 0 from INEQ and the default equations in (2), which
in this case read X(a, 0)2 −X(a, 0) = X(a, 1)2 −X(a, 1) = 0 and X(a, 0) + X̄(a, 0)− 1 =
X(a, 1) + X̄(a, 1) − 1 = 0. Consequently, in the following we will ignore the variables of
the type X(a, 0) and their twins and keep only the variables X(a, 1) and X̄(a, 1). In order
to simplify the notation even further, we will assume that the variables of E are called
X1, . . . , Xn, and that those of INEQ are called X1, . . . , Xn and X̄1, . . . , X̄n.

We interpret the variables X1, . . . , Xn as ranging over Z2 or Q depending on the context.
Let E be an equation of E, say E : a1X1 + · · ·+anXn = b, where a1, . . . , an ∈ Z2 and b ∈ Z2.
Without loss of generality we can assume that there are exactly k many ai’s that are 1. In
INEQ, the encoding of this equation is given by the following inequalities:∑

i∈T

X̄i +
∑

i∈I\T

Xi − 1 ≥ 0 for all T ⊆ I such that |T | ≡ 1− b mod 2,
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where I = {i ∈ [n] : ai 6= 0}. Note that |I| = k. We write S(E) to denote this set of
inequalities; it has exactly 2k−1 many inequalities, and all of them are satisfied in Q by a
{0, 1}-assignment if and only if the equation E is satisfied in Z2 by the same assignment. Let
S(E) be the union of all S(E) as E ranges over the equations in E. Observe that, except for
the small detail that only half of the variables are used, INEQ is basically the same as S(E).

6.2 Some technical lemmas
For every linear form L(X1, . . . , Xn) =

∑n
i=1 aiXi with rational coefficients a1, . . . , an and

every integer c, let Dc(L) = (L− c)(L− c+ 1), which is a quadratic polynomial. In words,
the inequality Dc(L) ≥ 0 states that L does not fall in the open interval (c − 1, c). Such
statements have short proofs of low degree:

I Lemma 12 ([15]). For every integer c and for every linear form L(X1, . . . , Xn) =∑n
i=1 aiXi with integer coefficients a1, . . . , an, there is a LS proof of the inequality Dc(L) ≥ 0

(from nothing) of degree 3 and size polynomial in max{|ai| : i = 1, . . . , n}, |c| and n.

In the following, for I ⊆ [n] and T ⊆ I, let M I
T (X1, . . . , Xn) :=

∏
i∈T Xi

∏
i∈I\T X̄. As

usual, M I
∅ (X1, . . . , Xn) = 1. Such polynomials are called extended monomials.

I Lemma 13. For every I ⊆ [n], there is an LS proof of
∑

T⊆I M
I
T − 1 = 0 (from nothing)

of degree |I| and size polynomial in 2|I|, and for every T ⊆ I ⊆ [n], there is an LS proof of(∑
i∈I Xi − |T |

)
M I

T = 0 (from nothing) of degree |I|+ 1 and size polynomial in |I|.

6.3 Simulating Gaussian elimination
Now we prove the main result of this section.

I Theorem 14. Let E be an instance of 3LIN(Z2) with n variables and m equations. If E is
unsatisfiable, then S(E) has an LS refutation of degree 6 and size polynomial in n and m.

Proof. Write E in matrix form AX = b, where X is a column vector of n variables, A is a
matrix in Zm×n

2 , and b is a vector in Zm
2 . Let aj,1, . . . , aj,n be the j-th row of A, so the j-th

equation of E is Ej : aj,1X1 + · · ·+ aj,nXn = bj . Assume E is unsatisfiable over Z2. Then
b cannot be expressed as a Z2-linear combination of the columns of A, so the Z2-rank of
the matrix [ A | b ] exceeds the Z2-rank of A. Since the rank of A is at most n, this means
that there exists a subset of at most n rows J such that, with arithmetic in Z2, we have∑

j∈J aj,i = 0 for every i ∈ [n], and at the same time
∑

j∈J bj = 1. In order to simplify the
notation, we assume without loss of generality that J = {1, . . . , |J |}.

For every k ∈ {0, . . . , |J |}, define the linear form

Lk(X1, . . . , Xn) := 1
2

 k∑
j=1

n∑
i=1

aj,iXi +
|J|∑

j=k+1
bj

 .

In this definition of Lk, the coefficients aj,i and bj are interpreted as rationals. We provide
proofs of Dc(Lk) ≥ 0 for every c ∈ Rk := {0, . . . , (k + 1)n} by reverse induction on
k ∈ {0, . . . , |J |}.

The base case k = |J | is a special case of Lemma 12. To see why note that the condition∑
j∈J aj,i = 0 over Z2 means that, if arithmetic were done in Q, then

∑
j∈J aj,i is an even

natural number. But then all the coefficients of

L|J|(X1, . . . , Xn) = 1
2

|J|∑
j=1

n∑
i=1

aj,iXi =
n∑

i=1

1
2

|J|∑
j=1

aj,i

Xi

are integers. Hence Lemma 12 applies.
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Suppose now that 0 ≤ k ≤ |J | − 1 and that we have a proof of Dd(Lk+1) ≥ 0 available
for every d ∈ Rk+1. Fix c ∈ Rk; our immediate goal is to give a proof of Dc(Lk) ≥ 0. As k is
fixed, write L in place of Lk+1, and let the (k+1)-st equation Ek+1 be written as

∑
i∈I Xi = b,

where I = {i ∈ [n] : ak+1,i = 1}. Note that L = Lk + `/2 where ` := −b +
∑

i∈I Xi. Fix
T ⊆ I such that |T | ≡ b mod 2, and let d = c+ (t− b)/2 where t = |T |. Note that d ∈ Rk+1
as c ∈ Rk and 0 ≤ t ≤ n and 0 ≤ b ≤ 1 are such that t− b is even. Multiplying Dd(L) ≥ 0
by the extended monomial M I

T we get (L− d)(L− d+ 1)M I
T ≥ 0. Replacing L = Lk + `/2

in the factor (L− d) and recalling d = c+ (t− b)/2, this inequality can be written as

(Lk − c)(L− d+ 1)M I
T + (L− d+ 1) 1

2A ≥ 0, (5)

where A := (`+b−t)M I
T . By the second part of Lemma 13 we have a proof of A = 0, and hence

of (L−d+1)A/2 = 0. Composing with (5) we get a proof of (Lk− c)(L−d+1)M I
T ≥ 0. The

same argument applied to the factor (L−d+1) of this inequality gives (Lk−c)(Lk−c+1)M I
T ≥

0. This is precisely Dc(Lk)M I
T ≥ 0. Adding up over all T ⊆ I with |T | ≡ b mod 2 we get

Dc(Lk)
∑
T⊆I
|T |≡b

M I
T ≥ 0. (6)

Now note that for each T ⊆ I such that |T | ≡ 1− b mod 2, the inequality −M I
T ≥ 0 is

the multiplicative encoding of one of the inequalities in S(E). Thus, it is not difficult to
show that it has an SA derivation from this inequality of size polynomial in |I| and degree
|I|+ 1. Therefore, we get proofs of −M I

T ≥ 0, and hence of M I
T = 0, for every T ⊆ I such

that |T | ≡ 1− b mod 2. But then also of Dc(Lk)M I
T = 0 for every such T . Adding up and

composing with (6) we get

Dc(Lk)
∑
T⊆I

M I
T ≥ 0. (7)

From Lemma 13 we get 1−
∑

T⊆I M
I
T = 0, and hence Dc(Lk)−Dc(Lk)

∑
T⊆I M

I
T ≥ 0, from

which Dc(Lk) ≥ 0 follows from addition with (7).
At this point we proved Dc(L0) ≥ 0 for every c ∈ R0 = {0, . . . , n}. Recall now that∑|J|

j=1 bj is odd, say 2q+1, and at most n. In particular q+1 belongs to R0 and L0 = q+1/2.
Thus we have a proof of Dq+1(L0) ≥ 0 where Dq+1(L0) = −(1/2)(1/2) = −1/4. Multiplying
by 4 we get the contradiction −1 ≥ 0. J

7 Conclusions and Open Questions

Theorems 4 and 5 imply that for the proof systems under consideration the class of constraint
languages admitting efficient refutations can be characterised algebraically. For most of
those proof systems such a characterisation follows from the fact that efficient proofs of
unsatisfiability exist exactly for languages of bounded width. However, by Theorem 14
the class of constraint languages admitting efficient refutations in Lovász-Schrijver, and
consequently also the class of constraint languages admitting efficient Frege refutations,
exceed bounded width. At the same time both of those classes are shown to admit algebraic
characterisations. Providing such characterisations is a natural open problem that arises
from our work.

A related direction that is also suggested by our work is whether the proof complexity of
approximating MAX CSPs is also preserved by reductions. On the one hand, it is known
that pp-definability preserves almost satisfiability; i.e., if B′ is pp-definable in B, then if A′ is
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an instance of MAX CSP(B′) that is almost satisfiable, then its standard transformation
into an instance A of MAX CSP(B) is also almost satisfiable. The question we raise is the
following: For which proof systems is it also the case that if there are efficient proofs that
A is far from satisfiable then there also are efficient proofs that A′ is far from satisfiable?
Depending on how the terms “almost satisfiable” and “far from satisfiable” are quantified,
a positive answer for such questions could lead to an algebraic approach to the theory of
approximability of MAX CSPs and the UGC.
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