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Abstract
We study the problem of testing unateness of functions f : {0, 1}d → R. We give an O( dε · log d

ε )-
query nonadaptive tester and an O( dε )-query adaptive tester and show that both testers are
optimal for a fixed distance parameter ε. Previously known unateness testers worked only for
Boolean functions, and their query complexity had worse dependence on the dimension both for
the adaptive and the nonadaptive case. Moreover, no lower bounds for testing unateness were
known. We generalize our results to obtain optimal unateness testers for functions f : [n]d → R.

Our results establish that adaptivity helps with testing unateness of real-valued functions on
domains of the form {0, 1}d and, more generally, [n]d. This stands in contrast to the situation
for monotonicity testing where there is no adaptivity gap for functions f : [n]d → R.
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1 Introduction

We study the problem of testing whether a given real-valued function f on domain [n]d,
where n, d ∈ N, is unate. A function f : [n]d → R is unate if for every coordinate i ∈ [d],
the function is either nonincreasing in the coordinate i or nondecreasing in the coordinate i.
Unate functions naturally generalize monotone functions, which are nondecreasing in all
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5:2 Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps

coordinates, and b-monotone functions, which have a particular direction in each coordinate
(either nonincreasing or nondecreasing), specified by a bit-vector b ∈ {0, 1}d. More precisely,
a function is b-monotone if it is nondecreasing in coordinates i with bi = 0 and nonincreasing
in the other coordinates. Observe that a function f is unate iff there exists some b ∈ {0, 1}d
for which f is b-monotone.

A tester [33, 25] for a property P of a function f is an algorithm that gets a distance
parameter ε ∈ (0, 1) and query access to f . It has to accept with probability at least 2/3 if f
has property P and reject with probability at least 2/3 if f is ε-far (in Hamming distance)
from P . We say that f is ε-far from P if at least an ε fraction of values of f must be modified
to make f satisfy P . A tester has one-sided error if it always accepts a function satisfying P ,
and has two-sided error otherwise. A nonadaptive tester makes all its queries at once, while
an adaptive tester can make queries after seeing answers to the previous ones.

Testing of various properties of functions, including monotonicity (see, e.g., [24, 19,
20, 31, 22, 21, 26, 1, 27, 3, 8, 7, 10, 13, 9, 6, 14, 15, 12, 17, 16, 29, 4, 5, 18] and recent
surveys [32, 11]), the Lipschitz property [28, 13, 9, 16], bounded-derivative properties [12],
and unateness [24, 30], has been studied extensively over the past two decades. Even though
unateness testing was initially discussed in the seminal paper by Goldreich et al. [24] that gave
first testers for properties of functions, relatively little is known about testing this property.
All previous work on unateness testing focused on the special case of Boolean functions on
domain {0, 1}d. The domain {0, 1}d is called the hypercube and the more general domain [n]d

is called the hypergrid. Goldreich et al. [24] provided a O(d
3/2

ε )-query nonadaptive tester for
unateness of Boolean functions on the hypercube. Recently, Khot and Shinkar [30] improved
the query complexity to O(d log d

ε ), albeit with an adaptive tester.
In this paper, we improve upon both these works, and our results hold for a more general

class of functions. Specifically, we show that unateness of real-valued functions on hypercubes
can be tested nonadaptively with O(dε log d

ε ) queries and adaptively with O(dε ) queries. More
generally, we describe a O(dε · (log d

ε + logn))-query nonadaptive tester and a O(d logn
ε )-query

adaptive tester of unateness of real-valued functions over hypergrids.
In contrast to the state of knowledge for unateness testing, the complexity of testing

monotonicity of real-valued functions over the hypercube and the hypergrid has been resolved.
For constant distance parameter ε, it is known to be Θ(d logn). Moreover, this bound holds
for all bounded-derivative properties [12], a large class that includes b-monotonicity and
some properties quite different from monotonicity, such as the Lipschitz property. Amazingly,
the upper bound for all these properties is achieved by the same simple and, in particular,
nonadaptive, tester. Even though proving lower bounds for adaptive testers has been
challenging in general, a line of work, starting from Fischer [21] and including [8, 14, 12], has
established that adaptivity does not help for this large class of properties. Since unateness is
so closely related, it is natural to ask whether the same is true for testing unateness.

We answer this in the negative: we prove that any non-adaptive tester of real valued
functions over the hypercube (for some constant distance parameter) must make Ω(d log d)
queries. More generally, it needs Ω(d(log d+ logn)) queries for the hypergrid domain. These
lower bounds complement our algorithms, completing the picture for unateness testing of
real-valued functions. From a property testing standpoint, our results establish that unateness
is different from monotonicity and, more generally, any derivative-bounded property.

1.1 Formal Statements and Technical Overview
Our upper bounds are summarized in the following theorem, stated for functions over the
hypergrid domains. (Recall that the hypercube is a special case of the hypergrid with n = 2.)
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I Theorem 1.1. Consider functions f : [n]d → R and a distance parameter ε ∈ (0, 1/2).
1. There is a nonadaptive unateness tester that makes O(dε (log d

ε + logn)) queries1.
2. There is an adaptive unateness tester that makes O(d logn

ε ) queries.
Both testers have one-sided error.

Our main technical contribution is the proof that the extra Ω(log d) is needed for nonadaptive
testers. This result demonstrates a gap between adaptive and nonadaptive unateness testing.

I Theorem 1.2. Any nonadaptive unateness tester (even with two-sided error) for real-valued
functions f : {0, 1}d → R with distance parameter ε = 1/8 must make Ω(d log d) queries.

The lower bound for adaptive testers is an easy adaptation of the monotonicity lower bound
in [14]. We state this theorem for completeness and prove it in the full version [2].

I Theorem 1.3. Any unateness tester for functions f : [n]d → R with distance parameter
ε ∈ (0, 1/4) must make Ω

(
d logn
ε − log 1/ε

ε

)
queries.

Theorems 1.2 and 1.3 directly imply that our nonadaptive tester is optimal for constant ε,
even for the hypergrid domain. All missing proofs and details from the technical sections
appear in the full version of this paper [2].

1.1.1 Overview of Techniques
We first consider the hypercube domain. For each i ∈ [d], an i-edge of the hypercube is
a pair (x, y) of points in {0, 1}d, where xi = 0, yi = 1, and xj = yj for all j ∈ ([d] \ {i}).
Given an input function f : {0, 1}d → R, we say an i-edge (x, y) is increasing if f(x) < f(y),
decreasing if f(x) > f(y), and constant if f(x) = f(y).

Our nonadaptive unateness tester on the hypercube uses the work investment strategy
from [6] (also refer to Section 8.2.4 of Goldreich’s book [23]) to “guess” a good dimension
where to look for violations of unateness (specifically, both increasing and decreasing edges).
For all i ∈ [d], let αi be the fraction of the i-edges that are decreasing, βi be the fraction
of the i-edges that are increasing, and µi = min(αi, βi). The dimension reduction theorem
from [12] implies that if the input function is ε-far from unate, then the average of µi over
all dimensions is at least ε

4d . If the tester knew which dimension had µi = Ω(ε/d), it could
detect a violation with high probability by querying the endpoints of O(1/µi) = O(d/ε)
uniformly random edges. However, the tester does not know which µi is large and, intuitively,
nonadaptively checks the following log d different scenarios, one for each k ∈ [log d]: exactly
2k different µi’s are ε/2k, and all others are 0. This leads to the query complexity of O(d log d

ε ).
With adaptivity, this search through log d different scenarios is not required. A pair

of queries in each dimension detects influential coordinates (i.e., dimensions with many
non-constant edges), and the algorithm focuses on finding violations among those coordinates.
This leads to the query complexity of O(d/ε), removing the log d factor.

It is relatively easy to extend (both adaptive and nonadaptive) testers from hypercubes
to hypergrids by incurring an extra factor of logn in the query complexity. The role of
i-edges is now played by i-lines. An i-line is a set of n domain points that differ only on
coordinate i. The domain [n] is called a line. Monotonicity on the line (a.k.a. sortedness)
can be tested with O( logn

ε ) queries, using, for example, the classical tree tester from [20].

1 For many properties, when the domain is extended from the hypercube to the hypergrid, testers incur an extra
multiplicative factor of logn in the query complexity. This is the case for our adaptive tester. However, note that
the complexity of nonadaptive unateness testing (for constant ε) is Θ(d(log d+logn)) rather than Θ(d log d logn).

ICALP 2017
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Instead of sampling a random i-edge, we sample a random i-line ` and run the tree tester
on the restriction f|` of function f to the line `. This is optimal for adaptive testers, but,
interestingly, not for nonadaptive testers. We show that for each function f on the line that
is ε-far from unateness, one of the two scenarios happen: (1) the tree tester is likely to find
a violation of unateness; (2) function f is increasing (and also decreasing) on a constant
fraction of pairs in [n]. This new angle on the classical tester allows us to replace the factor
(log d)(logn) with log d+ logn in the query complexity. Thus, the nonadaptive complexity
becomes O(d(log d+ logn)), which we show is optimal.

The nonadaptive lower bound. Our most significant finding is the log d gap in the query
complexity between adaptive and nonadaptive testing of unateness. By previous work [21, 14],
it suffices to prove lower bounds for comparison-based testers, i.e., testers that can only
perform comparisons of the function values at queried points, but cannot use the values
themselves. Our main technical contribution is the Ω(d log d) lower bound for nonadaptive
comparison-based testers of unateness on hypercube domains.

Intuitively, we wish to construct K = Θ(log d) families of functions where, for each
k ∈ [K], functions in the kth family have 2k dimensions i with µi = Θ(1/2k), while µi = 0 for
all other dimensions. What makes the construction challenging is the existence of a single,
universal nonadaptive O(d)-tester for all b-monotonicity properties, proven in [12]. In other
words, there is a single distribution on O(d) queries that defines a nonadaptive property
tester for b-monotonicity, regardless of b. Since unateness is the union of all b-monotonicity
properties, our construction must be able to fool such algorithms. Furthermore, nonadaptivity
must be critical, since we obtained a O(d)-query adaptive tester for unateness.

Another obstacle is that once a tester finds a non-constant edge in each dimension, the
problem reduces to testing b-monotonicity for a vector b determined by the directions
(increasing or decreasing) of the non-constant edges. That is, intuitively, most edges in our
construction must be constant. This is one of the main technical challenges. The previous
lower bound constructions for monotonicity testing [8, 14] crucially used the fact that all
edges in the hard functions were non-constant.

We briefly describe how we overcome the problems mentioned above. By Yao’s minimax
principle, it suffices to construct Yes and No distributions that a deterministic nonadaptive
tester cannot distinguish. First, for some parameter m, we partition the hypercube into m
subcubes based of the first log2m most significant coordinates. Both distributions, Yes and
No, sample a uniform k from [K], where K = Θ(log d), and a set R ⊆ [d] of cardinality
2k. Furthermore, each subcube j ∈ [m] selects an “action dimension” rj ∈ R uniformly at
random. For both distributions, in any particular subcube j, the function value is completely
determined by the coordinates not in R, and the random coordinate rj ∈ R. Note that all the
i-edges for i ∈ (R \ {rj}) are constant. Within the subcube, the function is a linear function
with exponentially increasing coefficients. In the Yes distribution, any two cubes j, j′ with
the same action dimension orient the edges in that dimension the same way (both increasing
or both decreasing), while in the No distribution each cube decides on the orientation
independently. The former correlation maintains unateness while the latter independence
creates distance to unateness. We prove that to distinguish the distributions, any comparison-
based nonadaptive tester must find two distinct subcubes with the same action dimension rj
and, furthermore, make a specific query (in both) that reveals the coefficient of rj . We show
that, with o(d log d) queries, the probability of this event is negligible.
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Algorithm 1: The Nonadaptive Unateness Tester over Hypercubes
input : distance parameter ε ∈ (0, 1/2); query access to a function f : {0, 1}d → R.

1 for r = 1 to d3 log(4d/ε)e do
2 repeat sr = d 16d ln 4

ε·2r e times
3 Sample a dimension i ∈ [d] uniformly at random.
4 Sample 3 · 2r i-edges uniformly and independently at random and reject if there

exists an increasing edge and a decreasing edge among the sampled edges.
5 accept

2 Upper Bounds

In this section, we prove parts 1–2 of Theorem 1.1, starting from the hypercube domain.
Recall the definition of i-edges and i-lines from Section 1.1.1 and what it means for an

edge to be increasing, decreasing, and constant.
The starting point for our algorithms is the dimension reduction theorem from [12].

It bounds the distance of f : [n]d → R to monotonicity in terms of average distances of
restrictions of f to one-dimensional functions.

I Theorem 2.1 (Dimension Reduction, Theorem 1.8 in [12]). Fix a bit vector b ∈ {0, 1}d and
a function f : [n]d → R which is ε-far from b-monotonicity. For all i ∈ [d], let µi be the
average distance of f|` to bi-monotonicity over all i-lines `. Then

∑d
i=1 µi ≥ ε/4.

For the special case of the hypercube domains, i-lines become i-edges, and the average distance
µi to bi-monotonicity is the fraction of i-edges on which the function is not bi-monotone.

2.1 The Nonadaptive Tester over the Hypercube

We now describe Algorithm 1, the nonadaptive tester for unateness over the hypercubes.
It is evident that Algorithm 1 is a nonadaptive, one-sided error tester. Furthermore, its

query complexity is O
(
d
ε log d

ε

)
. It suffices to prove the following.

I Lemma 2.2. If f is ε-far from unate, Algorithm 1 rejects with probability at least 2/3.

Proof. Recall that αi is the fraction of i-edges that are decreasing, βi is the fraction of
i-edges that are increasing and µi = min(αi, βi).

Define the d-dimensional bit vector b as follows: for each i ∈ [d], let bi = 0 if αi < βi
and bi = 1 otherwise. Observe that the average distance of f to bi-monotonicity over a
random i-edge is precisely µi. Since f is ε-far from being unate, f is also ε-far from being
b-monotone. By Theorem 2.1,

∑
i∈[d] µi ≥

ε
4 . Hence, Ei∈[d][µi] ≥ ε

4d . We now apply the
work investment strategy due to Berman et al. [6] to get an upper bound on the probability
that Algorithm 1 fails to reject.

I Theorem 2.3 ([6]). For a random variable X ∈ [0, 1] with E[X] ≥ µ for µ < 1
2 , let

pr = Pr[X ≥ 2−r] and δ ∈ (0, 1) be the desired error probability. Let sr = 4 ln 1/δ
µ·2r . Then,

d3 log(1/µ)e∏
r=1

(1− pr)sr ≤ δ.

ICALP 2017
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Algorithm 2: The Adaptive Unateness Tester over Hypercubes
input : distance parameter ε ∈ (0, 1/2); query access to a function f : {0, 1}d → R.

1 repeat 10/ε times
2 for i = 1 to d do
3 Sample an i-edge ei uniformly at random.
4 if ei is non-constant (i.e., increasing or decreasing) then
5 Sample i-edges uniformly at random till we obtain a non-constant edge e′i.
6 reject if one of the edges ei, e′i is increasing and the other is decreasing.
7 accept

Consider running Algorithm 1 on a function f that is ε-far from unate. Let X = µi where i
is sampled uniformly at random from [d]. Then E[X] ≥ ε

4d . Applying the work investment
strategy (Theorem 2.3) on X with µ = ε

4d , we get that the probability that, in some iteration,
Step 3 samples a dimension i such that µi ≥ 2−r is at least 1−δ. We set δ = 1/4. Conditioned
on sampling such a dimension, the probability that Step 4 fails to obtain an increasing edge
and a decreasing edge among its 3 · 2r samples is at most 2 (1− 1/2r)3·2r

≤ 2e−3 < 1/9, as
the fraction of both increasing and decreasing edges is at least 1/2r. Hence, the probability
that Algorithm 1 rejects f is at least 3

4 ·
8
9 = 2

3 . This completes the proof of Lemma 2.2. J

2.2 The Adaptive Tester over the Hypercube
We now describe Algorithm 2, an adaptive tester for unateness over the hypercube domain
with good expected query complexity. The final tester is obtained by repeating this tester
and accepting if the number of queries exceeds a specified bound.

I Claim 2.4. The expected number of queries made by Algorithm 2 is 40d/ε.

Proof. Consider one iteration of the repeat-loop in Step 1. We prove that the expected
number of queries in this iteration is 4d. The number of queries in Step 3 is 2d, as 2 points
per dimension are queried. Let Ei be the event that edge ei is non-constant and Ti be the
random variable for the number of i-edges sampled in Step 5. Then E[Ti] = 1

αi+βi
= 1

Pr[Ei] .
Therefore, the expected number of all edges sampled in Step 5 is

∑d
i=1 Pr[Ei] · E[Ti] =∑d

i=1 Pr[Ei] · 1
Pr[Ei] = d. Hence, the expected number of queries in Step 5 is 2d. Since there

are 10/ε iterations in Step 1, the expected number of queries in Algorithm 2 is 40d/ε. J

I Claim 2.5. If f is ε-far from unate, Algorithm 2 accepts with probability at most 1/6.

Proof. First, we bound the probability that a violation of unateness is detected in some
dimension i ∈ [d] in one iteration of the repeat-loop. Consider the probability of finding a
decreasing i-edge in Step 3, and an increasing i-edge in Step 5. The former is exactly αi, and
the latter is βi/(αi + βi). Therefore, the probability we detect a violation from dimension i
is 2αiβi/(αi + βi) ≥ min(αi, βi) = µi. The probability that we fail to detect a violation in
any of the d dimensions is at most

∏d
i=1(1− µi) ≤ exp

(
−
∑d
i=1 µi

)
, which is at most e−ε/4

by Theorem 2.1 (Dimension Reduction). By Taylor expansion of e−ε/4, the probability of
finding a violation in one iteration is at least 1− e−ε/4 ≥ ε

4 −
ε2

32 ≥
ε
5 . The probability that

Algorithm 2 does not reject in any iteration is at most (1− ε/5)10/ε < 1/6. J

Proof of Theorem 1.1, part 2 (the special case of the hypercube domain). We run Algo-
rithm 2, aborting and accepting if we ever make more than 240d/ε queries. By Markov’s
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Algorithm 3: Tree Tester
input :Query access to a function h : [n] 7→ R.

1 Pick x ∈ [n] uniformly at random.
2 Let Qx ⊆ [n] be the set of points visited in a binary search for x. Query h on all points

in Qx.
3 If there is an increasing pair in Qx, set dir← {↑}; otherwise, dir← ∅.
4 If there is a decreasing pair in Qx, update dir← dir ∪ {↓}.
5 Return dir.

Algorithm 4: The Adaptive Unateness Tester over Hypergrids
input : distance parameter ε ∈ (0, 1/2); query access to a function f : [n]d → R.

1 repeat 10/ε times
2 for i = 1 to d do
3 Sample an i-line `i uniformly at random.
4 Let diri be the output of Algorithm 3 on f|`i

.
5 if diri 6= ∅ then
6 Sample i-lines uniformly at random and run Algorithm 3 on f restricted to

each line until it returns a non-empty set. Call it dir′i.
7 If diri ∪ dir′i = {↑, ↓}, reject.
8 accept

inequality, the probability of aborting is at most 1/6. By Claim 2.5, if f is ε-far from unate,
Algorithm 2 accepts with probability at most 1/6. The theorem follows by a union bound. J

2.3 Extension to Hypergrids
We start by establishing terminology for lines and pairs. Consider a function f : [n]d → R.
Recall the definition of i-lines from Section 1.1.1. A pair of points that differ only in coordinate
i is called an i-pair. An i-pair (x, y) with xi < yi is called increasing if f(x) < f(y), decreasing
if f(x) > f(y), and constant if f(x) = f(y).

The main tool for extending Algorithms 1 and 2 to work on hypergrids is the tree tester,
designed by Ergun et al. [20] to test monotonicity of functions h : [n]→ R. We modify the
tree tester to return information about directions it observed instead of just accepting or
rejecting. See Algorithm 3. We call a function h : [n]→ R antimonotone if f(x) ≥ f(y) for
all x < y. The following lemma summarizes the guarantee of the tree tester.

I Lemma 2.6 ([20, 12]). If h : [n] 7→ R is ε-far from monotone (respectively, antimonotone),
then the output of Algorithm 3 on h contains ↓ (respectively, ↑) with probability at least ε.

Our hypergrid testers are stated in Algorithms 4 and 5. Next, we explain how Lemma 2.6
and Theorem 2.1 are used in the analysis of the adaptive tester. For a dimension i ∈ [d], let αi
and βi denote the average distance of f|` to monotonicity and antimonotonicity, respectively,
over all i-lines `. Then µi := min(αi, βi) is the average fraction of points per i-line that
needs to change to make f unate. Define the b-vector with bi = 0 if αi < βi, and bi = 1
otherwise. By Theorem 2.1, if f is ε-far from unate, and thus ε-far from b-monotone, then∑d
i=1 µi ≥ ε/4. By Lemma 2.6, the probability that the output of Algorithm 3 on f|` contains

ICALP 2017
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Algorithm 5: The Nonadaptive Unateness Tester over Hypergrids
input : distance parameter ε ∈ (0, 1/2); query access to a function f : [n]d → R.

1 repeat 220/ε times
2 for i = 1 to d do
3 Sample an i-line ` uniformly at random.
4 Reject if Algorithm 3, on input f|`, returns {↑, ↓}.
5 for r = 1 to d3 log(200d/ε)e do
6 repeat sr = d 800d ln 4

ε·2r e times
7 Sample a dimension i ∈ [d] uniformly at random.
8 Sample 3 · 2r i-pairs uniformly and independently at random.
9 If we find an increasing and a decreasing pair among the sampled pairs, reject.

10 accept

↓ (respectively, ↑), where ` is a uniformly random i-line, is at least αi (respectively, βi). The
rest of the analysis of Algorithm 4 is similar to that in the hypercube case.

To analyze the nonadaptive tester, we prove Lemma 2.7, which demonstrates the power
of the tree tester and may be of independent interest.

I Lemma 2.7. Consider a function h : [n]→ R which is ε-far from monotone (respectively,
antimonotone). At least one of the following holds:
1. Pr[Algorithm 3, on input h, returns {↑, ↓}] ≥ ε/25.
2. Pru,v∈[n][(u, v) is a decreasing (respectively, increasing) pair] ≥ ε/25.

3 The Lower Bound for Nonadaptive Testers over Hypercubes

In this section, we prove Theorem 1.2, which gives a lower bound for nonadaptive unateness
testers for functions over the hypercube.

Previous work of [14] on lower bounds for monotonicity testing shows that, for a special
class of properties, which includes unateness, it is sufficient to prove lower bounds for
comparison-based testers. Comparison-based testers base their decisions only on the order of
the function values at queried points, and not on the values themselves.

We first state the reduction to comparison-based testers from [14]. Let a (t, ε, δ)-tester
for a property P be a 2-sided error t-query tester, with distance parameter ε, that errs with
probability at most δ. Consider functions of the form f : D → R, where D is an arbitrary
partial order (in particular the hypergrid/hypercube). A property P is invariant under
monotone transformations if, for all strictly increasing maps φ : R→ R and all functions f ,
it holds that dist(f,P) = dist(φ ◦ f,P). In particular, unateness is invariant under monotone
transformations. The following theorem is implicitly proven in [14]. Specifically, Theorem 2.1
of [14] is stated for monotonicity, but the proof only uses the fact that monotonicity is a
property invariant under monotone transformations, so it applies to all such properties.

I Theorem 3.1 (implicit in [21, 14]). Let P be a property invariant under monotone trans-
formations. Suppose there exists a nonadaptive (resp., adaptive) (t, ε, δ)-tester for P. Then
there exists a nonadaptive (resp., adaptive) comparison-based (t, ε, 2δ)-tester for P.

Our main lower bound theorem is stated next. In the light of the previous discussion, it
implies Theorem 1.2.
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I Theorem 3.2. Any nonadaptive comparison-based tester for unateness of functions f :
{0, 1}d → R must make Ω(d log d) queries.

By Theorem 3.1 and Yao’s minimax principle [34], it suffices to prove the lower bound for
deterministic, nonadaptive, comparison-based testers over a known distribution of functions.
It may be useful for the reader to recall the sketch of the main ideas given in Section 1.1.1.
For convenience, assume d is a power of 2 and let d′ := d+ log2 d. We will focus on proving
the lower bound for functions h : {0, 1}d′ → R, as d log d = Θ(d′ log d′).

3.1 The Hard Distributions
We partition {0, 1}d′ into d subcubes based on the log2 d most significant bits. Specifically, for
i ∈ [d], the ith subcube is defined as Ci := {x ∈ {0, 1}d′ : val(xd′xd′−1 · · ·xd+1) = i−1}, where
val(zpzp−1 . . . z1) :=

∑p
i=1 zi2i−1 is the integer equivalent of the binary string zpzp−1 . . . z1.

Let m := d. We denote the set of indices of the subcube by [m] and the set of dimensions
by [d]. We use i, j ∈ [m] to index subcubes and a, b ∈ [d] to index dimensions. We define a
series of random variables, where each subsequent variable may depend on the previous ones:

k: a number picked uniformly at random from {1, 2, . . . , 1
2 log2 d}.

R: a uniformly random subset of [d] of size 2k.
ri: for each i ∈ [m], ri is picked from R uniformly and independently at random.
αb: for each b ∈ [d], αb is picked from {−1,+1} uniformly and independently at random.
βi: for each i ∈ [m], βi is picked from {−1,+1} uniformly and independently at random.

We denote by S the tuple (k,R, {ri}), also referred to as the shared randomness. We use T

to refer to the entire set of random variables. Given T , define the following functions:

fT (x) :=
∑

b∈[d′]\R

xb3b + αri
· xri

3ri , where i is the subcube with x ∈ Ci.

gT (x) :=
∑

b∈[d′]\R

xb3b + βi · xri
3ri , where i is the subcube with x ∈ Ci.

The distribution Yes generates fT and the distribution No generates gT .
In all cases, the function restricted to any subcube Ci is linear. Consider some dimension

b ∈ R. There can be numerous ri’s that are equal to b. For fT , in all of these subcubes,
the coefficient of xri

has the same sign, namely αri
. For gT , the coefficient βi is potentially

different, as it depends on the actual subcube. We write f ∼ D to denote that f is sampled
from distribution D.

I Claim 3.3. Every function f ∈ supp(Yes) is unate. A function g ∼ No is 1
8 -far from

unate with probability at least 9/10.

3.2 From Functions to Signed Graphs that are Hard to Distinguish
For convenience, denote x ≺ y if val(x) < val(y). Note that ≺ forms a total ordering on
{0, 1}d′ . Given x ≺ y ∈ {0, 1}d′ and a function h : {0, 1}d′ → R, define sgnh(x, y) to be 1 if
h(x) < h(y), 0 if h(x) = h(y), and −1 if h(x) > h(y).

Any deterministic, nonadaptive, comparison-based tester is defined as follows: It makes
a set of queries Q and decides whether or not the input function h is unate depending on
the

(|Q|
2
)
-comparisons in Q. More precisely, for every pair (x, y) ∈ Q×Q, x ≺ y, we insert

an edge labelled with sgnh(x, y). Let this signed graph be called GQh . Any nonadaptive,
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comparison-based algorithm can be described as a partition of the universe of all signed
graphs over Q into GY and GN . The algorithm accepts the function h iff GQh ∈ GY .

Let GQ
Y be the distribution of the signed graphs GQh when h ∼ Yes. Similarly, define GQ

N

when h ∼ No. Our main technical theorem is Theorem 3.4, which is proved in Section 3.3.

I Theorem 3.4. For small enough δ > 0 and large enough d, if |Q| ≤ δd log d, then
‖GQ

Y −GQ
N‖TV = O(δ).

The proof of Theorem 3.4 is naturally tied to the behavior of sgnh. Ideally, we would like
to say that sgnh(x, y) is almost identical regardless of whether h ∼ Yes or h ∼ No. Towards
this, we determine exactly the set of pairs (x, y) that potentially differentiate Yes and No.

I Claim 3.5. For all h ∈ supp(Yes) ∪ supp(No), for all x ∈ Ci and y ∈ Cj such that i < j,
we have sgnh(x, y) = 1.

Thus, comparisons between points in different subcubes reveal no information about which
distribution h was generated from. Thus the “interesting” pairs that can distinguish whether
h ∼ Yes or h ∼ No must lie in the same subcube. The next claim shows a further criterion
that is needed for a pair to be interesting. We first define another notation.

I Definition 3.6. For any setting of the shared randomness S, subcube Ci, and points
x, y ∈ Ci, we define tiS(x, y) to be the most significant coordinate of difference (between x, y)
in ([d] \R) ∪ {ri}.

Note that S determines R and {ri}. For any T that extends S and any function, the
restriction to Ci is unaffected by the coordinates in R \ ri. Thus, tiS(x, y) is the first
coordinate of difference that is influential in Ci.

I Claim 3.7. Fix some S, subcube Ci, and points x, y ∈ Ci. Let c = tiS(x, y), and assume
x ≺ y. For any T that extends S:

If c 6= ri, then sgnfT
(x, y) = sgngT

(x, y) = 1.
If c = ri, sgnfT

(x, y) = αc and sgngT
(x, y) = βi.

3.3 Proving Theorem 3.4: Good and Bad Events
For a given Q, we first identify certain “bad” values for S, on which Q could potentially
distinguish between fS and gS . We will prove that the probability of a bad S is small for a
given Q. Furthermore, we show that Q cannot distinguish between fS and gS for any good
S. We set up some definitions.

IDefinition 3.8. Given a pair (x, y), define cap(x, y) to be the 5 most significant coordinates2
in which they differ. We say (x, y) captures these coordinates. For any set S ⊆ {0, 1}d′ ,
define cap(S) :=

⋃
x,y∈S cap(x, y) to be the coordinates captured by the set S.

Fix any Q. We set Qi := Q ∩ Ci. We define two bad events for S.

Abort Event A: There exist x, y ∈ Q with cap(x, y) ⊆ R.
Collision Event C: There exist i, j ∈ [d] with ri = rj , ri ∈ cap(Qi) and rj ∈ cap(Qj).

If the abort event doesn’t occur, then for any pair (x, y), the sign sgnh(x, y) is determined by
cap(x, y) for any h ∈ supp(Yes) ∪ supp(No). The heart of the analysis lies in Theorem 3.9,
which states that the bad events happen rarely. Theorem 3.9 is proved in Section 3.4.

2 There is nothing special about the constant 5. It just needs to be sufficiently large.
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I Theorem 3.9. If |Q| ≤ δd log d, then Pr[A ∪ C] = O(δ).

When neither the abort nor the collision events happen, we say S is good for Q. Next, we
show that conditioned on a good S, the set Q cannot distinguish f ∼ Yes from g ∼ No.

I Lemma 3.10. For any signed graph G over Q,

Pr
f∼Yes

[GQf = G|S is good]= Pr
g∼No

[GQg = G|S is good].

Proof Sketch. As stated above, when the abort event doesn’t happen, the sign sgnh(x, y)
is determined by cap(x, y) for any h ∈ supp(Yes) ∪ supp(No). Furthermore, a pair (x, y)
has a possibility of distinguishing (that is, the pair is interesting) only if x, y ∈ Ci and
ri ∈ cap(x, y). Focus on such interesting pairs. For such a pair, both sgnfT

(x, y) and
sgngT

(x, y) are equally likely to be +1 or −1. Therefore, to distinguish, we would need two
interesting pairs, (x, y) ∈ Ci and (x′, y′) ∈ Cj with i 6= j. Note that, when g ∼ No, the signs
sgngT

(x, y) and sgngT
(x′, y′) are independently set, whereas when f ∼ Yes, the signs are

either the same when ri = rj , or independently set. But if the collision event doesn’t occur,
we have ri 6= rj for interesting pairs in different subcubes. Therefore, the probabilities are
the same. J

Now, we are armed to prove Theorem 3.4.

Proof of Theorem 3.4. Given any subset of signed graphs, G, it suffices to upper bound∣∣∣∣ Pr
f∼Yes

[GQ
f ∈ G]− Pr

f∼No
[GQ

f ∈ G]
∣∣∣∣ ≤ sumgood S

∣∣∣∣Pr[S] ·
(

Pr
f∼Yes

[GQ
f ∈ G|S]− Pr

f∼No
[GQ

f ∈ G|S]
)∣∣∣∣

+
∑

bad S

∣∣∣∣Pr[S] ·
(

Pr
f∼Yes

[GQ
f ∈ G|S]− Pr

f∼No
[GQ

f ∈ G|S]
)∣∣∣∣ .

The first term of the RHS is 0 by Lemma 3.10. The second term is at most the probability
of bad events, which is O(δ) by Theorem 3.9. J

3.4 Bounding the Probability of Bad Events: Proof of Theorem 3.9
We prove Theorem 3.9 by individually bounding Pr[A] and Pr[C].

I Lemma 3.11. If |Q| ≤ δd log d, then Pr[A] ≤ d−1/4.

Proof. Fix any choice of k (in S). For any pair of points x, y ∈ Q, we have Pr[cap(x, y) ⊆
R] ≤ ( 2k

d−5 )5. Since d− 5 ≥ d/2 for all d ≥ 10 and k ≤ (log2 d)/2, the probability is at most
32d−5/2. For a large enough d, a union bound over all pairs in Q ×Q, which are at most
d2 log2 d in number, completes the proof. J

The collision event is more challenging to bound. Bounding it is the heart of the lower bound.
We start by showing that, if each Qi captures few coordinates, then the collision event has
low probability. A critical point is the appearance of d log d in this bound.

I Lemma 3.12. If
∑
i |cap(Qi)| ≤M , then Pr[C] = O

(
M

d log d

)
.

Proof. For any r ∈ [d], define Ar := {j : r ∈ cap(Qj)} to be the set of indices of Qj ’s that
capture coordinate r. Let ar := |Ar|. Define n` := |{r : ar ∈ (2`−1, 2`]}|. Observe that∑
`≤log2 d

n`2` ≤ 2
∑
r∈[d] ar ≤ 2M .
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Fix k. For r ∈ [d], we say the event Cr occurs if (a) r ∈ R, and (b) there exists
i, j ∈ [d] such that ri = rj = r, and ri ∈ cap(Qi) and rj ∈ cap(Qj). By the union bound,
Pr[C|k] ≤

∑d
r=1 Pr[Cr|k].

Let us now compute Pr[Cr|k]. Only sets Qj ’s with j ∈ Ar are of interest, since the others
do not capture r. Event Cr occurs if at least two of these sets have ri = rj = r. Hence,

Pr[Cr|k] = Pr[r ∈ R] · Pr[∃i, j ∈ Ar : ri = rj = r | r ∈ R]

= 2k

d
·
∑
c≥2

(
ar
c

)(
1
2k

)c(
1− 1

2k

)ar−c

. (1)

A fixed r is in R with probability
(
d−1
2k−1

)
/
(
d
2k

)
= 2k

d . Given that |R| = 2k, the probability
that ri = r is precisely 2−k.

If ar ≥ 2k

4 , then we simply upper bound (1) by 2k

d . For ar <
2k

4 , we upper bound (1) by

2k

d

(
1− 1

2k

)ar ∑
c≥2

(
ar ·

1
2k ·

(
1− 1

2k

)−1
)c
≤ 2k

d

∑
c≥2

( ar
2k−1

)c
≤ 8a2

r

2kd .

Summing over all r and grouping according to n`, we get

Pr[C|k] ≤
d∑
r=1

Pr[Cr|k] ≤
∑

r:ar≥2k−2

2k

d
+ 8
d

∑
r:ar<2k−2

a2
r

2k ≤
2k

d

∑
`>k−2

n` + 8
d

k−2∑
`=1

n`22`−k.

Averaging over all k, we get

Pr[C] = 2
log2 d

(log2 d)/2∑
k=1

Pr[C|k] ≤ 16
d log2 d

(log2 d)/2∑
k=1

(
k−2∑
`=1

n`22`−k +
∑
`>k−2

n`2k
)

= 16
d log2 d

(log2 d)/2∑
`=1

n`
∑
k≥`+2

22`−k +
log2 d∑
`=1

n`
∑
k<`+2

2k
 . (2)

Now,
∑
k≥`+2 22`−k ≤ 2` and

∑
k<`+2 2k ≤ 4 ·2`. Substituting, Pr[C] ≤ 80

d log2 d

∑log2 d
`=1 n`2` ≤

160M
d log2 d

, proving the lemma. J

We are now left to bound
∑
i |cap(Qi)|. This is done by the following combinatorial lemma.

I Lemma 3.13. Let V be a set of vectors over an arbitrary alphabet and any number of
dimensions. For any natural number c and x, y ∈ V , let capc(x, y) denote the (set of) first c
coordinates at which x and y differ. Then |capc(V )| ≤ c(|V | − 1).

Proof. We construct c different edge-coloured graphs G1, . . . , Gc over the vertex set V . For
every coordinate i ∈ capc(V ), there must exist at least one pair of vectors x, y such that
i ∈ capc(x, y). Thinking of each capc(x, y) as an ordered set, find a pair (x, y) where i
appears “earliest” in capc(x, y). Let the position of i in this capc(x, y) be denoted t. We
add edge (x, y) to Gt, and colour it i. Note that the same edge (x, y) cannot be added to Gt
with multiple colours, and hence all Gt’s are simple graphs. Furthermore, observe that each
colour is present only once over all Gt’s.

We claim that each Gt is acyclic. Suppose not. Let there be a cycle C and let (x, y) be
the edge in C with the smallest colour i. Clearly, xi 6= yi since i ∈ capc(x, y). There must
exist another edge (u, v) in C such that ui 6= vi. Furthermore, the colour of (u, v) is j > i.
Thus, j is the tth entry in capc(u, v). Note that i ∈ capc(u, v) and must be the sth entry for
some s < t. But this means that the edge (u, v) coloured i should be in Gs, contradicting
the presence of (x, y) ∈ Gt. J
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We wrap up the bound now.

I Lemma 3.14. If |Q| ≤ δd log d, then Pr[C] = O(δ).

Proof. Lemma 3.13 applied to each Qi, yields
∑
i |cap(Qi)| ≤ 5|Qi| = 5|Q|. An application

of Lemma 3.12 completes the proof. J
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