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Abstract
We consider a price competition between two sellers of perfect-complement goods. Each seller
posts a price for the good it sells, but the demand is determined according to the sum of prices.
This is a classic model by Cournot (1838), who showed that in this setting a monopoly that sells
both goods is better for the society than two competing sellers.

We show that non-trivial pure Nash equilibria always exist in this game. We also quantify
Cournot’s observation with respect to both the optimal welfare and the monopoly revenue. We
then prove a series of mostly negative results regarding the convergence of best response dynamics
to equilibria in such games.
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1 Introduction

In this paper we study a model of a pricing game between two firms that sell goods that are
perfect complements to each other. These goods are only demanded in bundles, at equal
quantities, and there is no demand for each good by itself. The two sellers simultaneously
choose prices p1, p2 and the demand at these prices is given by D(p1 + p2) where D is the
demand for the bundle of these two complementary goods. The revenue of seller i is thus
pi · D(p1 + p2), and as we assume zero production costs, this is taken as his utility.

This model was first studied in Cournot’s famous work [9]. In [9], Cournot studied two
seminal oligopoly models. The first, and the more famous, model is the well known Cournot
oligopoly model about sellers who compete through quantities. We study a second model that
was proposed by Cournot in the same work, regarding price competition between sellers of
perfect complements.1 Cournot considered a model of a duopoly selling perfect complements,
and he suggested zinc and copper as an example. In Cournot’s example, a manufacturer of
zinc may observe that some of her major customers produce brass (made of zinc and copper);

∗ The full version of this paper can be found in an arXiv paper under the same title, see https:
//arxiv.org/abs/1706.00219.

1 [25] showed that these two different models by Cournot actually share the same formal structure.
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Therefore, zinc manufacturers indirectly compete with manufacturers of copper, as both
target the money of brass producers. Another classic example of a duopoly selling perfect
complements is by [12], who studied how owners of two consecutive segments of a canal
determine the tolls for shippers; Clearly, every shipper must purchase a permit from both
owners for being granted the right to cross the canal. Another, more contemporary, example
for perfect complements might be high-tech or pharmaceutical firms that must buy the rights
to use two registered patents to manufacture its product; The owners of the two patents
quote prices for the usage rights, and these patents can be viewed as perfect complements.

Cournot, in his 1838 book, proved a counterintuitive result saying that competition
among multiple sellers of complement goods lead to a worse social outcome than the result
reached by a monopoly that controls the two sellers. Moreover, both the profits of the firms
and the consumer surplus increase in the monopoly outcome. In the legal literature, this
phenomenon was termed “the tragedy of the anticommons" (see, [6, 17, 21]). In our work,
we will quantify the severity of this phenomenon.

Clearly, if the demand at a sufficiently high price is zero, then there are trivial equilibria
in which both sellers price prohibitively high, and nothing is sold. This raises the following
question: Do non-trivial equilibria, in which some pairs of items are sold, always exist? We
study this question as well as some natural follow-ups: What are the revenue and welfare
properties of such equilibria? What are the properties of equilibria that might arise as a result
of best-response dynamics?

For the sake of quantification, we study a discretized version of this game in which the
demand changes only finitely many times. The number of discrete steps in the demand
function, also viewed as the number of possible types of buyers, is denoted by n and is called
the number of demand levels.

Our first result proves the existence of non-trivial pure Nash equilibria.

I Theorem 1. For any demand function with n demand levels there exists at least one
non-trivial pure Nash equilibrium.

We prove the theorem using an artificial dynamics which starts from zero prices and continues
in steps. In each step, one seller best responds to the other seller’s price, and after each
seller best responds, the total price of both is symmetrized: both prices are replaced by
their average. We show that the total price is monotonically non-decreasing, and thus it
terminates after at most n steps in the non-trivial equilibrium of highest revenue and welfare.

In our model, it is easy to observe that there are multiple equilibria for some demand
functions. How different can the welfare and revenue of these equilibria be? A useful
parameter for bounding the difference, as well as bounding the inefficiency of equilibria, turns
out to be D, the ratio between the demand at price 0 and the demand at the highest price
vmax for which there is non-zero demand.

Consider the following example with two (n = 2) types of buyers: a single buyer that is
willing to pay “a lot”, 2, for the bundle of the two goods, and many, D− 1 >> 2, buyers that
are willing to pay “a little”, 1, each, for the bundle. A monopolist (that controls both sellers)
would have sold the bundle at the low price 1. At this price, all the D buyers decide to buy,
leading to revenue D and optimal social welfare of D+ 1. Equilibria here belong to two types:
the “bad” equilibria2 have high prices, p1 + p2 = 2, (which certainly is an equilibrium when,
say, p1 = p2 = 1) and achieve low revenue and low social welfare of 2. The “good” equilibria

2 It turns out that in our model there is no conflict between welfare and revenue in equilibria - the lower
the total price, the higher the welfare and the revenue in equilibria (see Proposition 6).
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have low prices, p1 + p2 = 1 (which is an equilibrium as long as p1, p2 ≥ 1/D), and achieve
optimal social welfare as well as the monopolist revenue, both values are at least D. Thus,
we see that the ratio of welfare (and revenue) between the “good” and “bad” equilibria can
be very high, as high as Ω(D). This can be viewed as a negative “Price of Anarchy” result.

We next focus on the best equilibria and present bounds on the “Price of Stability" of this
game; We show that the ratio between the optimal social welfare and the best equilibrium
revenue3 is bounded by O(

√
D), and that this is tight when D = n. When n is very small,

the ratio can only grow as 2n and not more. In particular, for constant n the ratio is a
constant, in contrast to the lower bound of Ω(D) on “Price of Anarchy” for n = 2, presented
above.

I Theorem 2. For any instance, the optimal welfare and the monopolist revenue are at most
O(min{2n,

√
D}) times the revenue of the best equilibrium. These bounds are tight.

We now turn to discuss how such markets converge to equilibria, and in case of multiple
equilibria, which of them will be reached? We consider best response dynamics in which
players start with some initial prices and repeatedly best-reply to each other. We study the
quality of equilibria reached by the dynamics, compared to the best equilibria.

Clearly, if the dynamics happen to start at an equilibrium, best replying will leave the
prices there, whether the equilibrium is good or bad. But what happens in general: which
equilibrium will they “converge” to when starting from “natural" starting points, if any,
and how long can that take? Zero prices (or other, very low prices) are probably the most
natural starting point. However, as can be seen by the example above, starting from zero
prices may result in the worst equilibrium.4 Another natural starting point is a situation
where the two sellers form a cartel and decide to post prices that sum to the monopoly
price. Indeed, in our example above, if the two sellers equally split the monopoly price, this
will be the best equilibrium. However, we know that cartel solutions are typically unstable,
and the participants will have incentives to deviate to other prices and thus start a price
updating process. We prove a negative result in this context, showing that starting from
any split of the monopoly price might result in bad equilibria. We also check what would
be the result of dynamics that start at random prices. Again, we prove a negative result
showing situations where dynamics starting from random prices almost surely converge to
bad equilibria. Finally, we show that convergence might take a long time, even with only two
demand levels. Following is a more formal description of these results about the best-response
dynamics:

I Theorem 3. The following statements hold:
There are instances with 3 demand levels for which a best-response dynamics starting
from any split of a monopoly price reaches the worst equilibrium that is factor Ω(

√
D)

worse than the best equilibrium in terms of both revenue and welfare.
For any ε > 0 and D > 2/ε there are instances with 2 demand levels for which a best-
response dynamics starting from uniform random prices in [0, vmax]2 reaches the worst
equilibrium with probability 1− ε, while the best equilibrium has welfare and revenue that
is factor ε ·D larger.

3 Note that this also shows the same bounds on the ratio between the optimal welfare and the welfare in
the best equilibrium, as well as the ratio between the monopolist revenue and the revenue in the best
equilibrium.

4 In this example, the best response to price of 0 is price of 1. Next, the first seller will move from price
of 0 to price of 1 as well, resulting in the worst equilibrium.
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For any n ≥ 2 and ε > 0 there are instances with n demand levels for which a best-response
dynamics starting from uniform random prices in [0, vmax]2 almost surely (with probability
1) reaches the worst equilibrium, while the best equilibrium has welfare and revenue that
is factor Ω(2n) larger.
(Slow convergence.) For any K > 0 there is an instance with only 2 demand levels
(n = 2) and D < 2 for which a best-response dynamics continues for at least K steps
before converging to an equilibrium.

Thus, best-reply dynamics may take a very long time to converge, and then typically
end up at a very bad equilibrium. While for very simple (n = 2) markets we know that
convergence will always occur, we do not know whether convergence is assured for every
market.

Open Problem. Do best reply dynamics always converge to an equilibrium or may they
loop infinitely? We do not know the answer even for n = 3.

More related work. While this paper studies price competition between sellers of perfect
complements, the classic Bertrand competition [5] studied a similar situation between sellers
of perfect substitutes. Bertrand competition leads to an efficient outcome with zero profits
for the sellers. [4] studied Bertrand-like competition over a network of sellers. In another
paper [3], we studied a network of sellers of perfect complements, where we showed how
equilibrium properties depend on the graph structure, and we proved price-of-stability results
for lines, cycles, trees etc. Chawla and Roughgarden [8] studied the price of anarchy in
two-sided markets with consumers interested in buying flows in a graph from multiple sellers,
each selling limited bandwidth on a single edge. Their model is fundamentally different than
ours (e.g., they consider combinatorial demand by buyers, and sellers with limited capacities)
and their PoA results are with respect to unrestricted Nash Equilibrium, while we focus on
non-trivial ones (in our model the analysis of PoA is straightforward for unrestricted NE). A
similar model was also studied in [7].

[11] extended the complements model of Cournot to accommodate multiple brands of
compatible goods. [10] studied pricing strategies for complementary software products. The
paper by [14] directly studied the Cournot/Ellet model, but when buyers approach the sellers
(or the tollbooths on the canal) sequentially.

[15] discussed best-response dynamics in a Cournot Oligopoly model with linear demand
functions, and proved that they converge to equilibria. Another recent paper [19] studied how
no-regret strategies converge to Nash equilibria in Cournot and Bertrand oligopoly settings;
The main results in [19] are positive, showing how such strategies lead to a positive-payoff
outcomes in Bertrand competition, but they do not consider such a model with complement
items.

Best-response dynamics is a natural description of how decentralized markets converge to
equilibria, see, e.g., [13, 20], or to approximate equilibria, e.g., [2, 24]. The inefficiency of
equilibria in various settings has been extensively studied, see, [18, 22, 23, 1, 16].

We continue as follows: Section 2 defines our model and some basic equilibrium properties.
In Section 3 we prove the existence of non trivial equilibria. In Section 4 we study the results
of best-response dynamics. Finally, Section 5 compares the quality of the best equilibria to
the optimal outcomes.
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2 Model and Preliminaries

We consider two sellers, each selling a single, homogeneous, divisible good. The sellers have
zero manufacturing cost for the good they sell, and an unlimited supply is available from
each good. All the buyers in the economy are interested in bundles of these two goods, and
the goods are perfect complements for the buyers. That is, each buyer only demands a
bundle consists of two goods, in equal quantities5, and there is no demand for each good
separately. The demand for the bundle of the two goods is given by a demand function D(·),
where D(p) ∈ R+ is the quantity of each of the two goods which is demanded when the price
for one unit of the bundle of the two goods is p ∈ R+.

The sellers simultaneously offer prices for the goods they sell. Each seller offers a single
price, and cannot discriminate between buyers. If the two prices offered by the sellers are p
and q then p+ q is the total price and the demand in this market is D(p+ q). The revenue of
the seller that posts a price p is thus p ·D(p+q), the revenue of the second seller is q ·D(p+q)
and the total revenue of the two selling firms is denoted by R(p + q) = (p + q) · D(p + q).
The maximal revenue that a monopoly that owns the two sellers can achieve is supx x · D(x)
and we use p∗ to denote a monopolist price.6

Discrete Demand Levels. In this paper we consider discrete demand curves, where potential
buyers only have n ≥ 2 different values denoted by ~v, such that v1 > v2 > · · · > vn > 0.
The demand at each price vi is denoted by di = D(vi), and assuming a downward sloping
demand curve we get that ~d is increasing, that is, 0 < d1 < d2 < · · · < dn. For convenience,
we define v0 = ∞ and d0 = 0. The parameter n is central in our analysis and it denotes
the number of demand levels in the economy. Another parameter that we frequently use is
the total demand D, which is the ratio between the highest and lowest demand at non-zero
prices, that is D = dn/d1. In other words, D is the maximal demand dn measured in units
of the minimal non-zero demand d1 (Note that D > 1). The social welfare in the economy
is the total value generated for the consumers. The social welfare, given a total price x, is
SW (x) =

∑
i|x<vi

vi(di − di−1), and the optimal welfare is SW (0) =
∑n
i=1 vi(di − di−1).

Strategies and Equilibria. The sellers engage in a price competition. We say that p is a
best response to a price q of the other seller if p ∈ argmaxp′ p′ · D(p′ + q), and let the set
of all best responses to q be BR(q). We consider the pure Nash equilibria (NE) of this
full-information pricing game. A pure Nash equilibrium is a pair of prices such that each
price is a best response to the other price, that is, (p, q) such that p ∈ BR(q) and q ∈ BR(p).

It is easy to see that NE always exist in this game, but unfortunately some of them are
trivial and no item is sold, and thus their welfare is zero; For example, (∞,∞) is always an
equilibrium with zero welfare and revenue. We will therefore focus on a subset of NE that
are non-trivial, i.e., where some quantity is sold. It is not immediate to see that non-trivial
equilibria exist, and we will begin by proving (in Section 3) that such equilibria indeed always
exist. On the other hand, we will show that multiplicity of equilibria is a problem even for

5 This actually assumes that the ratio of demand of the two goods is fixed, as we can normalized the
units to assume that it is 1 for both.

6 Our paper considers demand functions for which the monopoly revenue is attained and a monopolist
price exists. When there is more than one price that maximizes the monopoly profit, our claims
regarding p∗ will hold for each one of these prices. When necessary, we will treat the different prices
separately.

ICALP 2017



134:6 Selling Complementary Goods: Dynamics, Efficiency and Revenue

this restricted set of equilibria, as there might be an extreme variance in their revenue and
efficiency.

2.1 Basic Equilibrium Properties
We now describe some basic structural properties of equilibria in the pricing game between
sellers of complement goods. We use these properties throughout the paper.

We start with a simple observation claiming that all best response dynamics lead to a
total price which is exactly one of the demand values. This holds as otherwise any seller can
slightly increase his price, selling the same quantity and increasing his revenue.

I Observation 4. Let x ≤ v1 be some price offered by one seller, and BR(x) be a best
response of the other seller to the price x. Then, it holds that x + BR(x) = vi for some
i ∈ {1, ..., n}. In particular, for every pure non-trivial NE (p, q), it holds that p+ q = vi for
some i.

Next, we prove a useful lemma claiming that the set of equilibria with a particular total
price is convex. Intuitively, the idea in the proof is that a seller with a higher offer cares
more about changes in the demand than a seller with a lower offer. Therefore, if the seller
with the higher offer decided not to deviate to an increased price, clearly the other seller
would not deviate as well. The proof of the lemma appears in the full version of the paper.

I Lemma 5. If (p, q) is a pure NE then (x, p + q − x) is also a pure NE for every x ∈
[min{p, q},max{p, q}]. In particular, ((p+ q)/2, (p+ q)/2) is also a pure NE.

We next observe that there is no conflict between welfare and revenue in equilibrium: an
equilibrium with the highest welfare also has the highest equilibrium revenue. This holds
since equilibria with lower total price obtain higher revenue and welfare. We can thus say
that any equilibrium with minimal total price is the “best" as it is as good as possible on
both dimensions: welfare and revenue. Similarly, any equilibrium with maximal total price is
the “worst".

I Proposition 6. Both welfare and revenue of equilibria are monotonically non-increasing
in the total price. Therefore, an equilibrium with the minimal total price has both the highest
welfare and the highest revenue, among all equilibria. Similarly, an equilibrium with the
maximal total price has both the lowest welfare as well as the lowest revenue, among all
equilibria.

Proof. Consider two equilibria, one with total price v and the other with total price w > v.
The claim that the welfare is non-increasing in the total price follows immediately from the
definition. We will show that for w > v it holds that R(v) ≥ R(w).

Lemma 5 shows that if there is an equilibrium with total price p then (p/2, p/2) is also
an equilibrium. As (v/2, v/2) is an equilibrium, it holds that deviating to w − v/2 is not
beneficial for a seller, and thus R(v)/2 ≥ (w − v/2)D(w) ≥ (w/2)D(w) = R(w)/2 and thus
R(v) ≥ R(w) as claimed. J

Finally, we give a variant of a classic result by Cournot [9], which shows, somewhat
counterintuitively, that a single monopolist that sells two complementary goods is better for
the society than two competing sellers for each selling one of the good.

I Proposition 7. The total price in any equilibrium is at least as high as the minimal
monopolist price p∗. Thus, the welfare and revenue achieved by the monopolist price p∗ are
at least as high as the welfare and revenue (resp.) of the best equilibria.
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Proof. Assume that there is an equilibrium with total price p < p∗. As p∗ is the minimal
monopolist price it holds that R(p) < R(p∗). Additionally, as there is an equilibrium with
total price p then by Lemma 5 the pair (p/2, p/2) is an equilibrium, where each seller has
revenue R(p)/2. As p < p∗ a seller might deviate to p∗ − p/2 > p∗/2 > 0, and since such
deviation is not beneficial, it holds that R(p)/2 ≥ (p∗ − p/2)D(p∗) > (p∗/2)D(p∗) = R(p∗)/2
and thus R(p) > R(p∗), a contradiction.

By Proposition 6, it follows that the welfare and revenue achieved by the minimal
monopolist price p∗ are no less than those in the best equilibrium. J

3 Existence of Non-Trivial Equilibria

In this section we show that non-trivial equilibria always exist. We first note that the
structural lemmas from the previous sections seem to get us almost there: We know from
Obs. 4 that the total price in equilibrium must equal one of the vi’s; We also know that if
p, q is an equilibrium, then (p+q

2 , p+q
2 ) is also an equilibrium. Therefore, if an equilibrium

exists, then ( vi

2 ,
vi

2 ) must be an equilibrium for some i. However, these observations give a
simple way of finding an equilibrium if an equilibrium indeed exists, but they do not prove
existence on their own.

We give a constructive existence proof, by showing an algorithm based on an artificial
dynamics that always terminates in a non-trivial equilibrium. The algorithm is essentially a
sequence of best responses by the sellers, but with a twist: after every best-response step the
prices are averaged. We show that this dynamics always stops at a non-trivial equilibrium
and thus in particular, such equilibria exist. Moreover, when starting from prices of zero, the
dynamics terminates at the best equilibrium. We formalize these claims in Proposition 10
below, from which we can clearly derive the existence of non-trivial equilibrium claimed in
the next theorem as an immediate corollary.

I Theorem 8. For any instance (~v, ~d) there exists at least one non-trivial pure Nash equilib-
rium.

Before we formally define the dynamics, we prove a simple lemma showing that the total
price weakly increases as one seller best-responds to a higher price.

I Lemma 9 (Monotonicity Lemma). Let brx ∈ BR(x) be a best reply of a seller to a price x
and let bry ∈ BR(y) be a best reply of a seller to a price y. If x < y ≤ v1 then y+bry ≥ x+brx.

Proof. As x < y ≤ v1 by Observation 4, we know that there exists i such that x+ brx = vi
and j such that y + bry = vj . As the second seller is best responding at each price level,
D(vi)(vi − x) ≥ D(vj)(vj − x) and D(vi)(vi − y) ≤ D(vj)(vj − y). Together, we get that
(vj−x)/(vi−x) ≤ D(vi)/D(vj) ≤ (vj−y)/(vi−y). Now notice that the function (a−x)/(b−x)
is non-decreasing in x iff a ≥ b thus, since y > x, it follows that vj ≥ vi. J

We next formally define the price-updating dynamics that we call symmetrized best
response dynamics. It works similarly to the best response dynamics with one small difference:
at each step, before a seller acts, the price of both sellers is replaced by their average price.

More formally, we start from some profile of prices (x0, y0). We then symmetrize the
prices to (x0+y0

2 , x0+y0
2 ), and then we let the first seller best reply to get prices (x1, y1), where

x1 ∈ BR(x0+y0
2 ) and y1 = x0+y0

2 . In one case, when the utility of the seller is 0, we need to
break ties carefully: if 0 ∈ BR(x0+y0

2 ) then we assume that x1 = 0, that is, a seller with zero
utility prices at 0. We then symmetrize again to (x1+y1

2 , x1+y1
2 ), and then we let the second

ICALP 2017
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seller best respond, symmetrize again, and continue similarly in an alternating order. The
dynamic stops if the price remains unchanged in some step.

It turns out that symmetrized best response dynamics quickly converges to a non-trivial
equilibrium. Moreover, we show that this dynamics is guaranteed to end up in the best
equilibria. Theorem 8 follows from the following proposition.

I Proposition 10. For any instance with n demand levels, the symmetrized best response
dynamics starting with prices (0, 0) reaches a non-trivial equilibrium in at most n steps, in
each of them the total price increases. Moreover, this equilibrium achieves the highest social
welfare and the highest revenue among all equilibria.

Proof. We first argue that for any starting point, the sum of players’ prices in the symmetrized
dynamics is either monotonically increasing or monotonically decreasing. To see that, let us
look at the symmetric price profiles of two consecutive steps: (x, x) and then (y, y) where
y = (x + brx)/2 for some brx ∈ BR(x) and then (z, z) where z = (y + bry)/2 for some
bry ∈ BR(y). If x = y, then (x, x) is an equilibrium and we are done. We first observe that if
y > x then z ≥ y. Indeed, our monotonicity lemma (Lemma 9) shows exactly that: if y > x

then for any brx ∈ BR(x) and bry ∈ BR(y) it holds that y + bry ≥ x + brx and therefore
z ≥ y. Similarly, if y < x then z ≤ y.

To prove convergence, note that until the step where the process terminates, the total
price must be either strictly increasing or strictly decreasing. Due to Observation 4, the total
price at each step must be equal to vi for some i. Since there are exactly n distinct values,
the process converges after at most n steps. Note that if we reach a price level of vn or v1
the process must stop (no seller will have a best response that crosses these values), and a
non-trivial equilibrium is reached.

Finally, we will show that a symmetrized dynamics starting at zero prices reaches an
equilibrium with maximal revenue and welfare over all equilibria. Using Proposition 6, it is
sufficient to show that such process reaches an equilibrium with minimum total price over all
possible equilibria. This follows from the following claim:

I Claim 11. The total price reached by a symmetrized best-response dynamics starting from
a total price level x is bounded from above by the total price reached by the same dynamics
starting from a total price of y > x,

Proof. It is enough to show that the prices reached after a single step from x are at most
those reached by a single step from y, since we can then repeat and show that this holds
after all future steps. For a single step this holds due to the monotonicity lemma (Lemma 9):
given some total price z, the new total price after a single step of symmetrizing the price and
best responding is f(z) = z/2 + brz/2 for some brz/2 ∈ BR(z/2), and since y > x it holds
that f(y) ≥ f(x) by Lemma 9. J

We complete the proof by showing how the proposition follows from the last claim. Let
p be the total price of the highest welfare equilibrium (lowest equilibrium price). We use
the claim on total price 0 and total price p > 0. The symmetrized best-response dynamics
starting at p stays fixed and the total price never changes, while the dynamics starting at 0
must strictly increase the total price at each step, and never go over p, and thus must end at
p after at most n steps. This concludes the proof of the proposition. J
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4 Best Response Dynamics

In the previous section we saw that non-trivial NE always exist in our price competition
model, and that the best equilibrium can be easily computed. We now turn to discuss
whether we can expect agents in these markets to reach such equilibria via natural adaptive
heuristics. We consider the process of repeated best responses. Such a process starts from
some profile of prices (p, q), then the first seller chooses a price which is a best response to q,
the second seller best responds to the price chosen by the first seller, and they continue in
alternating order. The process stops if no seller can improve his utility by changing his price.
As we aim for non-trivial equilibria, a seller that cannot gain a positive profit chooses the
best response of zero. A sequential best response process has simple and intuitive rules. The
main difference between different possible dynamics of this form is in their starting prices.
We will study the importance of the choice of starting prices.

Our results for best-response dynamics are negative: we show that starting from cartel
prices might result in bad equilibria. We then consider starting from random prices and show
that this might not help. Finally, we show that convergence time of the dynamics may be
very long, even with only two demand levels.

4.1 Quality of the Dynamics’ Outcomes
Probably the most natural starting prices to consider in best responses dynamics are (0, 0).
We start with a simple example that shows that such dynamics might result in an equilibrium
with very low welfare, even when another equilibrium with high welfare exists. The gap
between the quality of these equilibria is in the order of D (in the full version of the paper
(see Appendix B) we show that this is the largest possible gap between equilibria).

I Example 12. Consider a market with 2 demand levels, v1 = 2, v2 = 1, d1 = 1 and d2 = D.
Here, a best response dynamics starting from prices (0, 0) moves to (1, 0) and then ends in
equilibrium prices (1, 1). This NE has welfare of 2, while (1/2, 1/2) is an equilibrium with
welfare of D + 1 and revenue of D.

It follows that even with 2 demand levels, the total revenue in the highest revenue
equilibrium can be factor D/2 larger than both the welfare and revenue of the equilibrium
reached by best-response dynamics starting from prices (0, 0).

One might hope that starting the dynamics from a different set of prices will guarantee
convergence to a good equilibrium. Clearly, if the dynamics somehow starts from the prices
of the best equilibrium it will immediately stop, but our goal is exactly to study whether the
agents can adaptively reach such equilibria. One can consider two reasonable approaches
for studying the starting points of the dynamics: the first approach assumes that the sellers
initially agree to act as a cartel and price the bundle at the monopolist price, dividing the
monopoly profit among themselves. It is well known that such a cartel is not stable, and
sellers may have incentives to deviate to a different price; We would like to understand
where such dynamics will stop. The second approach considers starting from a random pair
of prices, and hoping that there will be a sufficient mass of starting points for which the
dynamics converges to a good equilibrium. We move to study the two approaches below.

4.1.1 Dynamics Starting at a Split of the Monopolist Price
We now study best-response dynamics that start from a cartelistic solution: the total price
at the starting stage is equal to the price a monopoly would have set had it owned the two
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selling firms. In Example 12 we saw that splitting the monopolist price between the two
sellers results in the best equilibrium. One may hope that this will generalize and such
starting points ensure converging to good outcomes. In the full version we show that this is
indeed the case for two demand levels. However, we next show that even with three demand
levels, the welfare and revenue of the equilibrium reached by such best-response dynamics
can be much lower than the revenue of the best equilibria. This holds not only when the two
seller split the monopolist price evenly, but for any cartelistic split of this price. Proof can
be found in the full version of this paper.

I Proposition 13. For any large enough total demand D there is an instance with 3 demand
levels and monopolist price p∗ for which best response dynamics starting from any pair
(p∗ − q, q) for q ∈ [0, p∗], ends in an equilibrium of welfare and revenue of only 1, while there
exist another equilibrium of welfare and revenue at least

√
D/4.

We conclude that starting from both sellers (arbitrarily) splitting the monopolist price
does not ensure that the dynamics ends in a good equilibrium, even with only 3 demand
levels.

4.1.2 Dynamics Starting at Random Prices
We now consider a second approach for studying the role of starting prices in best-response
dynamics. We assume that the starting prices are determined at random, and ask what are
the chances that a sequence of best responses will reach a good equilibrium. Unfortunately
this approach fails as well. We next show that for any ε > 0, there is an instance with only
two demand levels for which the dynamics starting from a uniform random price vector in
[0, v1]2 has probability of at most ε of ending in an equilibrium with high welfare and revenue
(although such equilibrium exists).

I Proposition 14 (High probability of convergence to bad equilibria, n = 2). For any small
enough ε > 0 and total demand D such that εD > 2, there is an instance with two demand
levels (n = 2) that has an equilibrium of welfare and revenue of at least εD, but best-response
dynamics starting with uniform random pair of prices in [0, v1]2 ends in an equilibrium of
welfare and revenue of only 1 with probability at least 1− ε.

Proof. Consider the input with n = 2 demand levels satisfying v1 = 1 > v2 = ε and
d1 = 1 < d2 = D. A pair of prices (p, q) with p+ q = v2 results in welfare and total revenue
of εD, and if εD > 2, the pair (v2/2, v2/2) is indeed an equilibrium. On the other hand, for
small enough ε the pair of prices (1/2, 1/2) is also an equilibrium, and its welfare and revenue
are only 1. Finally, observe that unless the price that the first best response in dynamics
refers to is at most v2 = ε, the first best response results in an equilibrium with total price
of 1, and welfare and revenue of 1. The probability that the process stops after a single step
is therefore at least 1− ε, and the claim follows. J

We show that Proposition 14 is essentially tight.

I Proposition 15. For any instance with two demand levels for which the ratio of welfare of
the best and worst equilibrium is εD for some 1 > ε > 2/D, it holds that the probability of
the dynamics ending at the best equilibrium when starting from a uniform random pair of
prices in [0, v1]2 is at least ε− 2/D.

Proof. Normalize the welfare of the worse equilibrium to 1 (and thus the value is 1) and the
demand to 1. The best equilibrium is for demand D and value ε < 1, since the equilibria
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welfare ratio is εD. For any pair of prices (p, q) such that 1/D < q < ε − 1/D, the best
response to q is ε− q as it gives revenue larger than D · (1/D) = 1, while the maximal revenue
for a seller in the other equilibrium is 1. Given price ε− q < ε− 1/D, the best response is q
as it gives revenue larger than 1, while deviation will give revenue of at most 1. We conclude
that with probability at least ε− 2/D the dynamics stops after a single best response, at the
best equilibrium, as claimed. J

Proposition 14 only gives high probability of convergence to a low welfare equilibrium,
but this will not occur with certainty. We next show that one can construct instances in
which except of a measure zero set of starting prices, every dynamics will end up in an
equilibrium with very low welfare, although equilibrium with high welfare exists. Moreover,
we show that the welfare gap between the good and bad equilibria increases exponentially in
the number of demand levels n.

I Theorem 16 (Almost sure convergence to bad equilibria, large n). For any number of
demand levels n ≥ 2 and ε > 0 that is small enough, there exists an instance that has an
equilibrium with welfare 2 ·(2−ε)n−1−1 and revenue of (2−ε)n−1, but best response dynamics
starting with pair of prices chosen uniformly at random over [0, v1]2 almost surely ends in an
equilibrium of welfare and revenue of only 1.

To prove the theorem, we build an instance where the pair of prices (vi/2, vi/2) forms an
equilibrium for any i. In this instance, the total revenue from a total price vi is (2− ε)i−1.
In particular, (vn/2, vn/2) is an equilibrium that attains the monopolist revenue and the
optimal welfare of O((2− ε)n). However, best response dynamics starting by best responding
to any price which is not exactly vi/2 (for some i) terminates in an equilibrium with total
price of v1 = 1 and welfare of 1. Thus, the set of pairs from which the dynamics does not
end at welfare of 1 is finite and has measure 0, so the dynamics almost surely converges to
the worst equilibrium. The full proof is in the full version of the paper.

4.2 Time to Convergence

Up to this point we considered the quality of equilibria reached by best response dynamics.
In this section, we will show that not only that best response dynamics reach equilibria of
poor quality, it may also take them arbitrary long time to converge. Moreover, the long
convergence time is possible even with only 2 demand levels and total demand that is close
to 1.

Specifically, we will show that as the difference between the demand of adjacent values be-
comes smaller, the convergence time can increase. More formally, we letW = dn

minn
i=2{di−di−1}

be the ratio between the maximal demand and the minimal change in demand. Note that if
d1 = 1 and every di is an integer, then d1 = minni=2{di− di−1} and thus W = D; if demands
are not restricted to be integers, W might be much larger than D even in the case that
d1 = 1, for example if d1 = 1 and d2 = 1 + ε = D then W = 1/ε is large while D = 1 + ε ≈ 1.
We show a simple setting with only two demand levels and with D close to 1 in which the
dynamics takes time linear in W .

I Theorem 17 (Slow convergence). For any W , best response dynamics starting from zero
prices may require each seller to update his price W − 1 times to converge to an equilibrium.
Moreover, this holds even with 2 demand levels (n = 2) and with D = W

W−1 which is close to
1 when W is large.
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Proof. We consider the following setting given some ε > 0 that is small enough: v1 = 1 and
d1 = 1, v2 = 1− ε and d2 = 1

1−2ε . In this case, W = d2/(d2 − d1) = 1
2ε . We will show that

for this instance best response dynamics starting at (0, 0) takes at least W − 1 = 1
2ε − 1 steps

to converge to an equilibrium.
Let pm, qm denote the price offered by the two sellers after m best-response steps for

each seller (pm is the offer of the seller who plays first). We will prove by induction that
pm = 1−mε and qm = mε whenever m+ 1 < 1

2ε .
We first handle the base case. With zero prices, the first seller can price at v1 = 1 and

get profit 1, or price at v2 = 1− ε and get profit (1− ε) · 1
1−2ε > 1. Thus, p1 = 1− ε. Now,

the best response of the other seller is clearly q1 = ε as pricing at total price of 1− ε gains
her 0 profit.

We next move to the induction step. Assume that the claim is true for some m, i.e.,
(pm, qm) = (1−mε,mε), and we prove it for m+ 1 (as long as m+ 1 < 1

2ε ). If the second
seller prices at mε, the first seller will maximize profit by pricing either at 1− (m+ 1)ε or at
1−mε (recall that by Observation 4 after a seller is best responding, the price will be equal
to either v1 or v2).

The gain from the first price is (1− (m+ 1)ε) · 1
1−2ε and the gain from the latter price is

1−mε. Simple algebra shows that (1− (m+ 1)ε) · 1
1−2ε > 1−mε iff m < 1

2ε .
Now, assume that the first seller prices at 1− (m+ 1)ε, the second seller maximizes profit

by pricing either at (m+ 1)ε or at 1− ε− (1− (m+ 1)ε) = mε. The second seller chooses a
price of (m+ 1)ε if (m+ 1)ε > 1

1−2εmε. Simple algebra shows that this holds iff m+ 1 < 1
2ε .

This concludes the induction step and completes the proof. J

We observe that with two demand levels, convergence to equilibrium is guaranteed, and
the above linear bound is actually tight. Proof appears in the full version of the paper.

I Proposition 18. For any instance with 2 demand levels (n = 2), best response dynamics
starting from any price profile will stop in an equilibrium after each seller updates his price
at most W times.

5 The Quality of the Best Equilibrium

In this section, we study the price of stability in our game, that is, the ratio between the
quality of the best equilibrium and the optimal outcome (both for revenue and welfare). The
following theorem gives two upper bounds for the price of stability. One bound shows that
for every total demand D, the best equilibrium and the optimal outcome are at most factor
O(
√
D) away, for both welfare and revenue. The second bound is exponential in n, but it is

independent of D. This implies, in particular, that the price of stability in markets with a
small number of demand levels is small even for a very large D.

I Theorem 19. For any instance, the optimal welfare and the monopolist revenue are at
most O(min{2n,

√
D}) times the revenue of the best equilibrium.

As the bound holds for the revenue of the best equilibrium, it clearly also holds for the
welfare of that equilibrium. The proof of the theorem is in the full version of this paper.

The next theorem shows that the above price-of-stability bounds are tight. It describes
instances where the gap between the best equilibrium and the optimal outcome is asymptot-
ically at least 2n and

√
D, for both welfare and revenue. We prove the theorem in the full

version of the paper.
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I Theorem 20. For any number of demand levels n, there exists an instance for which the
optimal welfare and the monopolist revenue are at least factor Ω(2n) larger than the best
equilibrium welfare and revenue, respectively.

In addition, there exists an instance with integer demands for which the optimal welfare
and the monopolist revenue are at least factor Ω(

√
D) larger than the best equilibrium welfare

and revenue, respectively.
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