
Interactive Oracle Proofs with Constant Rate and
Query Complexity∗†

Eli Ben-Sasson1, Alessandro Chiesa2, Ariel Gabizon‡3,
Michael Riabzev4, and Nicholas Spooner5

1 Technion, Haifa, Israel
eli@cs.technion.ac.il

2 University of California, Berkeley, CA, USA
alexch@berkeley.edu

3 Zerocoin Electronic Coin Company (Zcash), Boulder, CO, USA
ariel@z.cash

4 Technion, Haifa, Israel
mriabzev@cs.technion.ac.il

5 University of Toronto, Toronto, Canada
spooner@cs.toronto.edu

Abstract
We study interactive oracle proofs (IOPs) [7, 43], which combine aspects of probabilistically check-
able proofs (PCPs) and interactive proofs (IPs). We present IOP constructions and techniques
that let us achieve tradeoffs in proof length versus query complexity that are not known to be
achievable via PCPs or IPs alone. Our main results are:
1. Circuit satisfiability has 3-round IOPs with linear proof length (counted in bits) and constant

query complexity.
2. Reed–Solomon codes have 2-round IOPs of proximity with linear proof length and constant

query complexity.
3. Tensor product codes have 1-round IOPs of proximity with sublinear proof length and constant

query complexity. (A familiar example of a tensor product code is the Reed–Muller code with
a bound on individual degrees.)

For all the above, known PCP constructions give quasilinear proof length and constant query
complexity [12, 16]. Also, for circuit satisfiability, [10] obtain PCPs with linear proof length but
sublinear (and super-constant) query complexity. As in [10], we rely on algebraic-geometry codes
to obtain our first result; but, unlike that work, our use of such codes is much “lighter” because
we do not rely on any automorphisms of the code.

We obtain our results by building “IOP-analogues” of tools underlying numerous IPs and
PCPs:

Interactive proof composition. Proof composition [3] is used to reduce the query complexity
of PCP verifiers, at the cost of increasing proof length by an additive factor that is exponential
in the verifier’s randomness complexity. We prove a composition theorem for IOPs where this
additive factor is linear.
Sublinear sumcheck. The sumcheck protocol [34, 46] is an IP that enables the verifier
to check the sum of values of a low-degree multi-variate polynomial on an exponentially-
large hypercube, but the verifier’s running time depends linearly on the bound on individual
degrees. We prove a sumcheck protocol for IOPs where this dependence is sublinear (e.g.,
polylogarithmic).

∗ A full version of the paper is available at https://eprint.iacr.org/2016/324.
† This work has received funding from the Israel Science Foundation (grant 1501/14), the UC Berkeley

Center for Long-Term Cybersecurity, and the United States – Israel Binational Science Foundation
(grant 2021036).

‡ This work was done while Ariel Gabizon was at Technion and visiting UC Berkeley.

EA
T

C
S

© Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev,
and Nicholas Spooner;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 40; pp. 40:1–40:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eprint.iacr.org/2016/324
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Interactive Oracle Proofs with Constant Rate and Query Complexity

Our work demonstrates that even constant-round IOPs are more efficient than known PCPs and
IPs.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases probabilistically checkable proofs, interactive proofs, proof composition,
sumcheck

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.40

1 Introduction

We study Interactive Oracle Proofs (also known as Probabilistically Checkable Interactive
Proofs) [7, 43], which combine aspects of probabilistically checkable proofs (PCPs) and
interactive proofs (IPs). We present IOP constructions and general techniques that enable
us to obtain tradeoffs in proof length versus query complexity that are not known to be
achievable by either PCPs or IPs alone. For some applications (e.g., constructing non-
interactive arguments in the random oracle model [7]) considering such general types of proof
systems suffices (as opposed to focusing only on PCPs or IPs) and thus these applications
inherit the efficiency improvements over PCPs.

1.1 Motivation
Probabilistically checkable proofs (PCPs) were introduced by [22, 5, 20, 3, 2]: in a PCP, a
probabilistic polynomial-time verifier has oracle access to the proof string. The complexity
class PCP[r, q] denotes those languages for which the verifier uses at most r random bits and
queries at most q proof locations; the proof length is then at most 2r. The PCP Theorem
[3, 2] states that NP = PCP[O(logn), O(1)]: every NP statement has a proof of polynomial
length that can be verified via a constant number of queries (say, with soundness error 1/2).

A fundamental question is how long a PCP needs to be, compared to the corresponding
“standard” NP proof. Given T : N → N, the PCP Theorem states that every language L

in NTIME(T) has a proof of length poly(T (n)) that can be verified with O(1) queries. A
sequence of works [42, 30, 24, 13, 9, 12, 16] gradually reduced the proof length to quasilinear,
i.e., T (n) · polylog(T (n)); much of this progress was accompanied by progress on efficient
reductions from NTIME to “PCP-friendly” problems, as well as efficient constructions of
PCPs of proximity (PCPPs) for key classes of linear codes. Despite much progress, the
following question remains open: are there PCPs with linear proof length and constant query
complexity?

Ben-Sasson et al. [10] make progress in this direction by proving that there is a > 0
such that for every ε > 0 there is a PCP for circuit satisfiability with proof length 2a/εn
and query complexity nε. Beyond the sublinear query complexity, [10]’s result comes with
other caveats not affecting most prior constructions: the verifier is non-uniform, namely it
requires a polynomial-size advice string for every circuit size; and the verifier is not succinct,
namely it cannot run in time that is sublinear in the circuit size even if the circuit comes
from a uniform circuit family. (Recent constructions of high-rate locally testable codes with
sub-polynomial query complexity [32] are not yet known to be convertible to PCPs with
similar parameters.)

In this paper, we continue the study of the tradeoff between proof length and query
complexity, but we do so for a natural extension of the PCP model (sufficient for some useful

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.40

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:3

applications, e.g., [7]) that can be thought of as a “multi-round PCP”, described below. Also,
from this point onwards, we switch to using relations instead of languages. We denote by R

a relation consisting of pairs (x,w), where x is the instance and w is the witness; we think
of R naturally induced by a non-deterministic language L. We denote by R|x the (possibly
empty) set of witnesses for a given instance x, and by n the size of x.

1.2 A more general model: interactive oracle proofs
Interactive Oracle Proofs (IOPs) are a type of proof system introduced in [7, 43] that
combines aspects of IPs [4, 26] and PCPs [5, 3, 2], and generalizes interactive PCPs [31].
IOPs naturally extend the notion of a PCP to multiple rounds or, viewed from an another
angle, they naturally extend the notion of an IP by allowing probabilistic checking. Prior
work shows that IOPs can be used to construct non-interactive proofs in the random oracle
model [7], that IOPs efficiently achieve unconditional zero knowledge [6], and that IOPs can
be used to obtain doubly-efficient constant-round IPs for polynomial-time bounded-space
computations [43].

Informally, an IOP extends an IP as follows: whenever the prover sends to the verifier
a message, the verifier does not have to read the message in full but may probabilistically
query it. In more detail, a k-round IOP comprises k rounds of interaction. In the i-th round
of interaction: the verifier sends a message mi to the prover; then the prover replies with a
message fi to the verifier, which the verifier can query in this and all later rounds (by having
oracle access to it). After the k rounds of interaction, the verifier either accepts or rejects.

An IOP system for a relation R with round complexity k and soundness ε is a pair (P, V),
where P, V are probabilistic algorithms, that satisfies natural notions of completeness and
soundness: for every instance-witness pair (x,w) in R, V (x) always accepts after k(n) rounds
of interaction with P (x,w); and, for every instance x with R|x = ∅ and unbounded prover P̃ ,
V (x) accepts with probability at most ε(n) after k(n) rounds of interaction with P̃ .

Like the IP model, one efficiency measure is the round complexity k. Like the PCP
model, two additional efficiency measures are the proof length l, which is the total number
of alphabet symbols in all of the prover’s messages, and the query complexity q, which is
the total number of locations queried by the verifier across all of the prover’s messages.
Considering all of these parameters, we say that a relation R belongs to the complexity class
IOP[k, a, l, r, q, ε] if there is an IOP system for R in which on instances of size n:
1. the number of rounds is k(n);
2. the prover messages are over the alphabet a(n);
3. the proof length over this alphabet is l(n);
4. the verifier uses r(n) random bits;
5. the verifier queries the prover messages in q(n) locations;
6. the soundness error is ε(n).

Many other definitions for IPs and PCPs carry over naturally. An IOP is public coin if
mi is a random string and the verifier postpones any oracle queries until after receiving all
the oracles from the prover (i.e., after the k-th round of interaction). An IOP is non-adaptive
if the query locations do not depend on answers to any previous queries.

Prior work on IOPs. In prior work, [7] prove that public-coin IOPs can be compiled into
non-interactive proofs in the random oracle model; their compiler is as a generalization of
the Fiat–Shamir paradigm for public-coin IPs [21, 41], and of the “CS proof” constructions
of Micali [37] and Valiant [49] for PCPs. Also, [6] construct 2-round IOPs (called “duplex

ICALP 2017

40:4 Interactive Oracle Proofs with Constant Rate and Query Complexity

PCPs” there) with unconditional zero knowledge and quasilinear proof length; in comparison,
short PCPs with unconditional zero knowledge are not known. Also, [43] use IOPs to obtain
doubly-efficient constant-round IPs for polynomial-time bounded-space computations. In
this paper, we do not study compilers for cryptographic proofs, nor zero knowledge, nor
applications to interactive proofs; instead, we focus on tradeoffs of proof length versus query
complexity for IOPs.

Prior work on interactive PCPs. An interactive PCP [31] is a PCP followed by a standard
IP; in particular, it is an IOP where the verifier sends an empty first message and may
query only the first prover message (but must read any other prover messages in full). Prior
work on interactive PCPs obtains proof length that depends on the witness size rather than
computation size [31, 25], as well as unconditional zero knowledge [28]. In this paper we also
study proof length but our results to not seem to extend to the more restricted setting of
interactive PCPs.

1.3 Proximity and robustness
To facilitate upcoming technical discussions we briefly introduce two notions that strengthen
a PCP.

PCPs of proximity (PCPPs) [17, 9]. On the one hand, a PCP verifier has oracle access
to a candidate proof π and only decides if R|x 6= ∅ (x ∈ L) or R|x = ∅ (x 6∈ L). On the
other hand, a PCPP verifier has oracle access to a candidate witness w and proof π and
decides if w ∈ R|x or w is far from R|x (in particular, if R|x = ∅, then w is far from
R|x). A quantity δ known as the proximity parameter specifies what “far” means: if w is
δ-far from R|x then the PCPP verifier accepts with probability at most ε, where ε is the
soundness error.
Robust PCPs [9]. When R|x = ∅, the answers to the verifier’s queries are, with high
probability, far from any answers that make the verifier accept. A quantity ρ known as
the robustness parameter specifies what “far” means: if R|x = ∅ then, with probability at
least 1− ε, the answers are ρ-far from accepting ones.

The two above notions can also be combined, yielding the definition of a robust PCP of
proximity.

Extension to IOPs. The notions of proximity and robustness naturally extend to IOPs; see
the full version for details. For example, we say that an IOP has proximity parameter δ if
the analogous property for PCPs of proximity holds; we can then correspondingly define the
complexity class IOPP[k, a, l, r, q, ε, δ].

2 Results

We obtain several IOP constructions with proof length and query complexity that are not
known to be achievable either via PCPs or IPs alone (or even via interactive PCPs [31]).
First, we show that for circuit satisfiability we can obtain IOPs with linear proof length and
constant query complexity; constant round complexity and public coins suffice.

I Theorem 1 (informal). Let R be the relation consisting of instance-witness pairs (φ,w)
where φ is a boolean circuit (of two-input NAND gates) and w is a binary input that satisfies
φ; we use n to denote the number of gates in φ. There exists a > 0 and a public-coin IOP

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:5

system that puts R in the complexity class

IOP

rounds k(n) = 3
answer alphabet a(n) = F2

proof length l(n) = a · n
query complexity q(n) = a

soundness error ε(n) = 1/2

 .

In particular, via [40]’s reduction from Turing machines to circuits, we deduce that

NTIME(T) ⊆ IOP

rounds k(T) = 3
answer alphabet a(T) = F2

proof length l(T) = a · T log T
query complexity q(T) = a

soundness error ε(T) = 1/2

 .

The main points of comparison of the above theorem with prior work are the following.
For PCPs with constant query complexity, prior work achieved only quasilinear proof
length [12, 16], with the “quasilinear” hiding several logarithmic factors. In comparison,
we achieve linear proof length for circuit satisfiability, and O(T log T) proof length for
nondeterministic T -time relations.
Ben-Sasson et al. [10] show that there is a > 0 such that for every ε > 0 there is a non-
uniform PCP for circuit satisfiability with proof length 2a/εn and query complexity nε;
the non-uniformity comes from the use of algebraic-geometry (AG) codes with transitive
automorphism groups, for which uniform families are not known. In comparison, we
simultaneously achieve linear proof length and constant query complexity; moreover, we
make a much “lighter” use of AG codes, which also allows us to avoid non-uniformity.
Namely, we rely only on the multiplication properties of AG codes [14, 36], and do not
rely on any code automorphisms. Looking ahead, this is because we do not route circuits
on Cayley graphs induced by the automorphisms of the underlying code, unlike [10].

Second, we show that Reed–Solomon codes over binary fields (fields of characteristic 2)
have 2-round IOPs of proximity with linear proof length and constant query complexity.
Such codes are a key ingredient for constructing PCPs with quasilinear proof length [12].
Recall that a word w : D → F is represented via |w| = |D| · log |F| bits.

I Theorem 2 (informal). Given a “fractional degree” % ∈ (0, 1), define R to be the relation
consisting of instance-witness pairs ((F2λ , d), w) where d ≤ %2λ and w : F2λ → F2λ is the
evaluation of a polynomial of degree less than d; we define the instance size to be λ, and note
that w has |w| = 2λ · λ bits. For every δ ∈ (0, 1

2 (1− %)) there exist a > 0 and a public-coin
IOP of proximity (P, V) that puts R in the complexity class

IOPP

rounds k(λ) = 2
answer alphabet a(λ) = F2

proof length l(λ) = a · 2λ · λ
query complexity q(λ) = a

soundness error ε(λ) = 1/2
proximity parameter δ(λ) = δ

 .

More generally, our result concerns additive Reed–Solomon codes, where the domain of a
codeword is a λ-dimensional affine subspace S of a potentially larger binary field F; in such
cases the above statement involves more parameters but achieves the same asymptotics. The

ICALP 2017

40:6 Interactive Oracle Proofs with Constant Rate and Query Complexity

main point of comparison of the above theorem with prior work is [12, 16], who achieve
PCPs of proximity with the same parameters but superlinear proof length: a · 2λ · λ · poly(λ).

Third, we show that tensor product codes have 1-round IOPs of proximity with sublinear
proof length and constant query complexity. Given a positive integer m and linear code C
with domain D and alphabet F, the tensor product code C⊗m is the linear code that comprises
all functions w : Dm → F whose restriction to any axis-parallel line is in C; the message
length, block length, and distance of C⊗m are each the m-th power of the corresponding
parameters of C. Tensor product codes are a large family, and they include Reed–Muller
codes (at least when considering the definition that bounds the variables’ individual degrees,
which we do, as opposed to the one that bounds their sum).

I Theorem 3 (informal). Let m ≥ 3 and C be a linear code with domain D, alphabet F,
and relative distance τ ; let ` := |D| be the block length. Define R to be the relation of
instance-witness pairs

(
(C,m), w

)
such that w ∈ C⊗m; note that w has |w| = `m · log |F| bits.

For every δ ∈ (0, 1
2τ

m) there exist a > 0 and a public-coin IOPP system (P, V) that puts R

in the complexity class

IOPP

rounds k(`m) = 1
answer alphabet a(`m) = F2

proof length l(`m) = o(`m · log |F|)
query complexity q(`m) = a

soundness error ε(`m) = 1/2
proximity parameter δ(`m) = δ

 .

The main points of comparison of the above theorem with prior work are the following.
Ben-Sasson and Sudan [11] and Viderman [51] give local testers for all tensor product
codes with query complexity q(`m) = `2; Dinur et al. [18] give local testers with q(`m) = `

for certain tensor product codes. In contrast, we achieve constant query complexity, with
only sublinear proof length, for all tensor product codes. Moreover, given additional mild
conditions, we obtain constant soundness error even for non-constant m.
The work of [12, 16] implies PCPs of proximity for tensor product codes with superlinear
proof length and constant query complexity. In contrast, we obtain sublinear proof length,
with a single round of interaction.

Analogously to [51], we can invoke Theorem 3 on different choices of linear codes so to derive
different code families that have good properties and an IOP tester (instead of a local tester
as in [51]). For example, we can choose a family of linear codes with arbitrarily high rate,
constant relative distance, linear-time encoding, and linear-time decoding from a constant
fraction of errors [48, 29, 44]; our theorem implies a code with the same properties that also
has a 1-round IOP of proximity with sublinear proof length and constant query complexity
(cf. [51, Section 3.1]).

Similar statements hold for list-decodable codes with good parameters [27] (cf. [51, Section
3.2]); and also for locally correctable and, more generally, locally decodable codes with good
parameters [52, 50, 19, 33, 32] (cf. [51, Section 3.3]). In each of these cases, the tensor
product operation preserves the “key” properties of the choice of underlying code C, while
endowing the resulting code with an IOP of proximity.

We obtain the above results via techniques of independent interest: we prove that, in the
IOP model, there are more efficient analogues of tools that are fundamental to constructing
PCPs and IPs. We now discuss these techniques.

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:7

3 Techniques

Recall that IOPs generalize both IPs, by treating the prover’s messages as oracle strings,
and PCPs, by allowing for multiple rounds of interaction; they also generalize interactive
PCPs [31]. We prove that IOPs can express two fundamental techniques in a more efficient
way than in these prior models:
(i) in interactive proof composition, the prover is more efficient than in PCP proof composi-

tion; and
(ii) in sublinear sumchecks, the verifier is more efficient than in IP sumcheck protocols.
We now discuss both of our new tools, and then how we use them.

3.1 Interactive proof composition
Proof composition [3] is used to reduce PCP query complexity, cf. [2, 30, 9]; it involves two
PCPs: an outer one and an inner one. One should think of the outer proof system as having
short proofs but large query complexity, while the inner proof system has long proofs but
small query complexity.

The composed prover uses the outer prover to send a PCP to the composed verifier, who
does not run the outer verifier but, instead, uses the inner verifier to check that the outer
verifier would have accepted had it made its queries to the PCP. The composed verifier also
needs an auxiliary sub-PCP for the claim that the outer verifier would have accepted; in
fact, he needs one sub-PCP for each possible random string of the outer verifier. Hence, the
composed prover also sends all of these sub-PCPs along with the first PCP. The benefit is
that the query complexity of the composed verifier equals that of the inner verifier, which is
typically verifying a much smaller statement than the outer verifier.

Beyond query complexity, most other parameters of the composed proof system are simply
the sum of corresponding parameters of the outer and inner proof systems. An exception is
the proof length l: it does not simply equal the sum lout + lin, but instead equals lout + 2rout · lin,
because the composed prover uses the inner proof system to generate a proof for each choice
of randomness of the outer proof system. (The same is true for prover running time.)

We prove an Interactive Proof Composition Theorem that avoids the above lim-
itations. The outer proof system is a robust PCP (Pout, Vout) for a relation R, while the
inner one is a k-round IOP (Pin, Vin) for Vout’s relation; the composed proof system is a
(k + 1)-round IOP (P, V) for R. The parameters of the composed proof system are exactly
as before, except that now the new proof length is much smaller : lout + lin. (Ditto for the
prover running time.) The crucial observation is that, after the prover sends the outer proof
to the verifier, soundness is not harmed if the verifier tells the prover his choice of outer
randomness; hence, the prover does not have to invest work for all randomness choices but
can simply invest work only for the outer randomness that was chosen, which he now knows.

ICALP 2017

40:8 Interactive Oracle Proofs with Constant Rate and Query Complexity

I Theorem 4 (Interactive Proof Composition – informal). Suppose that the relation R satisfies
the following:

(1) there exists a robust PCPP system
(Pout, Vout) that puts R in the complexity
class

PCPP

proof length lout
randomness rout
query complexity qout
soundness error εout
proximity parameter δout
robustness parameter ρout

and

(2) for every x there exists an IOPP
system (Pin, Vin) that puts Vout’s relation
in the complexity class

IOPP

rounds kin
proof length lin
randomness rin
query complexity qin
soundness error εin
proximity parameter δin

If δin ≤ ρout then there exists an IOPP system (P, V) that puts R in the complexity class

IOPP

rounds k = 1 + kin

proof length l = lout + lin
randomness r = rout + rin

query complexity q = qin

soundness error ε = εout + εin

proximity parameter δ = δout

 .

The above discussion and informal theorem statement omit many technical details that
already arise in non-interactive proof composition (e.g., see lengthy discussions in [9, 8]), and
we also need to deal with. For instance, one has to clarify the size of the sub-claim on which
the the inner proof system is invoked; also, one has to carefully define the notion of a verifier
to allow for the composed verifier’s running time to be smaller than the outer verifier’s query
complexity. For more details, see the full version.

3.2 Sublinear sumcheck
The sumcheck protocol [34, 46] is an interactive proof for the claim “

∑
~α∈Hm w(~α) = 0”,

where w is the evaluation on Fm of an m-variate polynomial of individual degree d and H is
a subset of F. More generally, w may be a codeword in the tensor product code C⊗m, for a
given linear code C with domain D and alphabet F, and H is a subset of D [36]. The prover
receives H and w as input, while the verifier receives H as input and w as an oracle. The
protocol has m rounds and, if C has relative distance τ , the protocol has soundness error
1− τm; also, the prover runs in time poly(`m), and the verifier in time poly(`+m), where
` := |D| is C’s block length.

In each round, the verifier receives a codeword wi in C and checks that
∑
α∈H wi(α)

equals a certain value γi−1 determined in the previous round; in particular, the verifier reads
Ω(`) bits. We show that the verifier complexity can be sublinear in `, if the prover and
verifier engage in an IOP instead of an IP. The intuition to “go sublinear” is simple: instead
of doing these checks explicitly, the verifier uses proximity testers for doing so. Thus, in
each round, the prover sends to the verifier two oracles: the codeword in wi, and a proximity
proof attesting that wi ∈ C and that

∑
α∈H wi(α) = γi−1. The use of proximity proofs

complicates the soundness analysis because the verifier only sees noisy codewords, but the
backbone of the proof follows that of the standard sumcheck protocol. Overall, we obtain
a sumcheck IOP protocol that enables a verifier to efficiently check sumchecks for codes of
much larger blocklength than what he can afford in the standard sumcheck protocol.

We state our Sublinear Sumcheck Theorem below as a reduction: given a PCP of
proximity (PSC, VSC) for subcodes of the form C|H,γ := {w ∈ C s.t.

∑
α∈H w(α) = γ}, we

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:9

construct an IOP of proximity (P, V) for sumchecks over Hm for C⊗m. The complexity of
the PCPP verifier VSC determines the complexity of the resulting IOPP verifier V ; e.g., if
the former is sublinear in C’s block length `, so is the latter.

I Theorem 5 (Sublinear Sumcheck – informal). Let m be a positive integer, and C a linear
code with relative distance τ and block length `. Suppose that there is a PCP of proximity
for subcodes of the form C|H,γ := {w ∈ C s.t.

∑
α∈H w(α) = γ} with proof length lSC, query

complexity qSC, soundness error εSC, proximity parameter δSC, prover running time tpSC,
and verifier running time tvSC. Then there is a public-coin IOP for sumchecks over Hm for
C⊗m with the following parameters:

IOP

rounds k = m

proof length l = m · lSC +m · `
query complexity q = m · qSC +m+ 1
soundness error ε = 1− τm +

(
εSC +m · δSC

)
prover time tp = m · tpSC +m · `m
verifier time tv = m · tvSC +O(m)

 .

In later sections, it is more natural to state the theorem without assuming that w is a
codeword in C⊗m, so the reduction also takes as input a PCP of proximity (P⊗, V⊗) for C⊗m
that is invoked on w; this introduces additional terms in the parameters. More generally,
both of the PCPs of proximity (PSC, VSC) and (P⊗, V⊗) can in fact be IOPs of proximity,
and we state our theorem for this more general case, which we need. For more details, see
the full version.

3.3 Applying the new tools
We now sketch how we use the above new tools to derive the results of Section 2. We begin
by discussing our results on proximity testing to codes (stated later); we then turn to circuit
satisfiability (stated earlier) because its proof requires one of these results on proximity
testing.

Intuition behind Theorem 2. The construction of linear-size IOPs of proximity for Reed–
Solomon codes over binary fields follows from one invocation of our Interactive Proof
Composition Theorem with [12]’s robust PCPs of proximity for Reed–Solomon codes as the
outer proof system, and [38]’s PCPs of proximity for nondeterministic languages as the inner
proof system. Informally, in the first round, the prover sends to the verifier a [12] PCP of
proximity, which reduces proximity testing of codewords over F2λ to proximity testing of
sub-codewords over F2λ/2+O(1) with only constant overheads; in the second round, the verifier
sends his choice of outer randomness, and the prover replies with a [38] PCP of proximity for
the sub-codeword. The proof length of this latter component is quasilinear, but is applied to
a claim of “square-root size” only, so we obtain linear proof length.

Intuition behind Theorem 3. The construction of sublinear-size IOPs of proximity for
tensor product codes follows from one invocation of our Interactive Proof Composition
Theorem with [11, 51]’s robust local tester for tensor product codes as the outer proof system,
and [38]’s PCPs of proximity for nondeterministic languages as the inner proof system.
Unlike before, we now use one round, because the outer proof system only relies on a local
tester rather than a PCP of proximity. The verifier thus simply sends his choice of outer
randomness, and the prover replies with a [38] PCP of proximity for a suitable sublinear-size

ICALP 2017

40:10 Interactive Oracle Proofs with Constant Rate and Query Complexity

sub-codeword. Since the proof length of this latter component is quasilinear but is applied
to a sublinear-size claim, we obtain sublinear proof length.

A summary: overall, we can summarize the above sketches via the following diagram of
implications.

Theorem 2
linear-size IOPP

for Reed–Solomon codes

←− Theorem 4
interactive

proof composition

+ [12]
robust PCPs of proximity
for Reed–Solomon codes

+ [38]
PCP of proximity

for NTIME

Theorem 3
sublinear-size IOPP

for tensor product codes

←− Theorem 4
interactive

proof composition

+ [11, 51]
robust local testing

for tensor product codes

+ [38]
PCP of proximity

for NTIME

Intuition behind Theorem 1. We now turn to how to construct 3-round IOPs for circuit
satisfiability with linear proof length and constant query complexity.

The first step of many PCP constructions is to arithmetize the NP statement at hand (in
our case, the satisfiability of a boolean circuit) by reducing it to a “PCP-friendly” problem that
looks like a constraint satisfaction problem over a well-chosen graph and whose assignments
involve codewords in a well-chosen linear code C. Meir observes in [35, 36] that key features
of C are good relative distance and, moreover, a multiplication property: coordinate-wise
multiplication of codewords yields codewords in a code whose relative distance is still good
[14, 36]. Moreover, to obtain short PCPs, the aforementioned graph is typically chosen so
to behave like a routing network [42]; for example, [12] use De Bruijn graphs, while [10]
use hypercubes. To support such graphs, the automorphism group of C has to be rich
enough. This typically holds for Reed–Solomon codes [12] which have a doubly-transitive
automorphism group, but is a significantly harder condition to fulfill for AG codes [10], for
which obtaining a transitive automorphism group is quite involved and, currently, can only
be achieved non-uniformly.

The aforementioned first step would be problematic in our setting, because known routing
techniques introduce either logarithmic overheads (as in [12]) or large query complexity (as
in [10]), so it is not clear how we could use them. Departing from these prior works, we
do not rely on any routing, and instead immediately leverage one round of interaction to
directly reduce circuit satisfiability to a sumcheck instance over a given linear code C. Also,
we only assume that C has good relative distance and a multiplication property [14], but we
do not rely on any automorphisms.

Informally, the prover first sends three codewords w1, w2, w3 over a field F; the first
codeword encodes values of the left wires of all gates, the second encodes values for the right
wires of all gates, and the third encodes values for the output wires of all gates. (When a
gate has fan-out greater than 1 we still consider 1 output wire.) The verifier now must check
several things. First, that wire values are boolean and the output gate wire equals 0. Second,
that the wire values are “locally consistent” with each gate: for every i ∈ [n], w3(i) is the
NAND of w1(i) and w2(i). Third, that the three encodings of wire values are consistent
with the circuit topology: namely, if `(i) represents the left wire used to compute i, and r(i)
represents the right wire used to compute i, the topology requires that w3(`(i)) = w1(i) and
w3(r(i)) = w2(i) for every i. The verifier cannot directly conduct these checks (as doing so
would incur linear query complexity); instead, the verifier sends some randomness to the
prover so to “bundle” the checks into one sumcheck.

But how should the verifier sample randomness to achieve this bundling? One option
is to sample a random element in F per check so to construct a random subset sum, which
can be viewed as an n-variate polynomial of total degree 1, whose coefficients are the checks,

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:11

evaluated at a random point. If not all checks are satisfied, the polynomial is non-zero,
and its random evaluation cannot attain any value with too large probability. However,
constructing a random subset sum is inefficient because the verifier samples and sends to
the prover Ω(n) random bits, in order to describe the random point. Nevertheless, the
verifier may hope to do better by using a different low-degree polynomial for the bundling.
In general, if the polynomial has m variables each of degree at most d, the verifier must
sample and send m field elements; this preserves soundness provided that |F| = Ω(md) (for a
constant probability of avoiding any particular output value by the Schwartz–Zippel Lemma
[45, 53, 15]) and dm = Ω(n) (to bundle all checks). For example, the univariate case of
m = 1 was considered in [5] when reducing to a sumcheck problem; the multivariate case of
m = logn or m = logn

log logn was considered in later works. Unfortunately, either setting does
not work for constant-size fields, which we ultimately use to obtain linear proof length.

Taking a step back from polynomials, we see that all we need is an evading set S for
Fn, which is a small set such that for any non-zero v ∈ Fn the inner product 〈r, v〉, for
random r ∈ S, does not attain any particular value a ∈ F with too high probability. Good
constructions of evading sets are known: they relax a well-studied notion called ε-biased
sets [39]. In particular, results of [1] imply that, for any ε, Fn has an evading set S of size
poly(nε) and the aforementioned probability is γ := ε+ 1

|F| ; in particular, such a construction
is suitable for constant-size fields.

Below we informally state the reduction (see the full version for details), using the following
notion: we say that a linear code C ′ is a degree d-closure of C if, for every w1, . . . , wm ∈ C
and m-variate polynomial P of total degree at most d, it holds that w′ ∈ C ′ where the i-th
entry of w′ is the evaluation of P on the i-th coordinates of w1, . . . , wm.

I Lemma 6 (Circuit SAT to Sumcheck – informal). Let n be a positive integer, C ⊆ FD an
n-systematic linear code, φ an n-gate boolean circuit (of two-input NAND gates), and S an
evading set for Fn. There is a 1-round IOP that reduces satisfiability of φ to proximity testing
to C and a sumcheck over any degree-3 closure of C. Moreover, the IOP introduces only
constant overheads in all relevant parameters, including proof length and query complexity.

After reducing circuit satisfiability to sumcheck over the given code C, we are left to
choose C so to ensure that the sumcheck can be carried out with 2 additional rounds, linear
proof length, and constant query complexity.

For this, our starting point is [23, 47]’s efficient construction of a code family with constant
rate, relative distance, and alphabet size. Note that since these codes are AG codes, they
have a naturally-defined degree-3 closure. Also, their construction is uniform, and thus
represents a much “lighter” use of AG codes as compared to in [10].

If we simply choose C to be a code from this AG code family, then it is not clear how to
efficiently conduct the sumcheck. However, what does work is to take C to be the tensor
product of O(1) copies of this AG code. Informally, in this way, we can invoke our Sublinear
Sumcheck Theorem (Theorem 5) on the tensor product code C and we can test proximity to
it by Theorem 3. See the full version for details.

Overall, we can summarize the above sketch via the following diagram of implications.

Theorem 1
linear-size IOP
for circuit SAT

←− Lemma 6
from circuit SAT

to sumcheck

+ Theorem 5
sublinear
sumcheck

+ Theorem 3
sublinear-size IOP

for tensor product codes

+ [23, 47]
efficient construction

of AG codes

ICALP 2017

40:12 Interactive Oracle Proofs with Constant Rate and Query Complexity

4 Open questions

The question of whether there exist PCPs with linear proof length and constant query
complexity remains open. Nevertheless, our work suggests additional questions that may be
stepping stones in this and other intriguing directions:
1. Is there a one-round IOP for circuit satisfiability with linear proof length and query

complexity? (Our IOP for circuit satisfiability requires 3 rounds.)
2. Is there an IOP for NTIME(T) with linear proof length and query complexity, for some

number of rounds? (Our results, like [10], only imply proof length O(T log T).)
3. Is there an IOP for succinct circuit satisfiability with linear proof length and query

complexity? (Our results, like [10], “stop” at NP but do not extend to NEXP.)
Finally, while “positive” applications of IOPs are known (e.g., non-interactive proofs in
the random oracle model [7]), “negative” ones are not: do IOP constructions with good
parameters imply inapproximability results that are not known to be implied by known PCP
constructions?

References
1 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of

almost k-wise independent random variables. Random Structures and Algorithms, 3(3):289–
304, 1992.

2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–
555, 1998. Preliminary version in FOCS’92.

3 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization
of NP. Journal of the ACM, 45(1):70–122, 1998. Preliminary version in FOCS’92.

4 László Babai. Trading group theory for randomness. In Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, STOC’85, pages 421–429, 1985.

5 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, STOC’91, pages 21–32, 1991.

6 Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasilinear-size zero
knowledge from linear-algebraic PCPs. In Proceedings of the 13th Theory of Cryptography
Conference, TCC’16-A, pages 33–64, 2016.

7 Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Proceedings of the 14th Theory of Cryptography Conference, TCC’16-B, pages 31–60, 2016.

8 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short
PCPs verifiable in polylogarithmic time. In Proceedings of the 20th Annual IEEE Confer-
ence on Computational Complexity, CCC’05, pages 120–134, 2005.

9 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on
Computing, 36(4):889–974, 2006.

10 Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth. Con-
stant rate PCPs for Circuit-SAT with sublinear query complexity. In Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS’13, pages 320–329,
2013.

11 Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Structures and Algorithms, 28(4):387–402, 2006.

12 Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
Journal on Computing, 38(2):551–607, 2008. Preliminary version appeared in STOC’05.

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:13

13 Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets. In Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, STOC’03, pages 612–621, 2003.

14 D. V. Chudnovsky and G. V. Chudnovsky. Algebraic complexities and algebraic curves
over finite fields. Journal of Complexity, 4(4):285–316, 1988.

15 Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193–195, 1978.

16 Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.
17 Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the

PCP theorem. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, FOCS’04, pages 155–164, 2004.

18 Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor products
of LDPC codes. In Proceedings of the 9th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems, and of the 10th International Workshop
on Randomization and Computation, APPROX-RANDOM’06, pages 304–315, 2006.

19 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM Journal
on Computing, 41(6):1694–1703, 2012. Preliminary version appeared in STOC’09.

20 Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Approx-
imating clique is almost NP-complete (preliminary version). In Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science, SFCS’91, pages 2–12, 1991.

21 Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and
signature problems. In Proceedings of the 6th Annual International Cryptology Conference,
CRYPTO’86, pages 186–194, 1986.

22 Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive
protocols. In Theoretical Computer Science, pages 156–161, 1988.

23 Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behaviour of some towers of
function fields over finite fields. Journal of Number Theory, 61(2):248–273, 1996.

24 Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
Journal of the ACM, 53:558–655, July 2006. Preliminary version in STOC’02.

25 Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for Muggles. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, STOC’08, pages 113–122, 2008.

26 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interact-
ive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. Preliminary version
appeared in STOC’85.

27 Parikshit Gopalan, Venkatesan Guruswami, and Prasad Raghavendra. List decoding tensor
products and interleaved codes. SIAM Journal on Computing, 40(5):1432–1462, 2011. Pre-
liminary version appeared in STOC’09.

28 Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive locking,
zero-knowledge PCPs, and unconditional cryptography. In Proceedings of the 30th Annual
Conference on Advances in Cryptology, CRYPTO’10, pages 173–190, 2010.

29 Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.
Preliminary version appeared in STOC’03.

30 Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. Computa-
tional Complexity, 9(3–4):157–201, Dec 2000. Preliminary version in STACS’01.

31 Yael Kalai and Ran Raz. Interactive PCP. In Proceedings of the 35th International Col-
loquium on Automata, Languages and Programming, ICALP’08, pages 536–547, 2008.

ICALP 2017

40:14 Interactive Oracle Proofs with Constant Rate and Query Complexity

32 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-
correctable and locally-testable codes with sub-polynomial query complexity. In Proceedings
of the 48th ACM Symposium on the Theory of Computing, STOC’16, pages 202–215, 2016.

33 Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-
time decoding. Journal of the ACM, 61(5):28:1–28:20, 2014. Preliminary version appeared
in STOC’11.

34 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM, 39(4):859–868, 1992.

35 Or Meir. Combinatorial PCPs with short proofs. In Proceedings of the 26th Annual IEEE
Conference on Computational Complexity, CCC’12, 2012.

36 Or Meir. IP = PSPACE using error-correcting codes. SIAM Journal on Computing,
42(1):380–403, 2013.

37 Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000. Preliminary version appeared in FOCS’94.

38 Thilo Mie. Short PCPPs verifiable in polylogarithmic time with o(1) queries. Annals of
Mathematics and Artificial Intelligence, 56:313–338, 2009.

39 Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
STOC’90, pages 213–223, 1990.

40 Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. Journal
of the ACM, 26(2):361–381, 1979.

41 David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Proceedings
of the 14th Annual International Conference on Theory and Application of Cryptographic
Techniques, EUROCRYPT’96, pages 387–398, 1996.

42 Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing, STOC’94, pages
194–203, 1994.

43 Omer Reingold, Ron Rothblum, and Guy Rothblum. Constant-round interactive proofs
for delegating computation. In Proceedings of the 48th ACM Symposium on the Theory of
Computing, STOC’16, pages 49–62, 2016.

44 Ron M. Roth and Vitaly Skachek. Improved nearly-MDS expander codes. IEEE Transac-
tions on Information Theory, 52(8):3650–3661, 2006.

45 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980.

46 Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.
47 Kenneth W. Shum, Ilia Aleshnikov, P. Vijay Kumar, Henning Stichtenoth, and Vinay

Deolalikar. A low-complexity algorithm for the construction of algebraic-geometric codes
better than the Gilbert–Varshamov bound. IEEE Transactions on Information Theory,
47(6):2225–2241, 2001.

48 Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996. Preliminary version appeared
in STOC’95.

49 Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Proceedings of the 5th Theory of Cryptography Conference, TCC’08, pages
1–18, 2008.

50 Michael Viderman. A note on high-rate locally testable codes with sublinear query com-
plexity, 2010. ECCC TR10-171.

51 Michael Viderman. A combination of testability and decodability by tensor products. Ran-
dom Structures and Algorithms, 46(3):572–598, 2015. Preliminary version appeared in
APPROX-RANDOM’12.

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:15

52 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length.
Journal of the ACM, 55(1), 2008. Preliminary version appeared in STOC’07.

53 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the 1979
International Symposium on Symbolic and Algebraic Computation, EUROSAM’79, pages
216–226, 1979.

ICALP 2017

	Introduction
	Motivation
	A more general model: interactive oracle proofs
	Proximity and robustness

	Results
	Techniques
	Interactive proof composition
	Sublinear sumcheck
	Applying the new tools

	Open questions

