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Abstract
We investigate the decidability and computational complexity of (deductive) conservative exten-
sions in fragments of first-order logic (FO), with a focus on the two-variable fragment FO2 and
the guarded fragment GF. We prove that conservative extensions are undecidable in any FO
fragment that contains FO2 or GF (even the three-variable fragment thereof), and that they are
decidable and 2ExpTime-complete in the intersection GF2 of FO2 and GF.
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1 Introduction

Conservative extensions are a fundamental notion in logic. In mathematical logic, they
provide an important tool for relating logical theories, such as theories of arithmetic and
theories that emerge in set theory [35, 31]. In computer science, they come up in diverse areas
such as software specification [12], higher order theorem proving [15], and ontologies [24].
In these applications, it would be very useful to decide, given two sentences ϕ1 and ϕ2,
whether ϕ1 ∧ ϕ2 is a conservative extension of ϕ1. As expected, this problem is undecidable
in first-order logic (FO). In contrast, it has been observed in recent years that conservative
extensions are decidable in many modal and description logics [13, 26, 27, 7]. This observation
is particularly interesting from the viewpoint of ontologies, where conservative extensions
have many natural applications including modularity and reuse, refinement, versioning, and
forgetting [9, 24].

Regarding decidability, conservative extensions thus seem to behave similarly to the
classical satisfiability problem, which is also undecidable in FO while it is decidable for modal
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and description logics. In the case of satisfiability, the aim to understand the deeper reasons
for this discrepancy and to push the limits of decidability to more expressive fragments of FO
has sparked a long line of research that identified prominent decidable FO fragments such as
the two-variable fragment FO2 [34, 29], its extension with counting quantifiers C2 [19], the
guarded fragment GF [1], and the guarded negation fragment GNF [4], see also [6, 16, 33, 23]
and references therein. These fragments have sometimes been used as a replacement for the
modal and description logics that they generalize, and in particular the guarded fragment
has been proposed as an ontology language [3]. Motivated by this situation, the aim of the
current paper is to study the following two questions:
1. Are conservative extensions decidable in relevant fragments of FO such as FO2, C2, GF,

and GNF?
2. What are the deeper reasons for decidability of conservative extensions in modal and

description logics and how far can the limits of decidability be pushed?
To be more precise, we concentrate on deductive conservative extensions, that is, ϕ1 ∧ ϕ2
is a conservative extension of ϕ1 if for every sentence ψ formulated in the signature of
ϕ1, ϕ1 ∧ ϕ2 |= ψ implies ϕ1 |= ψ. There is also a model-theoretic notion of conservative
extension which says that ϕ1 ∧ ϕ2 is a conservative extension of ϕ1 if every model of ϕ1 can
be extended to a model of ϕ2 by interpreting the additional symbols in ϕ2. Model-theoretic
conservative extensions imply deductive conservative extensions, but the converse fails unless
one works with a very expressive logic such as second-order logic [24]. In fact, model-theoretic
conservative extensions are undecidable even for some very inexpressive description logics
that include neither negation nor disjunction [25]. Deductive conservative extensions, as
studied in this paper, are closely related to other important notions in logic, such as uniform
interpolation [30, 36, 5]. For example, in logics that enjoy Craig interpolation, a decision
procedure for conservative extensions can also be used to decide whether a given sentence ϕ2
is a uniform interpolant of a given sentence ϕ1 regarding the symbols used in ϕ2.

Instead of concentrating only on conservative extensions, we also consider two related
reasoning problems that we call Σ-entailment and Σ-inseparability, where Σ denotes a
signature. The definitions are as follows: a sentence ϕ1 Σ-entails a sentence ϕ2 if for every
sentence ψ formulated in Σ, ϕ2 |= ψ implies ϕ1 |= ψ. This can be viewed as a more relaxed
notion of conservative extension where it is not required that one sentence actually extends
the other as in the conjunction ϕ1 ∧ ϕ2 used in the definition of conservative extensions.
Two sentences ϕ1, ϕ2 are Σ-inseparable if they Σ-entail each other. We generally prove lower
bounds for conservative extensions and upper bounds for Σ-entailment, in this way obtaining
the same decidability and complexity results for all three problems.

Our first main result is that conservative extensions are undecidable in FO2 and (the
three-variable fragment of) GF, and in fact in all fragments of FO that contain at least
one of the two; note that the latter is not immediate because the separating sentence ψ
in the definition of conservative extensions ranges over all sentences from the considered
fragment, giving greater separating power when we move to a larger fragment. The proofs
are by reductions from the halting problem for two-register machines and a tiling problem,
respectively. We note that undecidability of conservative extensions also implies that there is
no extension of the logic in question in which consequence is decidable and that has effective
uniform interpolation (in the sense that uniform interpolants exist and are computable). We
then show as our second main result that, in the two-variable guarded fragment GF2, Σ-
entailment is decidable in 2ExpTime. Regarding the satisfiability problem, GF2 behaves fairly
similarly to modal and description logics. It is thus suprising that deciding Σ-entailment (and
conservative extensions) in GF2 turns out to be much more challenging than in most modal
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and description logics. There, the main approach to proving decidability of Σ-entailment is
to first establish a suitable model-theoretic characterization based on bisimulations which is
then used as a foundation for a decision procedure based on tree automata [27, 7]. In GF2,
an analogous characterization in terms of appropriate guarded bisimulation fails. Instead,
one has to demand the existence of k-bounded (guarded) bisimulations, for all k, and while
tree automata can easily handle bisimulations, it is not clear how they can deal with such an
infinite family of bounded bisimulations. We solve this problem by a very careful analysis of
the situation and by providing another characterization that can be viewed as being ‘half
way’ between a model-theoretic characterization and an automata-encoding of Σ-entailment.

We also observe that a 2ExpTime lower bound from [13] for conservative extensions
in description logics can be adapted to GF2, and consequently our upper bound is tight.
It is known that GF2 enjoys Craig interpolation and thus our results are also relevant to
deciding uniform interpolants and to a stronger version of conservative extensions in which
the separating sentence ψ can also use ‘helper symbols’ that occur neither in ϕ1 nor in ϕ2.

2 Preliminaries

We introduce the fragments of classical first-order logic (FO) that are relevant for this
paper. We generally admit equality and disallow function symbols and constants. With FO2,
we denote the two-variable fragment of FO, obtained by fixing two variables x and y and
disallowing the use of other variables [34, 29]. In FO2 and fragments thereof, we generally
admit only predicates of arity one and two, which is without loss of generality [17]. In the
guarded fragment of FO, denoted GF, quantification is restricted to the pattern

∀y(α(x,y)→ ϕ(x,y)) ∃y(α(x,y) ∧ ϕ(x,y))

where ϕ(x,y) is a GF formula with free variables among x,y and α(x,y) is an atomic
formula Rxy or an equality x = y that in either case contains all variables in x,y [1, 16]. The
formula α is called the guard of the quantifier. The k-variable fragment of GF, defined in the
expected way, is denoted GF k. Apart from the logics introduced so far, in informal contexts
we shall also mention several related description logics. Exact definitions are omitted, we
refer the reader to [2].

A signature Σ is a finite set of predicates. We use GF(Σ) to denote the set of all GF-
sentences that use only predicates from Σ (and possibly equality), and likewise for GF2(Σ)
and other fragments. We use sig(ϕ) to denote the set of predicates that occur in the FO
formula ϕ. Note that we consider equality to be a logical symbol, rather than a predicate,
and it is thus never part of a signature. We write ϕ1 |= ϕ2 if ϕ2 is a logical consequence
of ϕ1. The next definition introduces the central notions studied in this paper.

I Definition 1. Let F be a fragment of FO, ϕ1, ϕ2 F -sentences and Σ a signature. Then
1. ϕ1 Σ-entails ϕ2, written ϕ1 |=Σ ϕ2, if for all F (Σ)-sentences ψ, ϕ2 |= ψ implies ϕ1 |= ψ;
2. ϕ1 and ϕ2 are Σ-inseparable if ϕ1 Σ-entails ϕ2 and vice versa;
3. ϕ1 ∧ ϕ2 is a conservative extension of ϕ1 if ϕ1 sig(ϕ1)-entails ϕ1 ∧ ϕ2.
Note that Σ-entailment could equivalently be defined as follows when F is closed under nega-
tion: ϕ1 Σ-entails ϕ2 if for all F (Σ)-sentences ψ, satisfiability of ϕ1 ∧ ψ implies satisfiability
of ϕ2 ∧ ψ. If ϕ1 does not Σ-entail ϕ2, there is thus an F (Σ)-sentence ψ such that ϕ1 ∧ ψ is
satisfiable while ϕ2 ∧ψ is not. We refer to such ψ as a witness sentence for non-Σ-entailment.

I Example 2. (1) Σ-entailment is a weakening of logical consequence, that is, ϕ1 |= ϕ2
implies ϕ1 |=Σ ϕ2 for any Σ. The converse is true when sig(ϕ2) ⊆ Σ.
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(2) Consider the GF2 sentences ϕ1 = ∀x∃yRxy and ϕ2 = ∀x(∃y(Rxy ∧Ay) ∧ ∃y(Rxy ∧
¬Ay)) and let Σ = {R}. Then ψ = ∀xy(Rxy → x = y) is a witness for ϕ1 6|=Σ ϕ2. If ϕ1
is replaced by ϕ′1 = ∀x∃y(Rxy ∧ x 6= y) we obtain ϕ′1 |=Σ ϕ2 since GF2 cannot count the
number of R-successors.

It is important to note that different fragments F of FO give rise to different notions
of Σ-entailment, Σ-inseparability and conservative extensions. For example, if ϕ1 and ϕ2
belong to GF2, then they also belong to GF and to FO2, but it might make a difference
whether witness sentences range over all GF2-sentences, over all GF-sentences, or over all
FO2-sentences. If we want to emphasize the fragment F in which witness sentences are
formulated, we speak of F (Σ)-entailment instead of Σ-entailment and write ϕ1 |=F (Σ) ϕ2,
and likewise for F (Σ)-inseparability and F -conservative extensions.

I Example 3. Let ϕ′1, ϕ2, and Σ = {R} be from Example 2 (2). Then ϕ′1 GF2(Σ)-entails ϕ2
but ϕ′1 does not FO(Σ)-entail ϕ2; a witness is given by ∀xy1y2((Rxy1 ∧Rxy2)→ y1 = y2).

Note that conservative extensions and Σ-inseparability reduce in polynomial time to Σ-
entailment (with two calls to Σ-entailment required in the case of Σ-inseparability). Moreover,
conservative extensions reduce in polynomial time to Σ-inseparability. We thus state our
upper bounds in terms of Σ-entailment and lower bounds in terms of conservative extensions.

There is a natural variation of each of the three notions in Definition 1 obtained by
allowing to use additional ‘helper predicates’ in witness sentences. For a fragment F of FO,
F -sentences ϕ1, ϕ2, and a signature Σ, we say that ϕ1 strongly Σ-entails ϕ2 if ϕ1 Σ′-entails ϕ2
for any Σ′ with Σ′ ∩ sig(ϕ2) ⊆ Σ. Strong Σ-inseparability and strong conservative extensions
are defined accordingly. Strong Σ-entailment implies Σ-entailment, but the converse may fail.

I Example 4. GF(Σ)-entailment does not imply strong GF(Σ)-entailment. Let ϕ1 state
that the binary predicate R is irreflexive and symmetric and let ϕ2 be the conjunction
of ϕ1 and ∀x(Ax → ∀y(Rxy → ¬Ay)) ∧ ∀x(¬Ax → ∀y(Rxy → Ay)). Thus, an {R}-
structure satisfying ϕ1 can be extended to a model of ϕ2 if it contains no R-cycles of odd
length. Now observe that any satisfiable GF({R}) sentence is satisfiable in a forest {R}-
structure (see Section 4 for a precise definition). Hence, if a GF({R})-sentence is satisfiable
in an irreflexive and symmetric structure then it is satisfiable in a structure without odd
cycles and so ϕ1 GF({R})-entails ϕ2. In contrast, for the fresh ternary predicate Q and
ψ = ∃x1x2x3(Qx1x2x3 ∧Rx1x2 ∧Rx2x3 ∧Rx3x1) we have ϕ2 |= ¬ψ but ϕ1 6|= ¬ψ and so ψ
witnesses that ϕ1 does not GF({R,Q})-entail ϕ2.

The example above is inspired by proofs that GF does not enjoy Craig interpolation [21, 11].
This is not accidental, as we explain next. Recall that a fragment F of FO has Craig
interpolation if for all F -sentences ψ1, ψ2 with ψ1 |= ψ2 there exists an F -sentence ψ (called
an F -interpolant for ψ1, ψ2) such that ψ1 |= ψ |= ψ2 and sig(ψ) ⊆ sig(ψ1) ∩ sig(ψ2). F

has uniform interpolation if one can always choose an F -interpolant that does not depend
on ψ2, but only on ψ1 and sig(ψ1) ∩ sig(ψ2). Thus, given ψ1, ψ and Σ with ψ1 |= ψ and
sig(ψ) ⊆ Σ, then ψ is a uniform F (Σ)-interpolant of ψ1 iff ψ strongly F (Σ)-entails ψ1.
Both Craig interpolation and uniform interpolation have been investigated extensively, for
example for intuitionistic logic [30], modal logics [36, 10, 28], guarded fragments [11], and
description logics [27]. The following observation summarizes the connection between (strong)
Σ-entailment and interpolation.

I Theorem 5. Let F be a fragment of FO that enjoys Craig interpolation. Then F (Σ)-
entailment implies strong F (Σ)-entailment. In particular, if ϕ2 |= ϕ1 and sig(ϕ1) ⊆ Σ, then
ϕ1 is a uniform F (Σ)-interpolant of ϕ2 iff ϕ1 F (Σ)-entails ϕ2.
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Proof. Assume ϕ1 does not strongly F (Σ)-entail ϕ2. Then there is an F -sentence ψ with
sig(ψ) ∩ sig(ϕ2) ⊆ Σ such that ϕ2 |= ψ and ϕ1 ∧ ¬ψ is satisfiable. Let χ be an interpolant
for ϕ2 and ψ in F . Then ¬χ witnesses that ϕ1 does not F (Σ)-entail ϕ2. J

The uniform interpolant recognition problem for F is the problem to decide whether a
sentence ψ is a uniform F (Σ)-interpolant of a sentence ψ′. It follows from Theorem 5 that in
any fragment F of FO that enjoys Craig interpolation, this problem reduces in polynomial
time to Σ-inseparability in F and that, conversely, conservative extension in F reduces in
polynomial time to the uniform interpolant recognition problem in F . Neither GF nor FO2

nor description logics with role inclusions enjoy Craig interpolation [21, 8, 24], but GF2 does
[21]. Thus, our decidability and complexity results for Σ-entailment in GF2 also apply to
strong Σ-entailment and the uniform interpolant recognition problem.

3 Undecidability

We prove that conservative extensions are undecidable in GF3 and in FO2, and consequently
so are Σ-entailment and Σ-inseparability (as well as strong Σ-entailment and the uniform
interpolant recognition problem). These results hold already without equality and in fact
apply to all fragments of FO that contain at least one of GF3 and FO2 such as the guarded
negation fragment [4] and the two-variable fragment with counting quantifiers [19].

We start with the case of GF3, using a reduction from the halting problem of two-
register machines. A (deterministic) two-register machine (2RM) is a pair M = (Q,P ) with
Q = q0, . . . , q` a set of states and P = I0, . . . , I`−1 a sequence of instructions. By definition,
q0 is the initial state, and q` the halting state. For all i < `,

either Ii = +(p, qj) is an incrementation instruction with p ∈ {0, 1} a register and qj the
subsequent state;
or Ii = −(p, qj , qk) is a decrementation instruction with p ∈ {0, 1} a register, qj the
subsequent state if register p contains 0, and qk the subsequent state otherwise.

A configuration of M is a triple (q,m, n), with q the current state and m,n ∈ N the register
contents. We write (qi, n1, n2)⇒M (qj ,m1,m2) if one of the following holds:

Ii = +(p, qj), mp = np + 1, and m1−p = n1−p;
Ii = −(p, qj , qk), np = mp = 0, and m1−p = n1−p;
Ii = −(p, qk, qj), np > 0, mp = np − 1, and m1−p = n1−p.

The computation of M on input (n,m) ∈ N2 is the unique longest configuration sequence
(p0, n0,m0)⇒M (p1, n1,m1)⇒M · · · such that p0 = q0, n0 = n, and m0 = m. The halting
problem for 2RMs is to decide, given a 2RM M , whether its computation on input (0, 0) is
finite (which implies that its last state is q`).

We show how to convert a given 2RM M into GF3-sentences ϕ1 and ϕ2 such that M
halts on input (0, 0) iff ϕ1 ∧ ϕ2 is not a conservative extension of ϕ1. Let M = (Q,P )
with Q = q0, . . . , q` and P = I0, . . . , I`−1. We assume w.l.o.g. that ` ≥ 1 and that if
Ii = −(p, qj , qk), then qj 6= qk. In ϕ1, we use the following set Σ of predicates:

a binary predicate N connecting a configuration to its successor configuration;
binary predicates R1 and R2 that represent the register contents via the length of paths;
unary predicates q0, . . . , q` representing the states of M ;
a unary predicate S denoting points where a computation starts.
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We define ϕ1 to be the conjunction of several GF2-sentences. First, we say that there is a
point where the computation starts:1

∃xSx ∧ ∀x(Sx→ (q0x ∧ ¬∃y R0xy ∧ ¬∃y R1xy))

And second, we add that whenever M is not in the final state, there is a next configuration.
For 0 ≤ i < `:

∀x(qix→ ∃y(Nxy ∧ qjy)) if Ii = +(p, qj)
∀x((qix ∧ ¬∃yRpxy)→ ∃y(Nxy ∧ qjy)) if Ii = −(p, qj , qk)
∀x((qix ∧ ∃yRpxy)→ ∃y(Nxy ∧ qky)) if Ii = −(p, qj , qk)

The second sentence ϕ2 is constructed so as to express that either M does not halt or the
representation of the computation of M contains a defect, using the following additional
predicates:

a unary predicate P used to represent that M does not halt;
binary predicates D+

p , D
−
p , D

=
p used to describe defects in incrementing, decrementing,

and keeping register p ∈ {0, 1};
ternary predicates H+

1 , H
+
2 , H

−
1 , H

−
2 , H

=
1 , H

=
2 used as guards for existential quantifiers.

In fact, ϕ2 is the disjunction of two sentences. The first sentence says that the computation
does not terminate:

∃x (Sx ∧ Px) ∧ ∀x (Px→ ∃y (Nxy ∧ Py))

while the second says that registers are not updated properly:

∃x∃y
(
Nxy ∧

( ∨
Ii=+(p,qj)

(qix ∧ qjy ∧ (D+
p xy ∨D=

1−pxy))

∨
∨

Ii=−(p,qj ,qk)

(qix ∧ qky ∧ (D−p xy ∨D=
1−pxy))

∨
∨

Ii=−(p,qj ,qk)

(qix ∧ qjy ∧ (D=
p xy ∨D=

1−pxy))
))

∧∀x∀y (D+
p xy → (¬∃z Rpyz ∨ (¬∃z Rpxz ∧ ∃z (Rpyz ∧ ∃xRpzx))

∨∃z(H+
1 xyz ∧Rpxz ∧ ∃x(H+

2 xzy ∧Rpyx ∧D+
p zx)).

In this second sentence, additional conjuncts that implement the desired behaviour of D=
p

and D−p are also needed; they are constructed analogously to the last three lines above (but
using guards H−j and H=

j ), details are omitted. The following is proved in the appendix of
the full version of this paper.

I Lemma 6.
1. If M halts, then ϕ1 ∧ ϕ2 is not a GF 2-conservative extension of ϕ1.
2. If there exists a Σ-structure that satisfies ϕ1 and cannot be extended to a model of ϕ2 (by

interpreting the predicates in sig(ϕ2) \ sig(ϕ1)), then M halts.

In the proof of Point 1, the sentence that witnesses non-conservativity describes a halting
computation of M , up to global GF2(Σ)-bisimulations. This can be done using only two
variables. The following result is an immediate consequence of Lemma 6.

1 The formulas that are not syntactically guarded can easily be rewritten into such formulas.
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I Theorem 7. In any fragment of FO that extends the three-variable guarded fragment
GF 3, the following problems are undecidable: conservative extensions, Σ-inseparability,
Σ-entailment, and strong Σ-entailment.

Since Point 1 of Lemma 6 ensures GF2-witnesses, Theorem 7 can actually be strengthened
to say that GF2-conservative extensions of GF3-sentences are undecidable.

Our result for FO2 is proved by a reduction of a tiling problem that asks for the tiling
of a rectangle (of any size) such that the borders are tiled with certain distinguished tiles.
Because of space limitations, we defer details to the appendix of the full version and state
only the obtained result.

I Theorem 8. In any fragment of FO that extends FO2, the following problems are undecid-
able: conservative extensions, Σ-inseparability, Σ-entailment, and strong Σ-entailment.

It is interesting to note that the proof of Theorem 8 also shows that FO2-conservative
extensions of ALC-TBoxes are undecidable while it follows from our results below that
GF2-conservative extensions of ALC-TBoxes are decidable.

4 Characterizations

The undecidability results established in the previous section show that neither the restric-
tion to two variables nor guardedness alone are sufficient for decidability of conservative
extensions and related problems. In the remainder of the paper, we show that adopting
both restrictions simultaneously results in decidability of Σ-entailment (and thus also of
conservative extensions and of inseparability). We proceed by first establishing a suitable
model-theoretic characterization and then use it as the foundation for a decision procedure
based on tree automata. We in fact establish two versions of the characterization, the second
one building on the first one.

We start with some preliminaries. An atomic 1-type for Σ is a maximal satisfiable set τ
of atomic GF2(Σ)-formulas and their negations that use the variable x, only. We use atΣA(a)
to denote the atomic 1-type for Σ realized by the element a in the structure A. An atomic
2-type for Σ is a maximal satisfiable set τ of atomic GF2(Σ)-formulas and their negations
that use the variables x and y, only, and contains ¬(x = y). We say that τ is guarded if it
contains an atom of the form Rxy or Ryx, R a predicate symbol. We use atΣA(a, b) to denote
the atomic 2-type for Σ realized by the elements a, b in the structure A. A relation ∼ ⊆ A×B
is a GF2(Σ)-bisimulation between A and B if the following conditions hold whenever a ∼ b:
1. atΣA(a) = atΣB(b);
2. for every a′ 6= a such that atΣA(a, a′) is guarded, there is a b′ 6= b such that atΣA(a, a′) =

atΣB(b, b′) and a′ ∼ b′ (forth condition);
3. for every b′ 6= b such that atΣB(b, b′) is guarded, there is an a′ 6= a such that atΣA(a, a′) =

atΣB(b, b′) and a′ ∼ b′ (back condition).
We write (A, a) ∼Σ (B, b) and say that (A, a) and (B, b) are GF 2(Σ)-bisimilar if there is a
GF2(Σ)-bisimulation ∼ between A and B with a ∼ b. If the domain and range of ∼ coincide
with A and B, respectively, then ∼ is called a global GF 2(Σ)-bisimulation.

We next introduce a bounded version of bisimulations. For k ≥ 0, we write (A, a) ∼kΣ (B, b)
and say that (A, a) and (B, b) are k-GF 2(Σ)-bisimilar if there is a ∼ ⊆ A×B such that the
first condition for bisimulations holds and the back and forth conditions can be iterated up
to k times starting from a and b; a formal definition is in the appendix of the full version. It
is straightforward to show the following link between k-GF2-bisimilarity and GF2-sentences
of guarded quantifier depth k (defined in the obvious way).

ICALP 2017
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I Lemma 9. Let A and B be structures, Σ a signature, and k ≥ 0. Then the following
conditions are equivalent:
1. for all a ∈ A there exists b ∈ B with (A, a) ∼kΣ (B, b) and vice versa;
2. A and B satisfy the same GF 2(Σ)-sentences of guarded quantifier depth at most k.
The corresponding lemma for GF2(Σ)-sentences of unbounded guarded quantifier depth and
GF2(Σ)-bisimulations holds if A and B satisfy certain saturation conditions (for example, if
A and B are ω-saturated). It can then be proved that an FO-sentence ϕ is equivalent to a
GF2 sentence iff its models are preserved under global GF2(sig(ϕ))-bisimulations [18, 14].
In modal and description logic, global Σ-bisimulations can often be used to characterize
Σ-entailment in the following natural way [27]: ϕ1 Σ-entails ϕ2 iff every for every (tree)
model A of ϕ1, there exists a (tree) model B of ϕ2 that is globally Σ-bisimilar to A. Such a
characterization enables decision procedures based on tree automata, but does not hold for
GF2.

I Example 10. Let ϕ1 = ∀x∃yRxy and let ϕ2 = ϕ1 ∧ ∃xBx ∧ ∀x(Bx → ∃y(Ryx ∧ By)).
Let A be the model of ϕ1 that consists of an infinite R-path with an initial element. Then
there is no model of ϕ2 that is globally GF2({R})-bisimilar to A since any such model has
to contain an infinite R-path with no initial element. Yet, ϕ2 is a conservative extension of
ϕ1 which can be proved using Theorem 11 below.

We give our first characterization theorem that uses unbounded bisimulations in one
direction and bounded bisimulations in the other.

I Theorem 11. Let ϕ1, ϕ2 be GF2-sentences and Σ a signature. Then ϕ1 |=Σ ϕ2 iff for
every model A of ϕ1 of finite outdegree, there is a model B of ϕ2 such that
1. for every a ∈ A there is a b ∈ B such that (A, a) ∼Σ (B, b)
2. for every b ∈ B and every k ≥ 0, there is an a ∈ A such that (A, a) ∼kΣ (B, b).

The direction (⇐) follows from Lemma 9 and (⇒) can be proved using compactness and
ω-saturated structures. Because of the use of k-bounded bisimulations (for unbounded k), it
is not clear how to use Theorem 11 to find a decision procedure based on tree automata. In
the following, we formulate a more ‘operational’ but also more technical characterization
that no longer mentions bounded bisimulations. It additionally refers to forest models A of
ϕ1 (of finite outdegree) instead of unrestricted models, but we remark that Theorem 11 also
remains true under this modification.

A structure A is a forest if its Gaifman graph is a forest. Thus, a forest admits cycles
of length one and two, but not of any higher length. A (Σ-)tree in a forest structure A is a
maximal (Σ)-connected substructure of A. When working with forest structures A, we will
typically view them as directed forests rather than as undirected ones. This can be done by
choosing a root for each tree in the Gaifman graph of A, thus giving rise to notions such
as successor, descendant, etc. Which node is chosen as the root will always be irrelevant.
Note that the direction of binary relations does not need to reflect the successor relation.
When speaking of a path in a forest structure A, we mean a path in the directed sense; when
speaking of a subtree, we mean a tree that is obtained by choosing a root a and restricting
the structure to a and its descendants. We say that A is regular if it has only finitely many
subtrees, up to isomorphism.

To see how we can get rid of bounded bisimulations, reconsider Theorem 11. The
characterization is still correct if we pull out the quantification over k in Point 2 so that the
theorem reads ‘...iff for every model A of ϕ1 of finite outdegree and every k ≥ 0, there is...’. In
fact, this modified version of Theorem 11 is even closer to the definition of Σ-entailment. It
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also suggests that we add a marking A⊥ ⊆ A of elements in A, representing ‘break-off points’
for bisimulations, and then replace k-bisimulations with bisimulations that stop whenever
they have encountered the second marked element on the same path—in this way, the distance
between marked elements (roughly) corresponds to the bound k in k-bisimulations. However,
we would need a marking A⊥, for any k ≥ 0, such that there are infinitely many markers
on any infinite path and the distance between any two markers in a tree is at least k. It is
easy to see that such a marking may not exist, for example when k = 3 and A is the infinite
full binary tree. We solve this problem as follows. First, we only demand that the distance
between any two markers on the same path is at least k. And second, we use the markers
only when following bisimulations upwards in a tree while downwards, we use unbounded
bisimulations. This does not compromise correctness of the characterization.

We next introduce a version of bisimulations that implement the ideas just explained. Let
A and B be forest models, Σ a signature, and A⊥ ⊆ A. Two relations ∼A⊥,0Σ ,∼A⊥,1Σ ⊆ A×B
form an A⊥-delimited GF 2(Σ)-bisimulation between A and B if the following conditions are
satisfied:
1. if (A, a) ∼A⊥,0Σ (B, b), then atΣA(a) = atΣB(b) and

a. for every a′ 6= a with atΣA(a, a′) guarded, there is a b′ 6= b such that (A, a′) ∼A⊥,iΣ (B, b′)
where i = 1 if a′ is the predecessor of a and a′ ∈ A⊥, and i = 0 otherwise;

b. for every b′ 6= b with atΣB(b, b′) guarded, there is an a′ 6= a such that (A, a′) ∼A⊥,iΣ (B, b′)
where i = 1 if a′ is the predecessor of a and a′ ∈ A⊥, and i = 0 otherwise;

2. if (A, a) ∼A⊥,1Σ (B, b) and the predecessor of a in A is not in A⊥, then atΣA(a) = atΣB(b)
and
a. for every a′ 6= a with atΣA(a, a′) guarded, there is a b′ 6= b such that (A, a′) ∼A⊥,iΣ (B, b′)

where i = 0 if a is the predecessor of a′ and a ∈ A⊥, and i = 1 otherwise;
b. for every b′ 6= b with atΣB(b, b′) guarded, there is an a′ 6= a such that (A, a′) ∼A⊥,iΣ (B, b′)

where i = 0 if a is the predecessor of a′ and a ∈ A⊥, and i = 1 otherwise.

Then (A, a) and (B, b) are A⊥-delimited GF 2(Σ)-bisimilar, in symbols (A, a) ∼A⊥Σ (B, b),
if there exists an A⊥-delimited GF2(Σ)-bisimulation ∼A⊥,0Σ ,∼A⊥,1Σ between A and B such
that (A, a) ∼A⊥,0Σ (B, b).

Let ϕ be a GF2-sentence. We use cl(ϕ) to denote the set of all subformulas of ϕ closed
under single negation and renaming of free variables (using only the available variables x
and y). A 1-type for ϕ is a subset t ⊆ cl(ϕ) that contains only formulas of the form ψ(x)
and such that ϕ ∧ ∃x

∧
t(x) is satisfiable. For a model A of ϕ and a ∈ A, we use tpA(a)

to denote the 1-type {ψ(x) ∈ cl(ϕ) | A |= ψ(a)}, assuming that ϕ is understood from the
context. We say that the 1-type t is realized in A if there is an a ∈ A with tpA(a) = t. We
are now ready to formulate our final characterizations.

I Theorem 12. Let ϕ1, ϕ2 be GF 2-sentences and Σ a signature. Then ϕ1 |=Σ ϕ2 iff for
every regular forest model A of ϕ1 that has finite outdegree and for every set A⊥ ⊆ A with
A⊥ ∩ ρ infinite for any infinite Σ-path ρ in A, there is a model B of ϕ2 such that
1. for every a ∈ A, there is a b ∈ B such that (A, a) ∼Σ (B, b);
2. for every 1-type t for ϕ2 that is realized in B, there are a ∈ A and b ∈ B such that

tpB(b) = t and (A, a) ∼A⊥Σ (B, b).

Regularity and finite outdegree are used in the proof of Theorem 12 given in the appendix of
the full version, but it follows from the automata constructions below that the theorem is
still correct when these qualifications are dropped.
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5 Decidability and Complexity

We show that Σ-entailment in GF2 is decidable and 2ExpTime-complete, and thus so are
conservative extensions and Σ-inseparability. The upper bound is based on Theorem 12 and
uses alternating parity automata on infinite trees. Since Theorem 12 does not provide us with
an obvious upper bound on the outdegree of the involved tree models, we use alternating tree
automata which can deal with trees of any finite outdegree, similar to the ones introduced
by Wilke [37], but with the capability to move both downwards and upwards in the tree.

A tree is a non-empty (and potentially infinite) set of words T ⊆ (N \ 0)∗ closed under
prefixes. We generally assume that trees are finitely branching, that is, for every w ∈ T ,
the set {i | w · i ∈ T} is finite. For any w ∈ (N \ 0)∗, as a convention we set w · 0 := w. If
w = n0n1 · · ·nk, we additionally set w · −1 := n0 · · ·nk−1. For an alphabet Θ, a Θ-labeled
tree is a pair (T, L) with T a tree and L : T → Θ a node labeling function.

A two-way alternating tree automata (2ATA) is a tuple A = (Q,Θ, q0, δ,Ω) where Q is a
finite set of states, Θ is the input alphabet, q0 ∈ Q is the initial state, δ is a transition function
as specified below, and Ω : Q → N is a priority function, which assigns a priority to each
state. The transition function maps a state q and some input letter θ ∈ Θ to a transition
condition δ(q, θ) which is a positive Boolean formula over the truth constants true and false
and transitions of the form q, 〈−〉q, [−]q, ♦q, �q where q ∈ Q. The automaton runs on
Θ-labeled trees. Informally, the transition q expresses that a copy of the automaton is sent
to the current node in state q, 〈−〉q means that a copy is sent in state q to the predecessor
node, which is then required to exist, [−]q means the same except that the predecessor node
is not required to exist, ♦q means that a copy is sent in state q to some successor, and �q
that a copy is sent in state q to all successors. The semantics is defined in terms of runs
in the usual way, we refer to the appendix of the full version for details. We use L(A) to
denote the set of all Θ-labeled trees accepted by A. It is standard to verify that 2ATAs are
closed under complementation and intersection. We show in the appendix that the emptiness
problem for 2ATAs can be solved in time exponential in the number of states.

We aim to show that given two GF2-sentences ϕ1 and ϕ2 and a signature Σ, one can
construct a 2ATA A such that L(A) = ∅ iff ϕ1 |=GF2(Σ) ϕ2. The number of states of the
2ATA A is polynomial in the size of ϕ1 and exponential in the size of ϕ2, which yields the
desired 2ExpTime upper bounds.

Let ϕ1, ϕ2, and Σ be given. Since the logics we are concerned with have Craig interpolation,
we can assume w.l.o.g. that Σ ⊆ sig(ϕ1). With Θ, we denote the set of all pairs (τ,M) where
τ is an atomic 2-type for sig(ϕ1) and M ∈ {0, 1}. For p = (τ,M) ∈ Θ, we use p1 to denote
τ and p2 to denote M . A Θ-labeled tree (T, L) represents a forest structure A(T,L) with
universe A(T,L) = T and where w ∈ AA(T,L) if A(y) ∈ L(w) and (w,w′) ∈ RA(T,L) if one of
the following conditions is satisfied: (1) w = w′ and Ryy ∈ L(w)1; (2) w′ is a successor of w
and Rxy ∈ L(w′)1; (3) w is a successor of w′ and Ryx ∈ L(w)1. Thus, the atoms in a node
label that involve only the variable y describe the current node, the atoms that involve both
variables x and y describe the connection between the predecessor and the current node,
and the atoms that involve only the variable x are ignored. The M -components of node
labels are used to represent a set of markers A⊥ = {w ∈ A(T,L) | L(w)2 = 1}. It is easy to
see that, conversely, for every tree structure A over Σ, there is a Θ-labeled tree (T, L) such
that A(T,L) = A.

To obtain the desired 2ATA A, we construct three 2ATAs A1,A2,A3 and then define
A so that it accepts L(A1) ∩ L(A2) ∩ L(A3). The 2ATA A3 only makes sure that the
set A⊥ ⊆ A(T,L) is such that for any infinite Σ-path ρ, A⊥ ∩ ρ is infinite (as required by
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Theorem 12), we omit details. We construct A1 so that it accepts a Θ-labeled tree (T, L)
iff A(T,L) is a model of ϕ1. The details of the construction, which is fairly standard, can
be found in the appendix. The number of states of A1 is polynomial in the size of ϕ1 and
independent of ϕ2. The most interesting automaton is A2.

I Lemma 13. There is a 2ATA A2 that accepts a Θ-labeled tree (T, L) iff there is a model B
of ϕ2 s.t. Conditions 1 and 2 from Theorem 12 are satisfied when A is replaced with A(T,L).

The general idea of the construction of A2 is to check the existence of the desired model
B of ϕ2 by verifying that there is a set of 1-types for ϕ2 from which B can be assembled,
represented via the states that occur in a successful run. Before we can give details, we
introduce some preliminaries.

A 0-type s for ϕ2 is a maximal set of sentences ψ() ∈ cl(ϕ2) such that ϕ2 ∧ s is satisfiable.
A 2-type λ for ϕ2 is a maximal set of formulas ψ(x, y) ∈ cl(ϕ2) that contains ¬(x = y) and
such that ϕ2 ∧ ∃xy λ(x, y) is satisfiable. If a 2-type λ contains the atom Rxy or Ryx for at
least one binary predicate R, then it is guarded. If additionally R ∈ Σ, then it is Σ-guarded.
Note that each 1-type contains a (unique) 0-type and each 2-type contains two (unique)
1-types. Formally, we use λx to denote the 1-type obtained by restricting the 2-type λ to the
formulas that do not use the variable y, and likewise for λy and the variable x. We use TPn
to denote the set of n-types for ϕ2, n ∈ {0, 1, 2}. For t ∈ TP1 and a λ ∈ TP2, we say that λ
is compatible with t and write t ≈ λ if the sentence ϕ2 ∧ ∃xy(t(x) ∧ λ(x, y)) is satisfiable; for
t ∈ TP1 and T ⊆ TP2 a set of guarded 2-types, we say that T is a neighborhood for t and
write t ≈ T if the sentence

ϕ2 ∧ ∃x
(
t(x) ∧

∧
λ∈T

∃y λ(x, y) ∧ ∀y
∨

R∈sig(ϕ2)

((Rxy ∨Ryx)→
∨
λ∈T

λ(x, y))
)

is satisfiable. Note that each of the mentioned sentences is formulated in GF2 and at most
single exponential in size (in the size of ϕ1 and ϕ2), thus satisfiability can be decided in
2ExpTime.

To build the automaton A2 from Lemma 13, set A2 = (Q2,Θ, q0, δ2,Ω2) where Q2 is

{q0, q⊥} ∪ TP0 ∪ {t, t?, t↑, t↓, t&, ti, ti↑, ti↓ | t ∈ TP1, i ∈ {0, 1}}∪
{λ, λ↑, λi, λi↑ | λ ∈ TP2, i ∈ {0, 1}},

Ω2 assigns two to all states except for those of the form t?, to which it assigns one.
The automaton begins by choosing the 0-type s realized in the forest model B of ϕ2

whose existence it aims to verify. For every ∃xϕ(x) ∈ s, it then chooses a 1-type t in which
ϕ(x) is realized in B and sends off a copy of itself to find a node where t is realized. To
satisfy Condition 1 of Theorem 12, at each node it further chooses a 1-type that is compatible
with s, to be realized at that node. This is implemented by the following transitions:

δ2(q0, σ) =
∨

s∈TP0

(
s ∧

∧
∃xϕ(x)∈s

∨
t∈TP1|

s∪{ϕ(x)}⊆t

t?
)

δ2(s, σ) = �s ∧
∨

t∈TP1,s⊆t

t

δ2(t?, σ) = 〈−1〉t? ∨ ♦t? ∨ t0

where s ranges over TP0. When a state of the form t is assigned to a node w, this is an
obligation to prove that there is a GF2(Σ)-bisimulation between the element w in A(T,L) and
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an element b of type t in B. A state of the form t0 represents the obligation to verify that
there is an A⊥-delimited GF2(Σ)-bisimulation between w and an element of type t in B. We
first verify that the former obligations are satisfied. This requires to follow all successors of
w and to guess types of successors of b to be mapped there, satisfying the back condition of
bisimulations. We also need to guess successors of b in B (represented as a neighborhood for
t) to satisfy the existential demands of t and then select successors of a to which they are
mapped, satisfying the “back” condition of bisimulations. Whenever we decide to realize a
1-type t in B that does not participate in the bisimulation currently being verified, we also
send another copy of the automaton in state t? to guess an a ∈ A(T,L) that we can use to
satisfy Condition 2 from Theorem 12:

δ2(t, (τ,M)) = t↑ ∧�t↓ ∧
∨

T |t≈T

∧
λ∈T

(♦λ ∨ λ↑) if τy =Σ t

δ2(t, (τ,M)) = false if τy 6=Σ t

δ2(t↓, (τ,M)) = true if τ is not Σ-guarded
δ2(t↓, (τ,M)) =

∨
λ|t≈λ∧τ=Σλ

λy if τ is Σ-guarded

δ2(t↑, (τ,M)) = true if τ is not Σ-guarded
δ2(t↑, (τ,M)) =

∨
λ|t≈λ∧τ=Σλ−

[−1]λy if τ is Σ-guarded

δ2(λ, (τ,M)) = λy if λ is Σ-guarded and τ =Σ λ

δ2(λ, (τ,M)) = false if λ is Σ-guarded and τ 6=Σ λ

δ2(λ, (τ,M)) = λ?
y if λ is not Σ-guarded

δ2(λ↑, (τ,M)) = 〈−1〉λy if λ is Σ-guarded and τ =Σ λ−

δ2(λ↑, (τ,M)) = false if λ is Σ-guarded and τ 6=Σ λ−

δ2(λ↑, (τ,M)) = λ?
y if λ is not Σ-guarded

where τy =Σ t means that the atoms in τ that mention only y are identical to the Σ-relational
atoms in t (up to renaming x to y), τ =Σ λ means that the restriction of λ to Σ-atoms is
exactly τ , and λ− is obtained from λ by swapping x and y. We need further transitions
to satisfy the obligations represented by states of the form t0, which involves checking
A⊥-delimited bisimulations. Details are given in the appendix where also the correctness of
the construction is proved.

I Theorem 14. In GF 2, Σ-entailment and conservative extensions can be decided in time
22p(|ϕ2|·log |ϕ1|) , for some polynomial p. Moreover, Σ-inseparability is in 2ExpTime.

Note that the time bound for conservative extensions given in Theorem 14 is double expo-
nential only in the size of ϕ2 (that is, the extension). In ontology engineering applications,
ϕ2 will often be small compared with ϕ1.

A matching lower bound is proved using a reduction of the word problem of exponentially
space-bounded alternating Turing machines, see the appendix for details. The construction
is inspired by the proof from [13] that conservative extensions in the description logic ALC
are 2ExpTime-hard, but the lower bound does not transfer directly since we are interested
here in witness sentences that are formulated in GF2 rather than in ALC.

I Theorem 15. In any fragment of FO that contains GF 2, the problems Σ-entailment,
Σ-inseparability, conservative extensions, and strong Σ-entailment are 2ExpTime-hard.
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6 Conclusion

We have shown that conservative extensions are undecidable in (extensions of) GF and
FO2, and that they are decidable and 2ExpTime-complete in GF2. It thus appears that
decidability of conservative extensions is linked even more closely to the tree model property
than decidability of the satisfiability problem: apart from cycles of length at most two, GF2

enjoys a ‘true’ tree model property while GF only enjoys a bounded treewidth model property
and FO2 has a rather complex regular model property that is typically not even made explicit.
As future work, it would be interesting to investigate whether conservative extensions remain
decidable when guarded counting quantifiers, transitive relations, equivalence relations, or
fixed points are added, see e.g. [32, 22, 20]. It would also be interesting to investigate a finite
model version of conservative extensions.

References
1 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded

fragments of predicate logic. J. Philosophical Logic, 27(3):217–274, 1998.
2 Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-

Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applic-
ations. Cambridge University Press, 2003. (2nd edition, 2007).

3 Vince Bárány, Georg Gottlob, and Martin Otto. Querying the guarded fragment. Logical
Methods in Computer Science, 10(2), 2014.

4 Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. J. ACM, 62(3):22:1–
22:26, 2015.

5 Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Interpolation with decid-
able fixpoint logics. In Proc. of LICS, pages 378–389. IEEE Computer Society, 2015.

6 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspect-
ives in Mathematical Logic. Springer, 1997.

7 Elena Botoeva, Boris Konev, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter, and Michael
Zakharyaschev. Inseparability and conservative extensions of description logic ontologies:
A survey. In Proc. of Reasoning Web, volume 9885 of LNCS, pages 27–89. Springer, 2016.

8 Stephen D. Comer. Classes without the amalgamation property. Pacific Journal of Math-
ematics, 28:309–318, 1969.

9 Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Modular reuse
of ontologies: Theory and practice. Journal of Artificial Intelligence Research (JAIR),
31:273–318, 2008.

10 Giovanna D’Agostino and Marco Hollenberg. Logical questions concerning the µ-calculus:
Interpolation, Lyndon and ł oś-Tarski. J. Symb. Log., 65(1):310–332, 2000.

11 Giovanna D’Agostino and Giacomo Lenzi. Bisimulation quantifiers and uniform interpola-
tion for guarded first order logic. Theor. Comput. Sci., 563:75–85, 2015.

12 Răzvan Diaconescu, Joseph A. Goguen, and Petros Stefaneas. Logical support for modular-
isation. In Gerard Huet and Gordon Plotkin, editors, Logical Environments, pages 83–130,
1993.

13 Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did I damage my ontology? A case for
conservative extensions in description logic. In Proc. of KR, pages 187–197. AAAI Press,
2006.

14 Valentin Goranko and Martin Otto. Model theory of modal logic. In Patrick Blackburn,
Johan van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, pages 249–330.
Elsevier, 2006.

ICALP 2017



108:14 Conservative Extensions in Guarded and Two-Variable Fragments

15 Michael J. C. Gordon and Thomas F. Melham, editors. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

16 Erich Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.
17 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for

two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.
18 Erich Grädel and Martin Otto. The freedoms of (guarded) bisimulation. In Alexandru

Baltag and Sonja Smets, editors, Johan van Benthem on Logic and Information Dynamics,
pages 3–31. Springer, 2014.

19 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable.
In Proc. of LICS, pages 306–317. IEEE Computer Society, 1997.

20 Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In Proc. of LICS, pages
45–54. IEEE Computer Society, 1999.

21 Eva Hoogland and Maarten Marx. Interpolation and definability in guarded fragments.
Studia Logica, 70(3):373–409, 2002.

22 Emanuel Kieronski. On the complexity of the two-variable guarded fragment with transitive
guards. Inf. Comput., 204(11):1663–1703, 2006.

23 Emanuel Kieronski, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-
variable first-order logic with equivalence closure. SIAM J. Comput., 43(3):1012–1063,
2014.

24 Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Formal properties of modu-
larisation. In Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, editors,
Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization,
volume 5445 of LNCS, pages 25–66. Springer, 2009.

25 Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Model-theoretic inseparability
and modularity of description logic ontologies. Artificial Intelligence, 203:66–103, 2013.

26 Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions in expressive
description logics. In IJCAI, pages 453–458, 2007.

27 Carsten Lutz and Frank Wolter. Foundations for uniform interpolation and forgetting in
expressive description logics. In Proc. of IJCAI, pages 989–995. IJCAI/AAAI, 2011.

28 Johannes Marti, Fatemeh Seifan, and Yde Venema. Uniform interpolation for coalgebraic
fixpoint logic. In CALCO, volume 35 of LIPIcs, pages 238–252. Schloss Dagstuhl, 2015.

29 Michael Mortimer. On languages with two variables. Math. Log. Q., 21(1):135–140, 1975.
30 Andrew M. Pitts. On an interpretation of second-order quantification in first-order intu-

itionistic propositional logic. J. of Symbolic Logic, 57, 1992.
31 Stephen Pollard. Philosophical Introduction to Set Theory. University of Notre Dame Press,

1990.
32 Ian Pratt-Hartmann. Complexity of the guarded two-variable fragment with counting

quantifiers. J. Log. Comput., 17(1):133–155, 2007.
33 Ian Pratt-Hartmann. Data-complexity of the two-variable fragment with counting quanti-

fiers. Inf. Comput., 207(8):867–888, 2009.
34 Dana Scott. A decision method for validity of sentences in two variables. Journal of

Symbolic Logic, 27:1962, 1962.
35 Stephen G. Simpson. Subsystems of Second Order Arithmetic. Cambridge University Press,

2009.
36 Albert Visser. Uniform interpolation and layered bisimulation. In Gödel’96 (Brno, 1996),

volume 6 of Lecture Notes in Logic, pages 139–164. Springer, 1996.
37 Thomas Wilke. Alternating tree automata, parity games, and modal µ-calculus. Bulletin

of the Belgian Mathematical Society, 8(2), 2001.


	Introduction
	Preliminaries
	Undecidability
	Characterizations
	Decidability and Complexity
	Conclusion

