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Abstract
Deterministic two-way transducers define the robust class of regular functions which is, among
other good properties, closed under composition. However, the best known algorithms for com-
posing two-way transducers cause a double exponential blow-up in the size of the inputs. In this
paper, we introduce a class of transducers for which the composition has polynomial complexity.
It is the class of reversible transducers, for which the computation steps can be reversed determin-
istically. While in the one-way setting this class is not very expressive, we prove that any two-way
transducer can be made reversible through a single exponential blow-up. As a consequence, we
prove that the composition of two-way transducers can be done with a single exponential blow-up
in the number of states.

A uniformization of a relation is a function with the same domain and which is included in the
original relation. Our main result actually states that we can uniformize any non-deterministic
two-way transducer by a reversible transducer with a single exponential blow-up, improving the
known result by de Souza which has a quadruple exponential complexity. As a side result, our
construction also gives a quadratic transformation from copyless streaming string transducers to
two-way transducers, improving the exponential previous bound.
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1 Introduction

Automata and transducers. Automata theory is a prominent domain of theoretical com-
puter science, initiated in the 60s [4] and still very active nowadays. Many extensions of
finite automata have been studied such as automata over more complex structures (infinite
words, trees, etc) or transducers which can be seen as automata with an additional write-only
output tape and which will be the focus of our study in the remainder of this article.

Transducers have been studied for almost as long as automata [1] and important results
have been obtained, however the theory of transducers is not as advanced as automata theory.
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Figure 1 The language A˚aA˚ can be recognized by a deterministic (left) or codeterministic
(right) automaton, but not by a reversible one.

One of the reasons for this is that many descriptions which are equivalent for automata
become different in expressiveness in the case of transducers. For instance, deterministic
and non-deterministic automata recognize the same class of languages, the regular languages.
However this is not the case for transducers since in particular a deterministic transducer
must realize a function while a non-deterministic one may realize a relation. Similarly, by
allowing the reading head to move left and right, one gets a two-way model of automata and
it is known that two-way automata are as expressive as one-way automata [12]. However
two-way transducers can model relations and functions that are unobtainable in the one-way
case, such as the function mirror which reverses its input. Recently, two-way transducers
were also proven to be equivalent to the one-way deterministic model of streaming string
transducers [2], which can be thought of as transducers with write-only registers.

Reversible transducers. A transition system is called reversible when for every input, the
directed graph of configurations is composed of nodes of in-degree and out-degree at most
one. This property is stronger than the more studied notion of determinism since it allows
to navigate back and forth between the steps of a computation. In this article, we study the
class of transducers that are simultaneously deterministic and codeterministic, i.e. reversible.
The main motivation for the definition of this class is its good properties with respect
to composition. When we consider one-way transducers, runs only go forward and thus
determinism gives good properties for composition: the next step of a run is computed in
constant time. However, when considering composition of two-way transducers, the second
machine can move to the left, which corresponds to rewinding the run of the first machine.
Then the stronger property of reversibility allows for this back and forth navigation over
runs of transducers, and we recover the property of reaching the next (or previous here) step
of a computation in a constant time. This leads to the recovery of the polynomial state
complexity of composition which exists for deterministic one-way transducers.

Let us now discuss the expressiveness of reversible transducers. Regarding automata in the
one-way case, it is well-known that any regular language can be recognized by a deterministic
one-way automaton and symmetrically by a codeterministic one-way automaton, since the
mirror of a regular language is still regular. However, the class of one-way reversible automata
is very restrictive (see Figure 1 for an example or [11] for a study of its expressive power,
where they are called bideterministic). It turns out however, that if we allow bidirectionality
then any regular language can be recognized by a reversible automaton. In fact, a two-way
reversible automaton can be constructed from either a one-way or two-way automaton using
only a linear number of states (see [9] and [10], respectively). We prove, as a consequence
of our main theorem, that reversible transducers are as expressive as functional two-way
transducers, and exactly capture the class of regular functions. As stated earlier, regular
functions are also characterized by streaming string transducers (SST). As a byproduct, we
also give a quadratic construction from copyless SST to reversible transducers, improving
results from [3, 6].
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Synthesis problem and uniformization of transducers. In the bigger picture of verification,
two-way transducers can be used to model transformations of programs or non-reactive
systems. If we consider the synthesis problem, where the specification is given as a relation of
admissible input-output pairs, an implementation is then given as a function, with the same
domain, relating a unique output to a given input. The uniformization problem asks if given
a relation, we can extract a function that has the same domain, and is included in the relation.
We argue that the synthesis problem can be instantiated in the setting of transformations as
the problem of uniformization of a non-deterministic two-way transducer by a functional
transducer. Our main result states that we can uniformize any non-deterministic two-way
transducer by a reversible transducer with a single exponential blow-up.

Related work. As stated earlier, reversible one-way automata were already considered
in [11]. Two-way reversible automata were shown to capture the regular languages in [9] by
a construction from a one-way deterministic automaton to a two-way reversible automaton
with a linear blow-up. This construction was extended to two-way automata in [10], still with
a linear complexity. However, these constructions for automata cannot be simply extended
to transducers because more information is needed in order to produce the outputs at the
right moment. To the best of our knowledge, reversible transducers have not been studied
yet, however, since we introduce reversible transducers as a tool for the composition of
transducers, our work can be linked with the construction of Hopcroft and Ullman that
gives the composition of a one-way transducer and a two-way transducer, while preserving
determinism. Our construction strictly improves theirs, since ours produces, with a polynomial
complexity instead of an exponential one, a reversible transducer that can in turn be easily
composed.

A procedure for the uniformization of a two-way non-deterministic transducer by a
deterministic one has been known since [7]. The complexity of this procedure is quadruply
exponential, while our construction is done in a single one, and produces a reversible
transducer.

Organization of the paper. Preliminary definitions are given in the next Section. In
Section 3, we present our main results on composability and expressiveness of reversible
transducers. Section 4 is devoted to the main technical construction of the paper. Connections
with streaming string transducers are discussed in Section 5 while further works are considered
in Section 6.

2 Automata and transducers

Given a finite alphabet A, we denote by A˚ the set of finite words over A, and by ε the
empty word. We will denote by A$% the alphabet AZt$,%u, where the new symbols $ and
% are called the left and right endmarkers. A language over A is a subset L of A˚. Given
two finite alphabets A and B, a transduction from A to B is a relation R Ď A˚ ˆB˚.

Automata. A two-way finite state automaton (2FA) is a tuple A “ pA,Q, qI , qF ,∆q, where
A is a finite alphabet; Q is a finite set of states partitioned into the set of forward states
Q` and the set of backward states Q´; qI P Q

` is the initial state; qF P Q` is the final
state; ∆ Ď QˆA$% ˆQ is the state transition relation. By convention, qI and qF are the
only forward states verifying pqI ,$, qq P ∆ and pq,%, qF q P ∆ for some q P Q. However, for
any backward state p´ P Q´, ∆ might contain transitions pp´,$, qq and pq,%, p´q, for some
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q P Q. Note that, in our figures, we do not represent explicitly the initial and final states,
and rather use arrows labeled with the endmarkers to indicate the corresponding transitions.
A configuration u.p.u1 of A is composed of two words u, u1 P A˚$% and a state p P Q. The
configuration u.p.u1 admits a set of successor configurations, defined as follows. If p P Q`, the
input head currently reads the first letter of the suffix u1 “ a1v1. The successor of u.p.u1 after
a transition pp, a1, qq P ∆ is either ua1.q.v1 if q P Q`, or u.q.u1 if q P Q´. Conversely, if p P Q´,
the input head currently reads the last letter of the prefix u “ va. The successor of u.p.u1
after pp, a1, qq P ∆ is u.q.u1 if q P Q`, or v.q.au1 if q P Q´. For every word u P A˚$%, a run of
A on u is a sequence of successive configurations % “ u0.q0.u

1
0, . . . , um.qm.u

1
m such that for

every 0 ď i ď m, uiu
1
i “ u. The run % is called initial if it starts in configuration qI .u, final

if it ends in configuration u.qF , accepting if it is both initial and final, and end-to-end if it
starts and ends on the boundaries of u. More precisely, it is called left-to-right if q0, qm P Q`

and u0 “ u1m “ ε; right-to-left if q0, qm P Q´ and u10 “ um “ ε; left-to-left if q0 P Q
`,

qm P Q´ and u0 “ um “ ε; right-to-right if q0 P Q
´, qm P Q` and u10 “ u1m “ ε. Abusing

notations, we also denote by ∆ the extension of the state transition relation to a subset of
QˆA˚$% ˆQ composed of the triples pp, u, qq such that there exists an end-to-end run on u
between p and q. For every triple pp, u, qq P ∆, we say that q is a u-successor of p and that p
is a u-predecessor of q. The language LA recognized by A is the set of words u P A˚ such
that $ u % admits an accepting run, i.e., pqI ,$ u %, qF q P ∆. The automaton A is called

a one-way finite state automaton (1FA) if the set Q´ is empty;
deterministic if for all pp, aq P QˆA$%, there is at most one q P Q verifying pp, a, qq P ∆;
codeterministic if for all pq, aq P QˆA$%, there is at most one p P Q verifying pp, a, qq P ∆;
reversible if it is both deterministic and codeterministic.
weakly branching if for all a P A there is at most one state p P Q and one pair of distinct
states q1, q2 P Q such that pp, a, q1q P ∆ and pp, a, q2q P ∆.

An automaton with several initial and final states can be simulated by using non-determinism
while reading the endmarker $ and non-codeterminism while reading the endmarker %, hence
requiring a single initial state and a single final state does not restrict the expressiveness of
our model. Let us remark that unlike in the case of most two-way machines, a reversible
two-way automaton always halts on any input. Indeed, codeterminism insures that it is
never the case that two transitions head to the same configuration. Hence, the unique run
(due to determinism) cannot loop since no configuration can be visited twice, and the first
configuration starts from the left of the initial endmarker, which is a configuration that
cannot be reached later on in the run.

Transducers. A two-way finite state transducer (2FT) is a tuple T “ pA,B,Q, qI , qF ,∆, µq,
where B is a finite alphabet; AT “ pA,Q, qI , qF ,∆q is a 2FA, called the underlying automaton
of T ; and µ : ∆ Ñ B˚ is the output function. A run of T is a run of its underlying automaton,
and the language LT recognized by T is the language LAT P A

˚ recognized by its underlying
automaton. Given a run % of T , we set µp%q P B˚ as the concatenation of the images by µ of
the transitions of T occurring along %. Note that in the deterministic (or codeterministic)
case we are able to extend µ to end-to-end runs since in this case we can unambiguously
associate an end-to-end run to a unique sequence of transitions pp, u, qq. The transduction
RT Ď A˚ ˆB˚ defined by T is the set of pairs pu, vq such that u P LT and µp%q “ v for an
accepting run % of AT on $ u %. Two transducers are called equivalent if they define the same
transduction. A transducer T is respectively called one-way (1FT), deterministic, weakly
branching, codeterministic or reversible, if its underlying automaton has the corresponding
property.
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(a) A deterministic 1FA A1
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(b) A reversible 2FA A2

Figure 2 Two automata recognizing the language Laa “ A˚aaA˚.

Examples. Let us consider the language Laa Ď ta, bu
˚ composed of the words that contain

two a symbols in a row. This language is recognized by the deterministic one-way automaton
A1, represented in Figure 2a, and by the reversible two-way automaton A2, represented
in Figure 2b. However, it is not recognizable by a one-way reversible automaton. Let us
analyze the behavior of A2 to see how moving back and forth through the input allows it
to recognize Laa in a reversible manner. First, A2 uses an intermediate step to go from 1`
back to 0` when reading a b, to avoid creating non-codeterminism. Second, once A2 reads
two consecutive a symbols, it does not go directly in the final state looping on every input,
since this would generate non-codeterminism. Instead, A2 goes in an inverse copy of the first
three states, where it rewind its run until the left endmarker. It is then free to go in the
looping accepting state.

3 Results on reversible transducers

In this section, we present the main results of our paper. In Subsection 3.1, we show the
polynomial composition of reversible transducers. In the following, we give expressiveness
results of the class of reversible transducers, relying on this composition procedure as well as
the construction presented in Section 4.

3.1 Composition of reversible transducers
The nicest feature of reversible transducers has to be the low complexity (and simplicity)
of their composition. Indeed the composition of two such transducers is polynomial in the
number of states of the inputs, and the construction is itself quite simple. This is due to the
fact that the difficult part in the composition of transducers is to be able to navigate the run
easily. In the one-way case, the composition is easy since runs can only move forward. In the
two-way case, one needs to advance in the run, but also rewind it. Since the former is made
easy by the determinism, and the latter is symmetrically handled by the codeterministim,
composition of reversible transducers is straightforward. Let us also remark that only the
first transducer has to be reversible in order to obtain a polynomial complexity. However the
reversible nature of the obtained transducer depends on the input transducers being both
reversible.

I Theorem 1. Let T1 be a reversible two-way transducers and T2 be two-way transducer with
n1 and n2 states respectively, such that T1 can be composed with T2. Then one can construct
a two-way transducer T3 with n1 ¨ n2 states realizing RT2 ˝RT1 .
Furthermore, if T2 is reversible, deterministic or codeterministic, then so is T3.

Proof. Let T1 “ pA,B,Q, qI , qF ,∆, µq and T2 “ pB,C, P, pI , pF ,Γ, νq. We define T3 “

pA,C,Qˆ P, pqI , pIq, pqF , pF q,Θ, ξq. The idea is that at each step, T3 simulates a transition
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δ P ∆, plus the behavior of T2 over the production µpδq P B˚ of this transition. To be
precise, the transducer T3 also detects when it simulates an initial or final configuration of
T1 (i.e. upon reading an endmarker in the initial or final state), and accordingly adds the
corresponding endmarker to the production before simulating T2. The partition of the set of
states of T3 depends on the combination of the signs of both components. If T2 is moving to
the right, we use the determinism of T1, we update the first component of the current state
according to the unique transition δ originating from it, and we simulate T2 entering µpδq
from the left. To do so, T3 needs to have access to the same letter of the input tape as T1.
Thus, we have pQ` ˆ P`q Ď pQˆ P q` and pQ´ ˆ P`q Ď pQˆ P q´. If T2 is moving to the
left, then we use the codeterminism of T1 to rewind the corresponding run, we update the
first component of the current state according to the unique transition δ arriving in it, and
we simulate T2 entering µpδq from the right. To do so, T3 needs to have access to the letter on
the other side of the input head (with respect to T1). Thus, we have pQ´ ˆP´q Ď pQˆP q`
and pQ` ˆ P´q Ď pQˆ P q´.

We now define the transition function Θ and the production function ξ. Let pq, a, q1q P ∆
be a transition of T1 such that % “ pp, v, p1q is an end-to-end run of T2, where v denotes the
word µpq, a, q1q P B˚.

If % is a left-to-right run of T2, then ppq, pq, a, pq1, p1qq belongs to Θ and produces νpp, v, p1q.
If % is a left-to-left run of T2, then ppq, pq, a, pq, p1qq belongs to Θ and produces νpp, v, p1q.
If % is a right-to-right run of T2, then ppq1, pq, a, pq1, p1qq belongs to Θ and produces
νpp, v, p1q.
If % is a right-to-left run of T2, then ppq1, pq, a, pq, p1qq belongs to Θ and produces νpp, v, p1q.

The behavior of the transducer T3 is completely determined by the combined behaviors
of transducers T1 and T2. When T3 simulates a transition of T1, it also simulates the
corresponding end-to-end run of T2 over the production of this transition. If the direction
of both simulations is the same, then T3 moves forward. Otherwise, it moves backward.
The transducer stops when it reaches a final state in both T1 over the input, and T2 over
the simulated run over partial productions of the run of T1 over the input. Then the final
output of T3 is the concatenation of the outputs of the partial runs of T2 it simulates, which
corresponds to the output of T1. Hence, the transducer T3 realizes the composition T2 ˝ T1.
The possible determinism (resp. codeterminism) of T3 is a direct consequence of the one of T1
and T2. Indeed, a witness of non-determinism (resp. non codeterminism) of T3 can be traced
back to a witness run of either T1 or T2 that is not deterministic (resp.codeterministic). J

3.2 One-way transducers

In the next subsections, we give some procedures to construct a reversible transducer from
either a one-way or a two-way transducer. The main ingredient of the proofs is the technical
construction from Lemma 6 (presented in Section 4) which constructs a reversible transducer
from a weakly branching codeterministic one-way transducer. The proofs of this section share
the same structure: in order to build a reversible transducer that defines a function F , we
express F as a composition of transductions definable by reversible transducers, and we
conclude by using Theorem 1. The detailed constructions are presented in the full version of
this article. Building on Lemma 6, we show that codeterministic one-way transducers can be
expressed as the composition of weakly branching codeterministic ones.

I Theorem 2. Given a codeterministic 1FT with n states, one can effectively construct an
equivalent reversible 2FT with 4n2 states.
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Proof. Let T be a codeterministic 1FT with n states. The function RT can be expressed as
the composition RT 1 ˝RM , where M and T 1 are defined as follows.

Transducer M is a reversible 1FT with a single state that multiplies all the letters of the
input word by n while marking them with a state of T ;
Transducer T 1 is a weakly branching and codeterministic one-way transducer that has the
same set of states as T . On input RMpuq, T 1 mimics the behavior of T on u, while using
the fact that the input word is larger to desynchronize the non-deterministic branchings
that were occurring simultaneously in T . Intuitively, a transition of T can only be taken
by T 1 at the copy of the letter corresponding to the target state of the transition.

By Lemma 6, T 1 can be made into a reversible 2FT T 2 with 4n2 states. Therefore, since both
T 2 and M are reversible, we can conclude using Theorem 1, finally obtaining a reversible
2FT with 4n2 states equivalent to T . J

Using composition again, the statement can be extended to deterministic one-way trans-
ducers.

I Theorem 3. Given a deterministic 1FT with n states, one can effectively construct an
equivalent reversible 2FT with 36n2 states.

Proof. Let T be a deterministic 1FT with n states. Then sT , the transducer obtained by
reversing all transitions of T , is codeterministic. The function RT can be expressed as the
composition RMB

˝R
sT ˝RMA

, whereMA andMB realize the mirror functions over the input
and output alphabet of T respectively. Both of them are realized by a 3 states reversible
transducer. Then by Theorem 2, we can construct sT 1 which has 4n2 states, is reversible
and realizes the same function as sT . By Theorem 1, we can compose the three transducers,
finally obtaining a reversible transducer equivalent to T with 9 ¨ 4n2 states. J

3.3 Two-way transducers
We now prove our main result, which states that any two-way transducer can be uniformized
by a reversible two-way transducer. Let us recall that uniformization by a deterministic
transducer was done in [7]. We use similar ideas for the uniformization. The key difference
is that we rely on the construction of Section 4 while in [7], the main construction is the
tree-trimming construction of Hopcroft-Ullman from [8].

I Theorem 4. Given a 2FT T with n states, one can effectively construct a reversible 2FT
T 1 whose number of states is exponential in n, and verifying LAT 1 “ LAT and RT 1 Ď RT .

Proof. Let T “ pA,B,Q, qI , qF ,∆, µq be a 2FT with n states. We define a function uni-
formizing RT as the composition RT 1 ˝ RU ˝ RDr

, where Dr, U and T are defined as
follows.

The right-oracle Dr is a codeterministic one-way transducer with 2n2
`n states that

enriches each letter of the input word u P A˚$% with information concerning the behavior
of T on the corresponding suffix, represented by the set of pairs that admit a left-to-left
run, and the set of states from which T can reach the final state.
The uniformizer U is a deterministic one-way transducer with n! states. On input
u1 “ RDr puq, U uses the information provided by Dr to pick a run %u of T on input u,
and enriches each letter ai of the input word with the sequence of transitions occurring
in the run %u that correspond to the letter ai.
Finally, the reversible transducer T 1 has the same set of states as T , and follows the
instructions left by U to solve the non-determinism and the non-codeterminism.
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As a consequence of Theorem 2 and Theorem 3, there exist two reversible 2FT Dr
1 and U 1

whose number of states are exponential in n, and that verify RD1r “ RDr
and RU 1 “ RU .

Therefore, since Dr
1, U 1 and T 1 are reversible, by Theorem 1 there exists a reversible transducer

T 2 whose number of states is exponential in n, and that satisfies RT 2 “ RT 1 ˝RU 1 ˝RDr
1 “

RT . J

The following result is a direct corollary of Theorem 4, applied to deterministic two-way
transducers.

I Corollary 5. Reversible two-way transducers are as expressive as deterministic two-way
transducers.

4 The tree-outline construction

In this section lies the heart of our result. We show that any weakly branching and code-
terministic transducer can be made reversible. These hypotheses allow us to simplify our
proof, and still obtain a more general result, as a corollary.

I Lemma 6. Let T be a codeterministic and weakly branching 1FT with m states. Then one
can effectively construct a reversible 2FT T 1 with 4m2 states that is equivalent to T .

Proof. The construction presented in this proof is illustrated on an example in Figure 3. Let
T “ pA,Q, qI , qF ,∆, µq be a codeterministic 1FT, and let ă be a total order over Q. As an
example, take the codeterministic 1FT T presented in figure 3a.

Let T 1 “ pA,F , fI , fF ,∆1, µ1q be a 2FT defined as follows:
On input u P LT , T 1 explores depth first the run-tree Tu composed of the initial runs of

T on the word $ u % (illustrated in Figure 3b). More precisely it explores the “sheath” of
the run-tree (see Figure 3c for a graphical representation). To do this, the states of T 1 are
composed of two states of T with a marker. The first state represents the upper part of the
sheath, while the second state represents the lower part. Moreover the marker is used to
denote whether we are above the branch (q) or below the branch (q).

Initially we start with the state pqI , qIq and go forward according to the transitions of T .
While moving forward whenever a branching state q is reached, if the state is marked q it
moves to the maximal successor of q (in order to stay above the branch) and symmetrically
if the state is marked q it moves to the minimal successor of q (in order to stay below the
branch). Whenever one of the branches reaches a dead end we continue the sheath exploration
by switching the marker (i.e. changing from above the branch to below or vice-versa) and
start moving backward accordingly to the transitions of T . While moving backward, if
the successor of a branching state q is reached, while we were inside the fork, e.g. in state
qmax (where qmax is the maximal successor of q), we continue the exploration of the sheath
by going in the state qmin and we start moving forward again. Whenever the upper and
lower explorations of the sheath coincide, i.e. in states of the form pq, qq (represented in red
in Figure 3d), it means we are on a prefix of the accepting run, we can thus produce the
corresponding output.

Formally T 1 “ pA,F , fI , fF ,∆1, µ1q is defined as follows:
F “ F`YF´ where F` “ QˆQYQˆQ and F´ “ pQˆQYQˆQqztpp, pq, pp, pq | p P Qu
fI “ pqI , qIq

fF “ pqF , qF q

We define the transition relation ∆1 by differentiating several types of behavior, depending
on whether we are going forward, or backward, whether the upper component or the
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Figure 3 Illustrations of the proof concepts of Lemma 6. For the sake of clarity, the outputs of
T are omitted.

lower component is involved, and whether it is above or below its branch. Let p and q
be two states in Q, and a P A be a letter.
If p has no a-successor, then:
(fua)

`

pp, qq, a, pp, qq
˘

P ∆1, and
(fuw)

`

pp, qq, a, pp, qq
˘

P ∆1.
If p has an a-successor, but not q, then:
(flw)

`

pp, qq, a, pp, qq
˘

P ∆1, and
(fla)

`

pp, qq, a, pp, qq
˘

P ∆1.
Otherwise, p and q admit an a-successor. We denote pmax (resp. pmin) the maximal (resp.
minimal) a-successor of p (resp. q) with respect to ă. Then:
If pmin ‰ pmax, then:
(buw)

`

ppmax, qq, a, ppmin, qq
˘

P ∆1, and
(bua)

`

ppmin, qq, a, ppmax, qq
˘

P ∆1.
If qmin ‰ qmax, then:
(bla)

`

pp, qminq, a, pp, qmaxq
˘

P ∆1
(blw)

`

pp, qmaxq, a, pp, qminq
˘

P ∆1

(fualw)
`

pp, qq, a, ppmax, qminq
˘

P ∆1,
(fuwla)

`

pp, qq, a, ppmin, qmaxq
˘

P ∆1,
(bulw) pppmin, qminq, a, pp, qqq P ∆1, and
(bula)

`

ppmax, qmaxq, a, pp, qq
˘

P ∆1.

We define µ1 as the function such that for every pp, a, qq P ∆:
if q “ pmin “ pmax then µ1

`

pp, pq, a, pq, qq
˘

“ µpp, a, qq

if q “ pmin ‰ pmax then µ1
`

ppmax, qq, a, pq, qq
˘

“ µpp, a, qq

if q “ pmax ‰ pmin then µ1
`

pq, pminq, a, pq, qq
˘

“ µpp, a, qq

and µ1ptq “ ε for every t P ∆1 which is not of one of theses forms.
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One can see, by a case study that T 1 is deterministic. Indeed, the fact that T is weakly
branching implies that the rules (buw) and (bua) are mutually exclusive with the rules
(bla) and (blw). Moreover these four rules are mutually exclusive with the rules (bulw)
and (bula) by construction. And since T is codeterministic, the predecessor is unique.
Finally, the rules (fua), (fuw), (flw), (fla), (fualw), and (fuwla) are mutually exclusive
by construction, since the conditions on the number of a-successors are incompatible.

A similar case study gives that T 1 is codeterministic. Hence T 1 is reversible.
A detailed proof of the equivalence between T and T 1 can be found in the full version of

the article, and we give a quick intuition of the proof. It relies on two main arguments. The
first one is that at any point if the transducer T 1 follows two different runs, then it will come
back to the same position, where the state that leads to the shortest run has been switched.
Following this, we then prove that upon any branching, T 1 comes back to the same position
but since the shortest run has been switched, it is able to solve the non-determinism, take
the transition of the accepting run and produce the correct output. J

5 Streaming string transducers

Streaming string transducers, which were introduced in [2], are one-way deterministic
automata with additional write-only registers. Partial outputs are stored in the registers via
register updates, and at the end of a run an output is produced using these registers. Thus
an SST realizes a function over words, and it is known that they are as expressive as 2FT [2].
Direct transformations from SST to 2FT were already considered in [3, 6]. However, these
constructions were exponential in the number of states (and linear in the number of registers).
Using Theorem 3, we are able to get a construction which is quadratic in the number of
states (and also linear in the number of registers). Before explaining the construction, let us
formally define the SST.

Substitutions. Given a finite alphabet A and a finite set X of variables. Let SX ,A denote
the set of functions σ : X Ñ pX YAq˚. The elements of SX ,A are called substitutions. Any
substitution σ can be extended to range over both variables and letters of the output alphabet
σ̂ : pX Y Aq˚ Ñ pX Y Aq˚ by setting σ̂paq “ a for every a P A˚ and σ̂puvq “ σ̂puqσ̂pvq for
u, v P pX YAq˚. This allows us to easily compose substitutions from SX ,A by defining σ2 ˝σ1
as the usual function composition σ̂2 ˝ σ1. We denote by IdX the identity element of SX ,A,
which maps every variable to itself, and by σε the substitution mapping every variable to ε.

A substitution σ is called copyless if for every X P X , each variable Y P X appears at
most once in σpXq, and for every Y P X there exists at most one X P X such that Y appears
in σpXq.

Streaming string transducers. A streaming string transducer (SSTfor short) is a tuple
Z “ pA,B,Q, qI , qF ,∆,X , O, τq, where B is the output alphabet, AZ “ pA,Q, qI , qF ,∆q is
a one-way deterministic automaton, called the underlying automaton of Z; X is a finite
set of variables; O P X is the final variable; τ : ∆ Ñ SX ,B is the output function. A run
of Z is a run of its underlying automaton, and the language LZ recognized by Z is the
language LAZ P A

˚ recognized by its underlying automaton. Given a run % of Z on u, we
set τp%q P SX ,B as the composition of the images by τ of the transitions of Z occuring along
%. The transduction RZ Ď A˚ ˆ B˚ defined by Z is the function mapping any word u of
LAZ to pσε ˝ τp%qqpOq, where % is the single accepting run of AZ on $ u %. The SST Z is
called copyless, if for every run % of Z the substitution τp%q is copyless.
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I Theorem 7. Given a copyless SST with n states and m variables, one can effectively
construct an equivalent reversible 2FT with 8m ¨ n2 states.

Proof. We write Z as the composition of a one-way deterministic transducer D1 and a
reversible one T . The first transducer has the same underlying automaton as Z, the
difference being that it outputs the substitution of Z instead of applying it. Then T is a
transducer that navigates the substitutions to produce the output word of Z. This can be done
in a reversible fashion thanks to the property of copylessness of Z. Note that the transducer
T was already defined in [6], Section 4. Formally, let Z “ pA,B,Q, qI , qF ,∆,X , O, τq be
a copyless SST with n states and m variables, and let SZ Ă SA,X be the range of τ . We
express RZ as the composition of RD1 : LAZ Ñ S˚Z and RT2 : S˚Z Ñ B˚, defined as follows.

D1 is a deterministic 1FT obtained by stripping Z of its SST structure, i.e., D1 “

pA,SZ , Q, qI , qF ,∆, τq. It maps each word of LAZ to the corresponding sequence of
substitutions.
T “ pSZ , B, P, init, fin,Γ, νq where P` “ X o Z tinit, finu, P´ “ X i. States labeled by
i (resp. o) are in (resp. out) states and appear when we start (resp. finish) producing a
variable. We define Γ and ν as follows:
pinit, σ, initq P Γ;
pinit,$, Oiq P Γ;
pOo,%, finq P Γ;
pXi, σ, Y iq P Γ and νppXi, σ, Y iqq “ v if σpXq “ vY... with v P B˚;
pXi, σ,Xoq P Γ and νppXi, σ,Xoqq “ v if σpXq “ v;
pXo, σ, Y iq P Γ and νppXo, σ, Y iqq “ v if there exists a variable Z where σpZq “
...XvY..;
pXo, σ, Y oq P Γ and νppXo, σ, Y oqq “ v if σpY q “ ...Xv.

Due to copylessness, for any σ and any variable X, there is at most one variable Y such
that X appears in σpY q. Plus, as the variables are ordered by their appearance in σpY q,
the transducer T is reversible. It starts by reaching the end of the word, then starts
producing the variable O. By following the substitution tree of O, it then produces
exactly the image of the input by Z.

By Theorem 3, there exists a reversible 2FT D11 with 4n2 states satisfying RD11 “ RD1 .
Finally, since both D11 and T are reversible, by Theorem 1 there exists a reversible transducer
T 1 with 8m ¨ n2 states such that RT 1 “ RT ˝RD11 “ RZ . J

6 Conclusion

We argue that reversible transducers can be seen as a canonical representation of regular
transductions. We believe that the polynomial complexity of composition of reversible trans-
ducers is a good tool for the verification of cascades of transformations of non-reactive systems.
While preserving the expressive power of functional transducers, reversible transducers allow
for easier manipulations, the best example being their polynomial composition. Thanks
to the tree-outline construction that we presented, one can uniformize a non-determinsitic
two-way transducer by a reversible one with a single exponential blow-up. This improves
the known constructions that were used up to now, however it is still open whether this
blow-up can be avoided. In [10] the authors extended the result of [9] and showed that
deterministic two-way automata can be made reversible with a linear blow-up. We conjecture
that our approach can also be extended to the two-way case and that deterministic two-way
transducers can be made reversible using only a polynomial number of states.
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We have shown that applying this construction allows for a quadratic transformation
from copyless streaming string transducers to reversible two-way transducers. The converse
does not hold, since even on languages deterministic two-way automata are known to be
exponentially more succint than deterministic one-way automata. Beyond this, we do not
reject the possibility that if one were to embed some recognition power into the variables of
a SST, it may be possible to have a polynomial transformation from reversible automata to
copyless SST.
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