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Abstract
Consider the following variant of the set cover problem. We are given a universe U = {1, ..., n}
and a collection of subsets C = {S1, ..., Sm} where Si ⊆ U . For every element u ∈ U we need to
find a set φ (u) ∈ C such that u ∈ φ (u). Once we construct and fix the mapping φ : U 7→ C a
subset X ⊆ U of the universe is revealed, and we need to cover all elements from X with exactly
φ(X) :=

⋃
u∈X φ (u). The goal is to find a mapping such that the cover φ(X) is as cheap as

possible.
This is an example of a universal problem where the solution has to be created before the

actual instance to deal with is revealed. Such problems appear naturally in some settings when we
need to optimize under uncertainty and it may be actually too expensive to begin finding a good
solution once the input starts being revealed. A rich body of work was devoted to investigate
such problems under the regime of worst case analysis, i.e., when we measure how good the
solution is by looking at the worst-case ratio: universal solution for a given instance vs optimum
solution for the same instance.

As the universal solution is significantly more constrained, it is typical that such a worst-case
ratio is actually quite big. One way to give a viewpoint on the problem that would be less
vulnerable to such extreme worst-cases is to assume that the instance, for which we will have to
create a solution, will be drawn randomly from some probability distribution. In this case one
wants to minimize the expected value of the ratio: universal solution vs optimum solution. Here
the bounds obtained are indeed smaller than when we compare to the worst-case ratio.

But even in this case we still compare apples to oranges as no universal solution is able
to construct the optimum solution for every possible instance. What if we would compare our
approximate universal solution against an optimal universal solution that obeys the same rules
as we do? We show that under this viewpoint, but still in the stochastic variant, we can indeed
obtain better bounds than in the expected ratio model. For example, for the set cover problem we
obtain Hn approximation which matches the approximation ratio from the classic deterministic
offline setup. Moreover, we show this for all possible probability distributions over U that have a
polynomially large carrier, while all previous results pertained to a model in which elements were
sampled independently. Our result is based on rounding a proper configuration IP that captures
the optimal universal solution, and using tools from submodular optimization.

The same basic approach leads to improved approximation algorithms for other related prob-
lems, including Vertex Cover, Edge Cover, Directed Steiner Tree, Multicut, and Facility Location.

∗ A full version of the paper is available at http://arxiv.org/abs/1707.01702.
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1 Introduction

In a typical online problem part of the input is revealed gradually to an algorithm, which has
to react to each new piece of the input by making irrevocable choices. In an online covering
problem the online input consists of a sequence of requests, which have to be satisfied by the
algorithm by buying items at minimum total cost.

Some online applications have severe resource constraints, typically in terms of time
and/or computational power. Hence even making an online (non-trivial) choice might be too
costly. In these settings it makes sense to consider universal algorithms. Roughly speaking,
the goal of these algorithms is to pre-compute a reaction to each possible input, so that the
online choice can then be made very quickly (say, looking at some pre-computed table). Since
the adversary has a lot of power in the universal setting, typically one assumes a stochastic
input. In particular, the input is sampled according to some probability distribution π, which
is either given in input or that can be sampled multiple times at polynomial cost per sample
(oracle model).

The most relevant prior work for this paper is arguably due to Grandoni et al. [21]
(conference version in [20]). The authors consider the universal stochastic version of some
classical NP-hard covering problems such as set cover, non-metric facility location, multicut
etc. They provide polynomial-time approximation algorithms for those problems in the
independent activation model, where each request u is independently sampled with some
known probability pu. Crucially, in their work the approximation ratio is obtained by
comparing the expected cost of the approximate solution with the expected cost of the
optimal offline solution (that knows the future sampled input). For example, in the set cover
case they present a polynomial-time algorithm that computes a mapping of expected cost
at most O (log (nm))E [OPToff(X)], where the expectation is taken over the sampling of X
according to π and OPToff(X) is the minimum (offline) cost of a set cover of X. Here n is
size of the universe and m the number of subsets. For m� n this ratio becomes O

(
logm

log logm

)
and is tight. They also consider the universal (non-metric) facility location problem in the
independent activation model, and provide a O (logn) approximation (in the above sense),
where n is the total number of clients and facilities. We remark that their method seems not
to lead to any improved approximation factor in the metric version of the problem. We finally
mention their O(log2 n) approximation for universal multicut in the independent activation
model, where n is the number of nodes in the graph.

1.1 Our Results and Techniques
Comparing with the offline optimum as in [21] might be too pessimistic. And often when
we need to optimize under uncertainty we cannot really find a better benchmark, flagship
example of it would be online problems. However, stochastic two-stage [29, 42] and stochastic
adaptive [38, 13, 12, 23] problems have proven that one can actually compare an approximate
solution with an optimum algorithm that is not omnipotent but obeys the same rules of the
model as the approximate one. This inspired us to ask the following question:

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.35
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Is it also possible in a stochastic universal problem to compare our algorithm with an
optimum solution that is restricted by the model in the same way as we are?

In this paper we show that we can do this indeed. In this way we manage to obtain tighter
approximation ratios – which of course are compared to a weaker benchmark, but this
benchmark itself can be interpreted as more fair and meaningful – and it also allows us to
approach more general problems.

1.1.1 Universal Stochastic Set Cover
We shall describe carefully the Universal Stochastic Set Cover problem in this section
so that we will fully present the model. For the remaining problems their full statements will
appear in appropriate sections.

In the Universal Stochastic Set Cover problem we are given in input a universe
U = {1, 2, ..., n}, and a collection C ⊆ 2U of m subsets S ⊆ U , each one with an associated
cost c(S). We need to a priori map each element u ∈ U into some set φ(u) ∈ C. Then
a subset X ⊆ U is sampled according to some probability distribution π (either given in
input as a set of scenarios or only by accessing an oracle), and we have to buy the sets
φ(X) =

⋃
u∈X φ(u) as the cover of X. Our goal is to minimize the expected value of the total

cost, i.e., EX∼π [c (φ(X))] = EX∼π
[∑

S∈φ(X) c(S)
]
. One of the most important aspects in

our model is that we do not compare ourselves against the expected value of an optimum
offline solution for a given scenario, that is, not against EX∼π [OPToff (X)], but what we
compare ourselves with is

min
φ:∀u∈Uu∈φ(u)

EX∼π

 ∑
S∈φ(X)

c(S)


which is the expected outcome of an optimal universal mapping.

The results depend on the probability distribution with which we deal in an instance of
the problem. Possible probability distributions are:

Scenario model: Here we are given in input all the sets X1, ..., XN ⊆ U such that
PX∼π [X = Xi] > 0 with the associated probability. This model allows for explicit use of
all the scenarios in the computations. For the Universal Stochastic Set Cover we
obtain O(logn)-approximation in this case even in the weighted case.
Oracle model: This is the most general model. We have a black-box access to an oracle
Π from which we can sample a scenario from distribution π. We assume that taking a
sample requires polynomial time. In this model we can find an O (logn)-approximation
for Universal Stochastic Set Cover in polynomial time only for the unweighted
case; in the weighted case we achieve the same approximation factor in pseudo-polynomial
time depending on maxS∈C c (S).
Independent activation model: In this model we assume that every element u ∈ U is
independently sampled with some given probability pu. This model does not capture
correlations of elements, and therefore sometimes it is not fully realistic. Though it
cannot be represented by a polynomial number of scenarios, its nice properties allow one
to develop good approximation algorithms for several problems. In this setting we are
able to approximate Universal Stochastic Set Cover within a factor O (logn) in
polynomial time even in the weighted case.

Our results are obtained by defining a proper configuration LP (with an exponential number
of variables) that captures the optimal mapping. We are able to solve this LP via the ellipsoid
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method using a separation oracle. Somehow interestingly, our separation oracle has to solve a
submodular minimization problem. Then we can round the fractional solution in a standard
way.

1.1.2 Overview of the results
The robustness of our framework allows us to address universal extensions of several covering
problems. After expressing the goal as a true approximation task, we can adapt tools from
the rich theory of approximation algorithms.

Here we give an overview of our results. Detailed statements of the theorems appear in
appropriate sections.

Scenario model

In this setting, we are able to construct an LP-based polynomial-time O(logn)-approximation
to the universal stochastic version of Set Cover (Theorem 6), which generalizes to Non-
Metric Facility Location and Constrained Set Multicover. In fact, the latter
algorithm achieves an approximation guarantee of exactly Hn. Different rounding proced-
ure leads to a 2-approximation for Universal Stochastic Vertex Cover. All these
approximation ratios match the best guarantees obtained in the deterministic world. What is
more, the exact polynomial time algorithm for Edge Cover extends to the scenario model.
We also present an O(

√
k)-approximation for Universal Stochastic Directed Steiner

Tree on acyclic graphs, where k is the number of terminals. Except the Set Cover problem,
proof of all of these Theorems will appear in the full version of the paper.

Independent activation model

In this setting, we are able to obtain several results in flavour of the O(1)-approximation
for the Maybecast problem by Karger and Minkoff [33]. We present a 6.33-approximation
for Universal Stochastic Metric Facility Location (Theorem 8) and an O(logn)-
approximation for Universal Stochastic Multicut (Theorem 12). As an intermediate
result, we obtain a 4.75-approximation for Universal Stochastic Multicut on trees.

Oracle model

We can generalize most of our results for the scenario model to this setting, with the restriction
that in the weighted case we get a pseudo-polynomial running time. This will be discussed
in the full version.

1.2 Related work
Other universal-like problems have been addressed in the literature. For instance, in the
universal TSP problem one computes a permutation of the nodes that is then used to visit
a given subset of nodes. This problem has been studied both in the worst-case scenario
for the Euclidean plane [39, 6] and general metrics [32, 22, 27], as well as in the average-
case [31, 7, 43, 19, 45]. (For the related problem of universal Steiner tree, see [33, 32, 22, 19].)
Jia et al. [32] introduced the universal set cover and universal facility location problems,
and studied them in the worst-case: they show that the adversary is very powerful in such
models, and give nearly-matching Ω(

√
n) and O(

√
n logn) bounds on the competitive factor.

These problems have been later studied by Grandoni et al. in the independent activation
model [21], as already mentioned before.
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A somewhat related topic is oblivious routing [40, 28, 8] (see, e.g., [47, 49] for special cases).
A tight logarithmic competitive result as well as a polynomial-time algorithm to compute the
best routing is known in the worst case for undirected graphs [5, 41]. For oblivious routing on
directed graphs in the worst case the lower bound of Ω(

√
n) [5] nearly matches upper bounds

in [24] but for the average case. The authors of [25] give an O(log2 n)-competitive oblivious
routing algorithm when demands are chosen randomly from a known demand-distribution;
they also use “demand-dependent” routings and show that these are necessary.

Another closely related notion is the one of online problems. These problems have a long
history (see, e.g., [9, 16]), and there have been many attempts to relax the strict worst-case
notion of competitive analysis: see, e.g., [14, 1, 19] and the references therein. Online problems
with stochastic inputs (either i.i.d. draws from some distribution, or inputs arriving in random
order) have been studied, e.g., in the context of optimization problems [36, 37, 19, 4], secretary
problems [18], mechanism design [26], and matching problems in Ad-auctions [35].

Alon et al. [2] gave the first online algorithm for set cover with a competitive ratio of
O(logm logn); they used an elegant primal-dual-style approach that has subsequently found
many applications (e.g., [3, 10]). This ratio is the best possible under complexity-theoretic
assumptions [34]; even unconditionally, no deterministic online algorithm can do much
better than this [2]. Online versions of metric facility location are studied in both the worst
case [36, 17], the average case [19], as well as in the stronger random permutation model [36],
where the adversary chooses a set of clients unknown to the algorithm, and the clients are
presented to us in a random order. It is easy to show that for our problems, the random
permutation model (and hence any model where elements are drawn from an unknown
distribution) are as hard as the worst case.

One can of course consider the (offline) stochastic version of optimization problems. For
example, k-stage stochastic set cover is studied in [29, 44], with an improved approximation
factor (independent from k) later given in [46].

The result for the Oracle model are based on the Sample Average Approximation approach,
see [11] for the application most relevant to our work.

As mentioned before, in two-stage stochastic problems [42, 29] and stochastic adaptive
problems [13, 38, 12, 23] it is possible to compare our algorithms with an optimum algorithm
which is equally constrained in the model as our problem, and this is what shed a light on the
possibility of obtaining results in the same spirit for the universal stochastic optimization.

In two recent papers [48, 15] authors looked at universal optimization over scenarios, but
compared against the average offline optimum, and not the optimum universal solution as
we do. All the properties of submodular functions used in our work can be found here [50].

2 Preliminaries

Here we give some basic definitions and properties. Given a universe U , we call a function
f : 2U → R submodular if f(A) +f(B) ≥ f(A∩B) +f(A∪B) for each pair of sets A,B ⊆ U .
Function f is monotone if f(B) ≥ f(A) for A ⊆ B. When considering a submodular function,
we assume that it is implicitly given in the form of an oracle that can be queried on a specific
A ⊆ U and returns the value f(A) in constant time.

I Theorem 1 (Iwata et al. [30]). There is an algorithm to minimize a given submodular
function f : 2U → N in polynomial time in |U | and in the number of bits needed to encode
the largest value of f .

Let us introduce a function gπ : 2U → R+, gπ(A) = P[A ∩ X 6= ∅] where X is drawn
from the distribution π. Our framework exploits crucially the fact that gπ is a submodular
function.

ICALP 2017
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I Lemma 2. Function gπ is submodular and monotone.

Proof. Observe that gπ(A) =
∑
X⊆U π(X) · 1 [A ∩X 6= ∅]. Function A→ 1 [A ∩X 6= ∅] is

submodular and a combination of such functions with positive coefficients is submodular.
The monotonicity holds trivially by definition. J

3 Universal Set Cover

In this section we present our approximation algorithm for universal set cover. We start by
considering the case that π is given in input, in the form of a set of N scenarios X1, . . . , XN ,
where scenario Xi ⊆ U is sampled with some given probability pi = π(Xi). Then we
(partially) extend our approach to the oracle model. Recall that n = |U | is the number of
elements in the universe.

Consider the scenario case. Recall that, for B ⊆ U , gπ(B) = P[B ∩X 6= ∅], where the
probability is taken over X ⊆ U sampled from π (namely, one of the scenarios Ai in this
case). As mentioned before, gπ is a submodular function over the universe U .

We start by expressing our problem as the following integer program (IP).

min
∑
S∈C

c(S)
∑
B⊆S

ySB · gπ(B) (IP-SC)

s.t.
∑
B3u

∑
S⊇B

ySB ≥ 1 ∀u∈U

ySB ∈ {0, 1} ∀S∈C∀B⊆S . (1)

We obtain a linear relaxation (LP-SC) of (IP-SC) by replacing the integrality constraints
(1) with ySB ≥ 0.

I Lemma 3. Integer program (IP-SC) is equivalent to Universal Stochastic Set Cover.

Proof. It is easy to translate a mapping φ : U → C into some feasible solution to (LP-SC).
All variables are zeros by default and for each S ∈ C such that φ−1(S) is non-empty, we set
ySφ−1(S) = 1. Note that always φ−1(S) ⊆ S. In that setting the objective value equals the
expected cost of the covering.

Let us fix some feasible solution {ySB}S∈C, B⊆S . We know that for each u ∈ U there is
some pair (B,S) so that u ∈ B and ySB = 1 (we will call it a covering pair). As long as
there are many covering pairs for some u, we replace one of them with (B \ {u}, S). The
new solution is still feasible and the objective value is no greater as function gπ is monotone.
Therefore there exists an optimal solution so that each u ∈ U admits exactly one covering
pair (Bu, Su). We can define φ(u) = Su to obtain a covering with expected cost equal to the
value of the objective function. J

(LP-SC) has an exponential number of variables: in order to solve it we consider its
dual, and provide a separation oracle to solve it. Interestingly, our separation oracle uses
submodular minimization.

I Lemma 4. (LP-SC) can be solved in polynomial time.



M. Adamczyk, F. Grandoni, S. Leonardi, and M. Włodarczyk 35:7

Proof. We show how to solve the dual of (LP-SC), which is as follows:

max
∑
u∈U

αu (DP-SC)

s.t.
∑
u∈B

αu ≤ c(S) · gπ(B) ∀S∈C∀B⊆S

αu ≥ 0 ∀u∈U .

Observe that (DP-SC) has a polynomial number of variables and an exponential number
of constraints. In order to solve (DP-SC), it is sufficient to provide a (polynomial-time)
separation oracle, i.e. a procedure that, given a tentative solution {αu}u∈U , either determines
that it is feasible or provides a violated constraint.

This reduces to check, for each given S ∈ C, whether there exists B ⊆ S such that∑
u∈B αu > c(S) · gπ(B). In other terms, we wish to determine whether the minimum of

function hS(B) := c(S) · gπ(B)−
∑
u∈B αu is negative. Observe that the value of hS(B) can

be computed in polynomial time for a given B, since π is given in input as a set of scenarios.
Note also that hS is submodular: indeed gπ is submodular, costs c(S) are non-negative by
assumption, and −

∑
u∈B αu is linear (hence submodular). Hence we can minimize hS over

B ⊆ S in polynomial time via Theorem 1.1 J

Given the optimal solution to (LP-SC), it is sufficient to round it with the usual randomized
rounding algorithm for set cover.

I Lemma 5. The optimal solution to (LP-SC) can be rounded to an integer feasible solution
while increasing the cost by a factor O(logn) in expected polynomial time.

Proof. In the optimal solution, for each S ∈ C, variables {ySB}B⊆S define a probability
distribution. We sample from this distribution (independently for each S) for q = 2 lnn
many times. Let BS1 , . . . , BSq be the sets sampled for S: we let BS := ∪iBSi and tentatively
map elements of BS into S. In case the same element u belongs to BS′ and BS′′ for S′ 6= S′′,
we replace BS′ with BS′ \ {u} and iterate: this way each element is mapped into exactly
one set. The final sets BS induce our approximate mapping.

We can upper bound the expected cost of the solution by
∑
S∈C c(S)

∑q
i=1 gπ(BSi ). Indeed,

by the subadditivity of gπ (which is implied by submodularity and non-negativity), one
has gπ(BS) ≤

∑q
i=1 gπ(BSi ). Furthermore, gπ(BS′ \ {u}) ≤ gπ(BS′) since gπ is monotone.

Trivially

E

[∑
S∈C

c(S)
q∑
i=1

gπ(BSi )
]

= 2 lnn · E
[∑
S∈C

c(S)gπ(BS1 )
]

= 2 lnn ·
∑
S∈C

c(S)
∑
B⊆S

ySB · gπ(BS) ≤ 2 lnn ·OPT.

And from Markov’s inequality

P

[∑
S∈C

c(S)
q∑
i=1

gπ(BSi ) > 4 lnn ·OPT
]
<

1
2 .

1 In order to solve the configuration LP, there is an alternative to finding a separation oracle for the dual.
We can transform the configuration LP into a optimization program where we need to minimize a sum
of Lovasz’s extensions [50], which are convex functions, over a convex region. This approach would be
possibly more efficient, but we have chosen the one above for a simpler presentation.
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The probability that an element u ∈ U is not covered with a single sampling over ySB is∏
B3u

∏
S⊇B

(1− ySB) ≤
∏
B3u

∏
S⊇B

e−y
S
B = e

−
∑

B3u

∑
S⊇B

ySB ≤ 1
e
.

Therefore, by the independence of the sampling and the union bound, the probability that
at least one element is not covered is at most n · 1

e2 lnn = 1
n .

Altogether this gives a Monte-Carlo algorithm. As usual, this can be turned into a
Las-Vegas algorithm with expected polynomial running time by repeating the procedure
when some element is not covered or the cost of the solution is greater than 4 lnn ·OPT . J

The following theorem is a straight-forward consequence of Lemmas 4 and 5.

I Theorem 6. Universal Stochastic Set Cover in the scenario model admits a
polynomial-time O(logn) approximation algorithm w.r.t. the optimal universal mapping.

It turns out that not only the randomized rounding technique can be adapted to the
universal stochastic model but also the dual fitting technique. This allows us to improve the
above result to a purely deterministic algorithm with the approximation ratio exactly equal
to Hn. What is more, we are able to consider more general problems where each element u
is required to be covered at least r(u) times. Details will appear in the full version.

Our results can be also partially generalized to the oracle model, where the probability
distribution is given only by a blackbox oracle. In the unweighted case we are able to give a
polynomial time algorithm, while in the weighted case a pseudo-polynomial time one where
the complexity depends also on maxS c (S). Again, details will appear in the full version.

Finally, since in the independent activation model we can compute function gπ in
polynomial time, our approach works also in that case.

I Theorem 7. Universal Stochastic Set Cover in the independent activation model
admits a polynomial-time O(logn) approximation algorithm w.r.t. the optimal universal
mapping.

4 Metric facility location in the independent activation model

In the stochastic universal variant of the metric uncapacitated facility location (UniStoch-FL)
problem, we have a set of clients C and a set of facilities F . For each client c ∈ C and
facility f ∈ F , there is a cost d(c, f) paid if c is connected to f ; furthermore, there is a cost
of associated with opening facility f ∈ F . In the universal solution we need to assign every
client c ∈ C to a facility φ(c) ∈ F . Once a set X ⊆ U is realized we need to open all facilities
f ∈

⋃
c∈X φ (c) and connect each c ∈ X to φ (c). The goal is to minimize the expected total

cost of opening the facilities and connecting clients to facilities:

EX∼π

 ∑
f∈
⋃
c∈X

φ(c)

of +
∑
c∈X

d (c, φ (c))

 .
Just by direct modeling of the above formula with the configuration LP we can see that

the following is a relaxation of an integer program that solves the problem:

min
∑
f∈F

of
∑
B⊆C

yfB · gπ (B) +
∑
c∈C

∑
f∈F

gπ(c) · d (c, f) ·
∑

B⊆C:c∈B
yfB (CONF-LP-FL)

s.t. ∀c∈C :
∑
f∈F

∑
B⊆C:c∈B

yfB ≥ 1 and ∀f∈F∀B⊆C : yfB ≥ 0.
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LetOPTCONF−LP−FL be the optimal solution to the above LP. It holds thatOPTCONF−LP−FL
is a lower-bound on the expected outcome of an optimal universal solution.

What we are able to present in this section is a constant approximation in the case of
independent activation where every client c is independently chosen into the scenario with
probability pc. This restriction is due to the fact that we do not know of a good rounding
procedure in the general case, while we can solve the configuration LP even with the arbitrary
scenario distribution.

I Theorem 8. For Universal Stochastic Facility Location in the independent activa-
tion model there exists an algorithm with expected outcome cost at most 6.33·OPTCONF-LP-FL.

4.1 Transforming the LP
We start off with the following two inequalities for any S ⊆ C (see [33] for proof):

min
(

1,
∑
t∈S

pt

)
≥ gπ (S) = 1−

∏
t∈S

(1− pt) ≥
(

1− 1
e

)
min

(
1,
∑
t∈S

pt

)
. (2)

Now based on this inequality we shall transform and relax the (CONF-LP-FL) to get one
that is a bit easier to tackle. The inequality implies that the solution of the following LP is
at most e

e−1 bigger than the solution of (CONF-LP-FL):

min
∑
f∈F

of
∑
B⊆C

yfB ·min
(

1,
∑
c∈B

pc

)
+
∑
c∈C

∑
f∈F

gπ(c) · d (c, f) ·
∑

B⊆C:c∈B
yfB (3)

s.t.
∑
f∈F

∑
B⊆C:c∈B

yfB ≥ 1 ∀c∈C

yfB ≥ 0 ∀f∈F∀B⊆C .

Let Big be a collection of sets B ⊆ C such that
∑
t∈B pt > 1, and let Sml be a collection

of sets B ⊆ C such that
∑
t∈B pt ≤ 1. Define xfc to be the extent to which c was assigned

to f via sets from Big, and x̄fc the extent to which c was assigned to f via sets from Sml,
i.e., xfc =

∑
B∈Big:c∈B y

f
B and x̄fc =

∑
B∈Sml:c∈B y

f
B . Also, for every client c there is an

obvious inequality
∑
B∈Big y

f
B ≥

∑
B∈Big:c∈B y

f
B = xfc . Now we can lower bound (3):

∑
f∈F

of

 ∑
B∈Big

yfB +
∑

B∈Sml

yfB ·

∑
j∈B

pj

+
∑
c∈C

∑
f∈F

pc · d (c, f) ·
∑

B⊆C:c∈B
yfB

=
∑
f∈F

of

 ∑
B∈Big

yfB

+
∑
f∈F

∑
c∈C

of · pc

( ∑
B∈Sml:c∈B

yfB

)
+
∑
c∈C

∑
f∈F

pc · d (c, f) ·
∑

B⊆C:c∈B
yfB

≥
∑
f∈F

of ·max
c∈C

(
xfc
)

+
∑
f∈F

∑
c∈C

of · pc · x̄fc +
∑
c∈C

∑
f∈F

pc · d (c, f) ·
(
xfc + x̄fc

)
.

I Lemma 9. Let OPTLP−FL be the optimum solution of the following LP:

min
∑
f∈F

of ·max
c∈C

(
xfc
)

+
∑
f∈F

of ·
∑
c∈C

pc · x̄fc +
∑
c∈C

∑
f∈F

pc · d (c, f) ·
(
xfc + x̄fc

)
(LP-FL)

s.t. ∀c∈C :
∑
f∈F

xfc + x̄fc ≥ 1 and ∀f∈F∀c∈C : xfc , x̄fc ≥ 0.

It holds that OPTLP−FL ≤ e
e−1 ·OPTCONF−LP−FL.
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4.2 The rounding procedure

LP-FL has a polynomial number of variables and constraints, and so it can be solved in
polynomial time; denote by

(
xfc , x̄

f
c

)
c∈C,f∈F the optimal solution. Once we solve it we split

the clients into two groups:

Cbig :=

c ∈ C
∣∣∣∣∣∣
∑
f∈F

xfc ≥
3
4

 and Csml =

c ∈ C
∣∣∣∣∣∣
∑
f∈F

x̄fc >
1
4

 .

Dealing with clients from Cbig

From the definition we get that
( 4

3x
f
c

)
c∈Cbig,f∈F

is a feasible solution to the following
problem, which is a variant of the deterministic facility location problem where the price for
the distance for client c ∈ C is proportional to the factor pc:

min
∑
f∈F

of · max
c∈Cbig

(
zfc
)

+
∑
c∈C

∑
f∈F

pc · d (c, f) · zfc

s.t. ∀c∈Cbig :
∑
f∈F

zfc ≥ 1 and ∀f∈F∀c∈Cbig : zfc ≥ 0.

For this problem there exists a 3-approximation algorithm based on primal-dual method (the
proof is a simple exercise and will appear in the full version of the paper); let

(
zfc
)
c∈C,f∈F

be such an integral solution. Thus we have∑
f∈F

of · max
c∈Cbig

(
zfc
)

+
∑

c∈Cbig

∑
f∈F

pc · d (c, f) · zfc

≤ 3·
∑
f∈F

of · max
c∈Cbig

(
4
3x

f
c

)
+ 3 ·

∑
c∈Cbig

∑
f∈F

pc · d (c, f) · 4
3x

f
c

≤ 4·
∑
f∈F

of ·max
c∈C

(
xfc
)

+ 4 ·
∑
c∈C

∑
f∈F

pc · d (c, f) · xfc . (4)

Dealing with clients from Csml

Now the
(
4 · x̄fc

)
c∈Csml,f∈F

vector is a feasible solution to the following LP:

min
∑

c∈Csml

∑
f∈F

pc (of + d (c, f)) · zfc

s.t. ∀c∈Csml :
∑
f∈F

zfc ≥ 1 and ∀f∈F∀c∈Csml : zfc ≥ 0.

We can find an integral solution to this LP easily: just assign every client c ∈ Csml to the
facility f that minimizes of + d (c, f). If

(
zfc
)
c∈Csml,f∈F

is such an integral solution, then
we have that∑

c∈Csml

∑
f∈F

pc (of + d (c, f)) · zfc ≤
∑

c∈Csml

∑
f∈F

pc (of + d (c, f)) · 4x̄fc . (5)
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Combining the two solutions

In this way the solution composed from two integer vectors
(
zfc
)
c∈Cbig,f∈F

and
(
zfc
)
c∈Csml,f∈F

is a feasible solution to the (LP-FL), and by combining (4) and (5) its value is∑
f∈F

of · max
c∈Cbig

(
zfc
)

+
∑
f∈F

∑
c∈Csml

of · pc · zfc +
∑
c∈C

∑
f∈F

pc · d (c, f) · zfc

≤ 4·
∑
f∈F

of ·max
c∈C

(
xfc
)

+
∑
f∈F

∑
c∈C

of · pc · 4x̄fc +
∑
c∈C

∑
f∈F

pc · d (c, f) ·
(
4xfc + 4x̄fc

)
≤ 4· e

e− 1OPTCONF−LP−FL < 6.33 ·OPTCONF−LP−FL.

Thus we found a solution
(
zfc
)
c∈C,f∈F for the (LP-FL) whose value is at most 6.33 ·

OPTCONF−LP−FL. However using the left-side inequality from (2) we can transform it into
a solution of the (CONF-LP-FL) without losing its value. Hence we found a solution to the
Universal Stochastic Facility Location which is a 6.33-approximation.

5 Multicut in the independent activation model

In the (classical version of the) Multicut problem we are given an undirected graph G

with non-negative costs ce for all e ∈ E(G) and a set of pairs of vertices (s1, t1), . . . , (sk, tk).
The goal is to erase a subset of edges F of small cost so that there is no path connecting sc
with tc for any c. Multicut may be considered a covering problem in which the client c is
covered if F contains some (sc, tc)-cut.

In the universal stochastic setting we are also given a probability distribution π over the
subsets of C = [1, k] and the solution is a mapping φ : C → 2E such that φ(c) forms a (sc, tc)-
cut. The expected cost of the solution induced by a mapping φ equals EX∼π

[∑
e∈φ(c)
c∈X

ce

]
.

We express the problem with a configuration integer program. Let Pc denote the family
of all paths connecting sc with tc and let yeB = 1 mean that B = {c ∈ C : e ∈ φ(c)}.

min
∑
e∈E

ce
∑
B⊆C

yeB · gπ (B) (CONF-IP-MC) (6)

s.t.
∑
e∈P

∑
B3c

yeB ≥ 1 ∀c∈C ∀P∈Pc .

yeB∈ {0, 1} ∀e∈E ∀B⊆C .

We next use CONF-LP-MC to denote the linear relaxation of CONF-IP-MC. Likewise
for Facility location, we will show that in the independent activation model we can
reduce the universal stochastic setting to the buy-at-bulk setting, where each edge e can be
either bought for price ce to serve all the clients or be rented by client c for price ce · pc. We
define variables xe to indicate that e has been bought and variables x̄ec to express the event
of e being rented by c. This transition simplifies the linear program CONF-LP-MC to the
following one by sacrificing an approximation factor of e

e−1 .

min
∑
e∈E

ce · xe +
∑
e∈E

ce
∑
c∈C

pc · x̄ec (LP-MC)

s.t.
∑
e∈P

(xe + x̄ec) ≥ 1 ∀c∈C∀P∈Pc

xe, x̄ec ≥ 0 ∀e∈E∀c∈C .
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The proofs of the two following lemmas are similar to derivations in Sections 4.1 and 4.2
and so we omit them in this extended abstract.

I Lemma 10. If π is an independent activation distribution, then the optimal value of
LP-MP is at most e

e−1 times larger than the optimal value of CONF-LP-MP.

I Lemma 11. If G is a tree, then one can round a fractional solution to LP-MC to an
integral one of cost at most 3 times larger. The procedure runs in polynomial time.

In order to solve the problem on general graphs, we will embed the graph into a tree
that approximately preserves the structure of cuts. The following construction has been
introduced by Räcke [41]. We call a tree T decomposition tree of G if
1. the leaves of T correspond to vertices of G,
2. each edge et in T has weight cTet equal to the weight of the cut it induces on V (G) (we

call this cut mT (et)).
For an edge e ∈ E(G) and a decomposition tree T we define the relative load of e as

rloadT (e) =
( ∑

et∈E(T )
e∈mT (et)

cTet

)
/ ce.

The main result in [41] concerns the relation between multicommodity flows in G and Ti.
As our LP formulation is slightly more sophisticated we need to exploit this result in more
detail. Section 2.1 in [41] describes how to find (in polynomial time) a convex combination
of decomposition trees {λiTi}qi=1 for a graph G, such that maxe∈E(G) [

∑q
i=1 λirloadTi(e)] =

O(logn).

I Theorem 12. Universal Stochastic Multicut in the independent activation model
admits a polynomial-time O(logn) approximation algorithm.

Proof. Lemma 11 implies that a fractional solution to LP-MC over Ti can be rounded to
an integer solution with ratio 3. Observe that each tree edge on a path between terminals
corresponds to some cut between these terminals so any solution to Universal Stochastic
Multicut on a decomposition tree induces a solution on the original graph of at most the
same cost.

Let Li denote the optimal value of LP-MC over Ti and L denote the same for G. We
are going to show that

∑q
i=1 λiLi = O(L logn). In particular this means that minqi=1 Li =

O(L logn). After rounding the fractional solution on Ti of the smallest value, we will obtain
an integral solution for G of cost O(L logn), what entails an O(logn) approximation.

Let us consider the dual linear program of LP-MC.

max
∑
c∈C

∑
P∈Pc

αP (DP-MC)

s.t.
∑
c∈C

∑
P∈Pc
e∈P

αP ≤ ce ∀e∈E (7)

∑
P∈Pc
e∈P

αP ≤ ce · pc ∀c∈C ∀e∈E (8)

αP ≥ 0 ∀c∈C ∀P∈Pc .

Feasible solutions to (DP-MC) are just multicommodity flows satisfying conditions (7)-(8).
Let (βTi) be an optimal solution to (DP-MC) on a decomposition tree Ti (of value Li) and let
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(αTi) be a flow on G where a unit flow over et in (βTi) translates into a unit flow over mT (et).
Note that the value of shipped commodities remains the same. Consider (α) =

∑q
i=1 λi(αTi).

It is a (not necessarily feasible) solution of value
∑q
i=1 λiLi.

As (βTi) routes at most cTiet flow through an edge et, then (αTi) routes at most
∑

et∈E(Ti)
e∈mTi (et)

cTiet

flow through an edge e. Therefore constraint (7) is exceeded at most rloadTi(e) times in
(αTi) and

∑q
i=1 λirloadTi(e) times in (α). If we consider vectors (βTic ) given by flow routed

between terminals of client c, then we conclude the same for constraint (8).
After scaling (α) down times M = maxe∈E(G) [

∑q
i=1 λirloadTi(e)] we obtain a feasible

solution to (DP-MC) for G. This means that L is no less than
∑q
i=1 λiLi divided by M . As

we know that M = O(logn), the claim follows. J
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