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Abstract
The beyond worst-case synthesis problem was introduced recently by Bruyère et al. [10]: it aims
at building system controllers that provide strict worst-case performance guarantees against an
antagonistic environment while ensuring higher expected performance against a stochastic model
of the environment. Our work extends the framework of [10] and follow-up papers, which focused
on quantitative objectives, by addressing the case of ω-regular conditions encoded as parity
objectives, a natural way to represent functional requirements of systems.

We build strategies that satisfy a main parity objective on all plays, while ensuring a secondary
one with sufficient probability. This setting raises new challenges in comparison to quantitative
objectives, as one cannot easily mix different strategies without endangering the functional prop-
erties of the system. We establish that, for all variants of this problem, deciding the existence
of a strategy lies in NP ∩ coNP, the same complexity class as classical parity games. Hence, our
framework provides additional modeling power while staying in the same complexity class.
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1 Introduction

Beyond worst-case synthesis. Two-player zero-sum games [18, 21] and Markov decision
processes (MDPs) [17, 4] are popular frameworks for decision making in adversarial and
uncertain environments respectively. In the former, a system controller (player 1) and its
environment (player 2) compete antagonistically, and synthesis aims at strategies that ensure
a specified behavior against all possible strategies of the environment. In the latter, the
system is faced with a given stochastic model of its environment, and the focus is on satisfying
a given level of expected performance, or a specified behavior with a sufficient probability.

The beyond worst-case synthesis framework [10] unites both views: we look for strategies
that provide both strict worst-case guarantees and a good level of performance against the
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Figure 1 An MDP where player 1 can ensure p1 surely and p2 almost-surely.

stochastic model. Such requirements are natural in practical situations (e.g., see [9, 23] for
applications to the shortest path problem). The original paper [10] dealt with mean-payoff
and shortest path objectives. Follow-up work include, e.g., multi-dimensional extensions [14],
optimization of the expected mean-payoff under hard Boolean constraints [1] or under energy
constraints [7], or integration of beyond worst-case concepts in the tool Uppaal [15].

Parity objectives. We study the beyond worst-case problem for ω-regular conditions
encoded as parity objectives. Parity games have been under close scrutiny for a long time
due to their importance (e.g., they subsume modal µ-calculus model checking [16]) and their
intriguing complexity: they belong to the class of problems in NP ∩ coNP [19] and despite
many efforts (see [11] for pointers), whether they belong to P is still an open question.

In the aforementioned papers dealing with beyond worst-case problems, the focus was
on quantitative objectives (e.g., mean-payoff). While it is usually the case that qualitative
objectives, such as parity, are easier to deal with than quantitative ones, this is not true
in the setting considered in this paper. Indeed, in the context of quantitative objectives, it
is conceivable to alternate between two strategies along a play, such that one – efficient –
strategy balances the performance loss due to playing the other – less efficient – strategy
for a limited stretch of play infinitely often. In the context of qualitative objectives, this is
no more possible in general, as one strategy may induce behaviors (such as invalidating the
parity condition infinitely often) that can never be counteracted by the other one. Hence, in
comparison, we need to define more elaborate analysis techniques to detect when satisfying
both the worst-case and the probabilistic constraints with a single strategy is actually possible.

Example. Consider the MDP of Figure 1. Circle states are owned by player 1 (system)
and square states are owned by player 2 (environment). In the stochastic model of the
environment, square states are probabilistic, and, when not specified, we consider the uniform
distribution over their successors. Each state is labelled with a name and two integers x, y
representing priorities defined by two functions, p1 and p2. An infinite path in the graph is
winning for player 1 and parity objective pi, i ∈ {1, 2}, if the maximal priority seen infinitely
often along the path for function pi is even. We claim that player 1 has a strategy λ to
ensure that (i) all plays consistent with λ satisfy p1 (i.e., p1 is surely satisfied) and (ii) the
probability measure induced by λ on this MDP ensures that p2 is satisfied with probability
one (i.e., almost-surely).

One such λ is as follows. It plays an infinite sequence of rounds of ni steps, i ∈ N. In
round i, in state a, the strategy chooses b for ni steps, such that the probability to reach c
during round i is larger than 1 − 2−i (this is possible as at each step c is reached from b

with probability 1
2 ). If during round i, c is not reached (which can happen with a small

probability) then λ goes to d once. Then the next round i+1 is started. This infinite-memory
strategy ensures both (i) and (ii). Indeed, it can be shown that the probability that λ plays d
infinitely often is zero. Also, during each round, the maximal priority for p1 is guaranteed to
be even because if c is not visited, d is systematically played.
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Finally, we can prove that player 1 needs infinite memory to ensure p1 surely and p2
almost-surely, and also, that this is the best that player 1 can do here: he has no strategy to
enforce surely both p1 and p2 at the same time.

Outline and contributions. We consider MDPs with two parity objectives (i.e., using
different priority functions). We study the problem of deciding the existence of a strategy
that ensures the first parity objective surely (i.e., on all plays) while yielding a probability
at least equal to (resp. greater than) a given rational threshold to satisfy the second parity
objective. In Section 2, we formally define the framework and recall important results from
the literature. In Section 3, as an intermediate step, we solve the problem of ensuring the
first parity objective surely while visiting a target set of states with sufficient probability:
this tool will help us several times later. We prove that the corresponding decision problem
is in NP ∩ coNP and at least as hard as parity games, and that finite-memory strategies
are sufficient. In Section 4, we solve the problem for the two parity objectives, where the
second one must hold almost-surely (i.e., with probability one). Our main tools are the novel
notion of ultra-good end-components, as well as the reachability problem solved in Section 3.
We generalize our approach to arbitrary probability thresholds in Section 5, in which we
introduce the notion of very-good end-components. In both the almost-sure and the arbitrary
threshold cases, we prove that the decision problem belongs to NP ∩ coNP and is at least as
hard as parity games. In contrast to the reachability case, we prove that infinite memory is
in general necessary. Full proofs are presented in the extended version of this paper [5].

Additional related work. The beyond worst-case synthesis framework illustrates the use-
fulness of non-zero-sum games for reactive synthesis [8, 22]. Other types of multi-objective
specifications in stochastic models have been considered: e.g., percentile queries generalize
the classical threshold probability problem to several dimensions [24]. In [3], Baier et al.
study the quantitative analysis of MDPs under weak and strong fairness constraints. They
provide algorithms for computing the probability for ω-regular properties in worst and best-
case scenarios, when considering strategies that in addition satisfy weak or strong fairness
constraints almost-surely. In contrast, we are able to consider similar objectives but for
strategies that satisfy weak or strong fairness constraints surely, i.e., with certainty and not
only with probability one. In [1], Almagor et al. consider the optimization of the expected
mean-payoff under hard Boolean constraints in weighted MDPs. Our concept of ultra-good
end-component builds upon their notion of super-good one. A reduction to mean-payoff
parity games [12] is part of the identification process of both types of end-components.

2 Preliminaries

Directed graphs. A directed graph is a pair G = (S,E) with S a set of vertices, called
states, and E ⊆ S × S a set of directed edges. We focus here on finite graphs (i.e., |S| <∞).
Given a state s ∈ S, we denote by Succ(s) = {s′ ∈ S | (s, s′) ∈ E} the set of successors of s
by edges in E. We assume that graphs are non-blocking, i.e., for all s ∈ S, Succ(s) 6= ∅.

A play in G from an initial state s ∈ S is an infinite sequence of states π = s0s1s2 . . .

such that s0 = s and (si, si+1) ∈ E for all i ≥ 0. The prefix up to the (n + 1)-th state of
π is the finite sequence π(0, n) = s0s1 . . . sn. We resp. denote the first and last states of a
prefix ρ = s0s1 . . . sn by First(ρ) = s0 and Last(ρ) = sn. For a play π, we naturally extend
the notation to First(π). Finally, for i ∈ N, π(i) = si, and for j > i, π(i, j) = si . . . sj . The
set of plays of G is Plays(G) and the set of prefixes is Pref(G). For a set of plays Π, we
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denote by Pref(Π) the set of prefixes of these plays. Given two prefixes ρ = s0 . . . sm and
ρ′ = s′0 . . . s

′
n in Pref(G), we denote their concatenation as ρ · ρ′ = s0 . . . sms

′
0 . . . s

′
n. This is

not necessarily a valid prefix of G. The same holds for a prefix concatenated with a play.

Probability distributions. Given a countable set A, a (rational) probability distribution on
A is a function p : A → [0, 1] ∩ Q such that

∑
a∈A p(a) = 1. We write D(A) the set of

probability distributions on A. The support of p ∈ D(A) is Supp(p) = {a ∈ A | p(a) > 0}.

Markov decision processes. An MDP is a tupleM = (G,S1, S2, δ) where (i) G = (S,E)
is a directed graph; (ii) (S1, S2) is a partition of S into states of player 1 (denoted by P1
and representing the system) and states of player 2 (denoted by P2 and representing the
stochastic environment); (iii) δ : S2 → D(S) is the transition function that, given a stochastic
state s ∈ S2, defines the probability distribution δ(s) over the successors of s, such that
for all s ∈ S2, Supp(δ(s)) = Succ(s). An MDP where for all s ∈ S1, |Succ(s)| = 1 is a
fully-stochastic process called a Markov chain (MC). A prefix ρ ∈ Pref(M) belongs to Pi,
i ∈ {1, 2}, if Last(ρ) ∈ Si. The set of prefixes that belong to Pi is denoted by Prefi(M).

Strategies. A strategy for P1 is a function λ : Pref1(M) → D(S), such that for all ρ ∈
Pref1(M), we have Supp(λ(ρ)) ⊆ Succ(Last(ρ)). The set of all strategies inM is denoted
by Λ. Pure strategies have their support equal to a singleton for all prefixes. We mention
that a strategy is randomized to stress on the need for randomness in general.

A strategy λ for P1 can be encoded by a stochastic state machine with outputs, called
stochastic Moore machine, M. A strategy λ is finite-memory if M is finite, and memoryless if
it has only one state. That is, it does not depend on the history but only on the current
state of the MDP: in this case, we have that λ : S1 → D(S). Finally, if the same strategy
can be used regardless of the initial state, we say that a uniform strategy exists.

A play π is consistent with a strategy λ if for all n ≥ 0 such that π(n) ∈ S1, we have that
π(n+1) ∈ Supp(λ(π(0, n)). It is defined similarly for prefixes. We write OutM(λ) ⊆ Plays(G)
the set of plays consistent with λ. We use OutMs (λ) when fixing an initial state s.

Markov chain induced by a strategy. An MDPM = (G = (S,E), S1, S2, δ) and a strategy
λ for P1 determine an MC C = (G′, δ′). Given s ∈ S an initial state and A ⊆ Plays(G) a
measurable set, we denote by PλM,s[A] the probability of event A whenM is executed with
initial state s and strategy λ.

Objectives. Given an MDPM = (G,S1, S1, δ), an objective is a set of plays A ⊆ Plays(G).
We consider two classical objectives from the literature. Both define measurable events.
To define them, we introduce the following notation: given a play π ∈ Plays(G), let
inf(π) = {s ∈ S | ∀ i ≥ 0, ∃ j ≥ i, π(j) = s} be the set of states seen infinitely often along π.

Reachability. Given a target T ⊆ S, this objective asks for plays that visit T : Reach(T ) =
{π ∈ Plays(G) | ∃n ≥ 0, π(n) ∈ T}. We later use the LTL notation ♦T for event Reach(T ).

Parity. Let p : S → {1, 2, . . . , d} be a priority function that maps each state to an
integer priority, where d ≤ |S| + 1 (w.l.o.g.). The parity objective asks that, among the
priorities seen infinitely often, the maximal one be even: Parity(p) = {π ∈ Plays(G) |
maxs∈inf(π) p(s) is even}. We later simply use p to denote the event Parity(p).

End-components and sub-MDPs. LetM = (G = (S,E), S1, S2, δ) be an MDP. An end-
component (EC) ofM is a set C ⊆ S such that (i) ∀ s ∈ C∩S2, Succ(s) ⊆ C and ∀ s ∈ C∩S1,
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Succ(s) ∩ C 6= ∅; and (ii) C is strongly connected, i.e., for any two states s, s′ ∈ C, there
exists a path from s to s′ that stays in C. It is well-known that inside an EC C, P1 can force
the visit of any state s ∈ C with probability 1 (that is, when P2 is seen as stochastic and
obeys the strategy δ), see e.g., [4]. The union of two ECs with non-empty intersection is an
EC. An EC C is thus maximal if, for every EC C ′, C ′ ⊆ C ∨ C ′ ∩ C = ∅.

Given an EC C ⊆ S of M, we write M�C the sub-MDP defined by M�C = (G′ =
(C,E ∩C ×C), S′1 = S1 ∩C, S′2 = S2 ∩C, δ′), where δ′ : S′2 → D(C) is the restriction of δ to
the domain C. Note thatM�C is a well-defined MDP: it has no deadlock since C is strongly
connected and in all stochastic states s, Supp(δ′(s)) ⊆ C (as C was an EC inM).

Technical lemma. We recall a classical result about MDPs that will be useful later on.

I Lemma 1 (Optimal reachability [4]). Given an MDP M = (G = (S,E), S1, S2, δ) and
a target set T ⊆ S, we can compute for each state s ∈ S the maximal probability v∗s =
supλ∈Λ PλM,s[♦T ] to reach T , in polynomial time. There is an optimal uniform pure mem-
oryless strategy λ∗ that enforces v∗s from all s ∈ S. Now, fix s ∈ S and c ∈ Q such that
c < v∗s . Then there exists k ∈ N such that by playing λ∗ from s for k steps, we reach T with
probability larger than c.

Events and probabilistic operators. Consider an MDPM = (G = (S,E), S1, S2, δ). Recall
that we have defined two types of measurable events (specific subsets of Plays(G)) with
respective notations ♦T for T ⊆ S (reachability), and p for p : S → {1, . . . , d} a priority
function (parity). We define three operators to reason about the probabilities of these events:
S, P∼c, and AS. Given an event A and a state s, they are used as follows:
A is sure from s, denoted s |= S(A), if there exists a strategy λ of P1 such that
OutMs (λ) ⊆ A. Here probabilities are ignored and we consider P2 as antagonistic.
A holds with probability at least equal to (resp. greater than) c ∈ Q from s, denoted
s |= P≥c(A) (resp. s |= P>c(A)) if there exists λ such that PλM,s[A] ≥ c (resp. > c).
A is almost-sure from s, denoted s |= AS(A), if there exists λ such that PλM,s[A] = 1.

For any operator O, we say that such a λ is a witness strategy for s |= O(A) and we write
s, λ |= O(A) to denote it. We will also consider combinations of the type s |= O1(A1)∧ O2(A2)
for two operators and events: in this case, we require that the same strategy be a witness for
both conjuncts, i.e., that there exists λ such that s, λ |= O1(A1) and s, λ |= O2(A2). Finally,
we will sometimes use different MDPs, in which case we add the considered MDPM as a
subscript on |=, e.g., s |=M O(A). We drop this subscript when the context is clear.

Beyond worst-case problems. Let M = (G = (S,E), S1, S2, δ) be an MDP, s ∈ S be
an initial state, and p1, p2 be two priority functions. We provide algorithms to decide
the existence of a witness strategy — and synthesize it — for the following formulae:
(i) s |= S(p1) ∧ AS(p2), and (ii) s |= S(p1) ∧ P∼c(p2) for ∼∈ {>,≥} and c ∈ Q ∩ [0, 1).

3 Reachability under parity constraints

We study two variants, given s ∈ S, T ⊆ S, and p : S → {1, . . . d}: (i) s |= S(p) ∧ AS(♦T ),
and (ii) s |= S(p) ∧ P∼c(♦T ) for ∼∈ {>,≥} and c ∈ Q ∩ [0, 1).

Almost-sure reachability. This case can be solved by reduction to a slight variant studied
in [2, Lemma 3] (extended version of [1]). The approach of [2, Lemma 3] relies on a reduction
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to a Büchi-parity game: sufficiency of finite memory follows from this reduction. The lower
complexity bound is trivial: it suffices to fix T = S to obtain a classical parity game [19].

I Theorem 2. Given an MDP M = (G = (S,E), S1, S2, δ), a state s0 ∈ S, a priority
function p : S → {1, . . . , d}, and a target set of states T ⊆ S, it can be decided in NP∩ coNP
if s0 |= S(p) ∧ AS(♦T ). If the answer is Yes, then there exists a finite-memory witness
strategy. This decision problem is at least as hard as solving parity games.

Reachability with threshold probability. We first study strategies that maximize the prob-
ability of reaching a target T ⊆ S in an MDP M. By Lemma 1, we have an optimal
uniform pure memoryless strategy λ∗ that enforces v∗s from all s ∈ S. We define the set
E¬opt = {(s, s′) ∈ E | s ∈ S1 ∧ v∗s > v∗s′} that contains all edges that are non-optimal choices
for P1 in the sense that they result in a strict decrease of the probability to reach T . We show
that playing, for a finite number of steps, edges that are optimal (i.e., in Eopt = E \E¬opt),
and then switching to an optimal strategy, like λ∗, produces an optimal strategy too.

I Lemma 3. Let λ∗ be an optimal uniform pure memoryless strategy inM to reach T , from
all states in S. If λ is a strategy that plays only edges in Eopt for m steps, for m ∈ N, and
then switches to λ∗, then λ is also optimal to reach T from all states in S.

We now turn to the problem s0 |= S(p) ∧ P∼c(♦T ) and establish the following result.

I Theorem 4. Given an MDP M = (G = (S,E), S1, S2, δ), a state s0 ∈ S, a priority
function p : S → {1, . . . , d}, a target set of states T ⊆ S, and a probability threshold
c ∈ [0, 1) ∩Q, it can be decided in NP ∩ coNP if s0 |= S(p) ∧ P∼c(♦T ) for ∼∈ {>,≥}. If the
answer is Yes, then there exists a finite-memory witness strategy. This decision problem is
at least as hard as solving parity games.

Proof Sketch. First, we restrictM to the ⊆-maximal sub-MDPMw in which P1 can ensure
S(p1) from all states, by solving a classical parity game, which is in NP ∩ coNP [19]. Indeed,
if s0 6|= S(p), the answer is No. InMw, P1 has a uniform pure memoryless strategy λp that
ensures S(p) from every state.

The case > c is the easier. First, we compute the maximal probability v∗s0
to reach T and

an optimal strategy λ∗, in polynomial time (Lemma 1). If v∗s0
≤ c, then the answer is clearly

No. Otherwise, we claim it is Yes. We construct a witness strategy λ for s0 |= S(p)∧P>c(♦T )
from λ∗ and λp as follows. Starting in s0, the strategy λ plays as λ∗ for k steps where k is
taken as in Lemma 1: the probability to reach T after k steps is strictly greater than c, which
implies that s0, λ |= P>c(♦T ). Then, λ switches to λp. Since parity is prefix-independent, we
have that s0, λ |= S(p), and we are done. Our procedure lies in PNP∩coNP = NP ∩ coNP [6],
and λ is finite-memory since λ∗ and λp are memoryless and k is finite.

We now turn to case ≥ c. We compute v∗s0
in polynomial time. If v∗s0

> c, then we answer
Yes as we apply the same reasoning as in the previous case. If v∗s0

< c, then we trivially
answer No. The more involved case is v∗s0

= c. We must verify that probability c is still
achievable if, in addition, it is required to enforce S(p). To answer this, we modifyMw and
we reduce our problem to the almost-sure case of Theorem 2. Intuitively, we construct the
MDP M′ as follows. (i) We enrich states with one bit that records if T has been visited.
(ii) While T has not been visited, we suppress all edges controlled by P1 that are not optimal
for reachability, i.e., all edges in E¬opt. (iii) While T has not been visited, we delete all states
that cannot reach T and normalize the probability of the edges that survive this deletion.

We prove that s′0 |=M′ S(p) ∧ AS(♦T ′) ⇐⇒ s0 |=Mw S(p) ∧ P≥c(♦T ) holds, where s′0
is the initial state in M′ and T ′ the translation of T . The crux is the restriction to Eopt
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Figure 2 This MDP is a UGEC: going to d satisfies (1U), whereas going to b satisfies (2U).

before visiting T : P1 must be able to ensure S(p1) while using only edges that are optimal
for reachability if T cannot be forced surely. As the almost-sure problem is in NP ∩ coNP by
Theorem 2, andM′ is polynomially larger thanMw (and thusM), we obtain the claimed
complexity using PNP∩coNP = NP∩ coNP [6]. Our reduction implies that the witness strategy
can be finite-memory. Again, this problem generalizes parity games by taking T = S. J

4 Almost-sure parity under parity constraints

Overview and key lemma. We consider an MDP M = (G = (S,E), S1, S1, δ) with two
priority functions p1 and p2. We look at the problem s |= S(p1) ∧ AS(p2). The cornerstone of
our approach is the notion of ultra-good end-component.

I Definition 5. An end-component C ofM is ultra-good (UGEC) if in the sub-MDPM�C ,
the following two properties hold:

(1U) ∀ s ∈ C, s |=M�C
S(p1) ∧ AS(♦Cmax

even(p1)), where

Cmax
even(pi) =

{
s ∈ C | (pi(s) is even) ∧ (∀ s′ ∈ C, pi(s′) is odd =⇒ pi(s′) < pi(s))

}
contains the states with even priorities that are larger than any odd priority in C (this
set can be empty for arbitrary ECs but needs to be non-empty for UGECs);
(2U) ∀ s ∈ C, s |=M�C

AS(p1) ∧ AS(p2), or equivalently, s |=M�C
AS(p1 ∩ p2).

We introduce the following notations: UGEC(M) is the set of all UGECs of M, and
U = ∪U∈UGEC(M)U is the set of states that belong to a UGEC inM.

Intuitively, within a UGEC, P1 has a strategy to almost-surely visit Cmax
even(p1) while

guaranteeing S(p1), and he also has a (generally different) strategy that almost-surely ensures
both parity objectives. Figure 2 gives an example of UGEC. This notion strengthens the
concept of super-good EC from [1]: essentially, the super-good ECs are exactly the ECs
satisfying (1U). Thus, every UGEC is a super-good EC, but the converse is false.

The central lemma underpinning our approach is the following.

I Lemma 6. The following equivalence holds:

s0 |= S(p1) ∧ AS(♦U) ⇐⇒ s0 |= S(p1) ∧ AS(p2).

Essentially, this lemma permits to reduce the problem under study to the one treated in
Theorem 2, provided that we are able to compute U , the set of states appearing in a UGEC.
The rest of this section is dedicated to the proof of this lemma and its consequences.

Left-to-right implication (sufficient condition). We first study witness strategies for con-
ditions (1U) and (2U) of Definition 5. For (1U), it was shown in the proof of [2, Lemma 3]
(extended version of [1]) that deciding if the condition holds is in NP∩coNP and that uniform
finite-memory witness strategies exist. For (2U), we establish the following lemma.
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I Lemma 7. Let C be an EC ofM. The following assertions hold.
1. It can be decided in polynomial time if condition (2U) holds.
2. If it holds, then there exists a (uniform randomized) memoryless witness strategy λ2,C

and a sub-EC D ⊆ C such that Dmax
even(p1) 6= ∅, Dmax

even(p2) 6= ∅, and for all s ∈ C, we have
that Pλ2,C

M�C ,s

[
{π ∈ OutM�C (λ2,C) | inf(π) = D}

]
= 1.

3. Furthermore, λ2,C satisfies the following property: ∀ s ∈ C, ∀ ε > 0, ∃n ∈ N such that
Pλ2,C

M�C ,s

[{
π ∈ OutM�C (λ2,C) | ∃ i, 0 ≤ i ≤ n, π(i) ∈ Dmax

even(p1)
}]
≥ 1− ε.

Proof Sketch. For Point 2, we resort on a classical result on almost-sure reachability of ECs
and almost-sure satisfaction of both parity objectives. For Point 3, we use Lemma 1 and
Point 2. For Point 1, we show that (i) the existence of a sub-ECD such thatDmax

even(p1) 6= ∅ and
Dmax

even(p2) 6= ∅ is not only necessary but also sufficient to satisfy condition (2U), and (ii) the
existence of such a set can be decided in polynomial time. For (i), it suffices to build a
uniform randomized memoryless strategy λ that reaches the sub-EC D almost-surely and
then plays uniformly at random in it forever: λ will be a witness for s |=M�C

AS(p1)∧ AS(p2),
so condition (2U) holds in C. For (ii), we first check if Cmax

even(p1) 6= ∅ and Cmax
even(p2) 6= ∅.

If this holds, then D = C and the answer is Yes (it takes linear time obviously). If it
does not hold, then we compute the sets Cmax

odd (pi) =
{
s ∈ C | (pi(s) is odd) ∧ (∀ s′ ∈

C, pi(s′) is even =⇒ pi(s′) < pi(s))
}
and we iterate this procedure in the sub-EC C ′ ⊂ C

defined as C ′ = C \ Attr2
(
Cmax

odd (p1) ∪ Cmax
odd (p2)

)
, where Attr2 is the classical attractor for

P2. A suitable D exists if and only if this procedure stops before C ′ = ∅. In addition, this
procedure takes at most |C| iterations (as we remove at least one state at each step) and
each iteration takes linear time. J

We will now prove that inside any UGEC, there is a strategy for S(p1) ∧ AS(p2). From
now on, let C be a UGEC ofM, λ1,C be a uniform finite-memory witness strategy for (1U)
in Definition 5, and λ2,C be a uniform randomized memoryless one for (2U), additionally
satisfying the properties of Lemma 7. We build a strategy λC based on λ1,C and λ2,C .

I Definition 8. Let C ∈ UGEC(M). Let (ni)i∈N be a sequence of naturals ni such that
Pλ2,C

M�C ,s

[{
π ∈ OutM�C (λ2,C) | ∃ i, 0 ≤ i ≤ ni, π(i) ∈ Dmax

even(p1)
}]
≥ 1− 2−i, whose existence

is guaranteed by Lemma 7. We build strategy λC as follows, starting with i = 0.
(a) Play λ2,C for ni steps. Then i = i+ 1 and go to (b).
(b) If Dmax

even(p1) was visited in phase a), then go to (a).
Else, play λ1,C until Cmax

even(p1) is reached and then go to (a).

Observe that λC requires infinite memory. In the next lemma, we prove that λC is a
proper witness for S(p1) ∧ AS(p2) in the UGEC C.

I Lemma 9. Let C ∈ UGEC(M). For all s ∈ C, it holds that s, λC |= S(p1) ∧ AS(p2).

Proof Sketch. First consider s, λC |= S(p1). Fix any π ∈ OutM�C
s (λC): we will show that

maxs′∈inf(π) p1(s′) is even. Three cases are possible: (i) λC switches infinitely often between
λ1,C and λ2,C , (ii) it eventually plays λ1,C forever, and (iii) it eventually plays λ2,C forever.
In case (i), Cmax

even(p1) is visited infinitely often. Since any state in this set has an even priority
higher than any odd priority in C, we are good. In case (ii), we know that s, λ1,C |= S(p1).
By prefix-independence, we are also good. In case (iii), Dmax

even(p1) is visited infinitely often,
and, eventually, play π never leaves the sub-EC D. Hence, we are good here too and we
conclude that s, λC |= S(p1).

To show that s, λC |= AS(p2), we prove that λC almost-surely ends up in playing only
λ2,C (which ensures AS(p2)). The crux here is the choice of durations ni for the strategy: we
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can show that the probability to never play λ1,C again after round i tends to one when i
tends to infinity. This entails the needed result. J

We can now prove the left-to-right implication of Lemma 6. For this, assume that for
s0 ∈ S, we have that λU is a witness for s0 |= S(p1) ∧ AS(♦U), where we recall that U
represents the union of all UGECs of the MDP M. Note that such a strategy can be
finite-memory w.l.o.g. as proved in Theorem 2. We build a global strategy λ as follows.

I Definition 10. Based on strategies λU and λC for all C ∈ UGEC(M), we build the global
strategy λ as follows.
(a) Play λU until a UGEC C is reached, then go to (b).
(b) Play λC forever.

This strategy requires infinite memory because of the strategies λC . We prove that λ is a
witness for s0 |= S(p1) ∧ AS(p2).

I Lemma 11. It holds that s0, λ |= S(p1) ∧ AS(p2).

Right-to-left implication (necessary condition). We now turn to the converse implication
of Lemma 6, i.e., that s0 |= S(p1) ∧ AS(p2) implies s0 |= S(p1) ∧ AS(♦U). We start by an
intermediate lemma regarding witness strategies: it establishes that all states reachable via
such a strategy also satisfy the property.

I Lemma 12. For every state s ∈ S, every strategy λ such that s, λ |= S(p1) ∧ AS(p2), and
every prefix ρ ∈ Pref(OutMs (λ)), we have that Last(ρ) |= S(p1) ∧ AS(p2).

The next lemma establishes that at least one UGEC must exist inM.

I Lemma 13. The following holds: s0 |= S(p1) ∧ AS(p2) =⇒ UGEC(M) 6= ∅.

Proof Sketch. Given Π ⊆ Plays(G), we define States(Π) = {s ∈ S | ∃π ∈ Π, ∃n ∈
N, π(n) = s}. We then study the set

S =
{
R ⊆ S | ∃ s ∈ S, ∃λ ∈ Λ, (s, λ |= S(p1) ∧ AS(p2)) ∧ (R = States(OutMs (λ)))

}
.

Intuitively, it contains any subset of S that captures all states reachable by some witness
strategy λ, from some state s ∈ S. First note that s0 |= S(p1) ∧ AS(p2) implies that S is
non-empty, as for a witness strategy λ, R = States(OutMs0

(λ)) ∈ S, by definition.
We then show that all minimal elements of S for set inclusion ⊆ are UGECs, which suffices

to establish our lemma. The most important ingredients to prove that any R ∈ min⊆(S) is
a UGEC are the following. First the existence, for any s ∈ R, of a strategy λR such that
s, λR |=M�R

S(p1) ∧ AS(p2) (i.e., λR satisfies the property without leaving R), which follows
from Lemma 12 and the minimality of R in S. Second, proving that Rmax

even(p1) is dense in
the subtree induced by OutMs (λR), that is, that for every prefix ρ, the subtree defined by λR
from ρ reaches a state of Rmax

even(p1), and that this holds in all subsequent subtrees. From this
density argument, we can derive a witness strategy for condition (1U) in Definition 5. J

Collecting in Umin = ∪R∈min⊆(S)R all states that belong to minimal sets R of S, we
finally prove the implication.

I Lemma 14. The following holds: s0 |= S(p1) ∧ AS(p2) =⇒ s0 |= S(p1) ∧ AS(♦Umin).
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Algorithm. Lemma 11 and Lemma 14 prove the correctness of the reduction presented in
Lemma 6. It is the cornerstone of our algorithm.

I Theorem 15. Given an MDPM = (G = (S,E), S1, S2, δ), a state s0 ∈ S, and two priority
functions pi : S → {1, . . . , d}, i ∈ {1, 2}, it can be decided in NP∩coNP if s0 |= S(p1)∧AS(p2).
If the answer is Yes, then there exists an infinite-memory witness strategy, and infinite
memory is in general necessary. This decision problem is at least as hard as solving parity
games.

Proof. The algorithm can be sketched as follows:
1. Compute the set max⊆(SGEC(M)) of maximal super-good ECs, using [1]. Those are

the maximal ECs satisfying condition (1U) in Definition 5. There are only polynomially
many of them, and their computation is in NP ∩ coNP.

2. For each of them, check if (2U) holds using Lemma 7, in polynomial time. If an EC
does not satisfy (2U), then it is also the case of all its sub-ECs (as seen in the proof of
Lemma 7). Hence, we have that U = {C ∈ max⊆(SGEC(M)) | C satisfies (2U)}.

3. Decide if s0 |= S(p1) ∧ AS(♦U) using Theorem 2. This is in NP ∩ coNP. If it holds, then
answer Yes, otherwise answer No.

Its correctness was established in Lemma 6. It belongs to PNP∩coNP = NP∩ coNP [6], and
it trivially generalizes classical parity games (e.g., by taking p2 : s 7→ 0 for all s ∈ S).

Finally, let us discuss strategies. A witness strategy λ plays as follows: (i) it plays as the
finite-memory strategy witness for s0 |= S(p1)∧ AS(♦U) given by Theorem 2 until a UGEC C

is reached, (ii) then it switches to the infinite-memory strategy λC described in Definition 8.
It is clear that such a strategy is a witness for s0 |= S(p1) ∧ AS(p2), as expected.

Infinite memory is required in general, as shown in the UGEC C in Figure 2: there exists
no finite-memory witness strategy in C. Indeed, assume P1 is restricted to a finite-memory
strategy λ. To be able to ensure p1 on the play in which P2 always goes to c from b, P1 must
visit d infinitely often, and because of the finite memory of λ, he must do it after a bounded
number of steps along which a is not visited: say n steps. Hence, the probability to do it will
be bounded from below by a strictly positive constant, here 2−n

2 (the probability that P2
chooses c for n

2 times in a row), all along a consistent play. Therefore, P1 will almost-surely
visit d infinitely often, and p2 will actually be satisfied with probability zero. J

5 Parity with threshold probability under parity constraints

We now turn to the problem s0 |= S(p1) ∧ P∼c(p2) for ∼∈ {>,≥} and c ∈ Q ∩ [0, 1).

Very-good end-components. In addition to UGECs, we need the new notion of very-good
end-component.

I Definition 16. An end-component C of M is very-good (VGEC) if the following two
properties hold:

(1V) ∀ s ∈ C, s |=M S(p1);
(2V) ∀ s ∈ C, s |=M�C

AS(p1) ∧ AS(p2), or equivalently, s |=M�C
AS(p1 ∩ p2).

We introduce the following notations: VGEC(M) is the set of all VGECs of M, and
V = ∪V ∈VGEC(M)V is the set of states that belong to a VGEC inM.

Note that in condition (1V), P1 is allowed to leave C to ensure S(p1): this is in contrast
to condition (1U) for UGECs, in Definition 5. On the contrary, condition (2V) is exactly
the same as (2U). From these definitions, it is trivial to see that any UGEC is also a VGEC,



R. Berthon, M. Randour, and J.-F. Raskin 121:11

1, 1

1, 1

2, 2

0, 1

a

b

c
d

Figure 3 The EC {a, b, c} is very-good but not ultra-good, as P1 has to leave it to ensure S(p1).

but the converse is false. Consider Figure 3: {a, b, c} is a VGEC. The strategy ensuring (2V)
from a is to go to b, and the strategy ensuring (1V) from a is to go to d. As we will prove in
Lemma 18 and as in all VGECs, P1 can ensure a |= S(p1) ∧ P>1−ε(p2) for any ε > 0. Still,
{a, b, c} is not a UGEC: no strategy ensures S(p1) onM�{a,b,c}, as P2 can enforce the play
(ab)ω that has odd maximal priority. This illustrates why the notion of UGEC is too strong
when reasoning about threshold probability, hence why we need to introduce VGECs.

Available strategies in VGECs. As for UGECs, we will use witness strategies for (1V)
and (2V). Deciding if (1V) holds is solving a classical parity game, in NP ∩ coNP [19].
Uniform pure memoryless witness strategies exist: let λ1 be such a witness. For simplicity of
presentation, we assume in the following that all states ofM satisfy (1V), as otherwise they
will trivially not satisfy the properties we consider (as S(p1) will not be ensured). For (2V),
we established in Lemma 7 that deciding if it holds is in polynomial time and that uniform
randomized memoryless witness strategies exist: let λ2,C be one of them.

Reaching VGECs. We prove a strong relationship between the measure of paths that satisfy
p1 and p2, and the measure of paths that reach VGECs, under any strategy.

I Lemma 17. For all s ∈ S, and all λ ∈ Λ, the following holds: PλM,s[♦V ] ≥ PλM,s[p1 ∩ p2].

Limit-sure satisfaction in VGECs. For each state in a VGEC, we claim that the parity
objective p2 can be satisfied with probability arbitrarily close to one, while ensuring p1 surely.

I Lemma 18. Let C ∈ VGEC(M). For all s ∈ C and ε ∈ (0, 1], the following property
holds: s |= S(p1) ∧ P>1−ε(p2).

Proof Sketch. As for UGECs, we build a witness strategy based on two simpler ones: λ1
and λ2,C . However, our strategy here depends on ε. The rough idea is as follows: the witness
strategy λε will play λ2,C for longer and longer rounds, and switch to λ1 forever if Dmax

even(p1)
is not visited along one of those rounds. Using Lemma 7 cleverly, we can define the sequence
of round lengths in such a way that the probability to play as λ2,C forever exceeds 1 − ε,
yielding the result. J

The strict threshold case. We reduce the problem to a reachability problem toward V.
The first lemma gives a sufficient condition under which the property is satisfied. Its proof
tells us how to construct witness strategies.

I Lemma 19. The following holds: s0 |= S(p1) ∧ P>c(♦V) =⇒ s0 |= S(p1) ∧ P>c(p2).

Proof Sketch. We build a witness strategy λ based on (i) λ♦V , a strategy that ensures to
reach V with probability q > c from s0, (ii) λ1, and (iii) λε,C from Lemma 18 for a well-chosen
ε > 0 and every VGEC C. The idea is to first play λ♦V long enough so that a VGEC C

is reached with probability close to q and, if such a C is reached, to switch to λε,C for ε

ICALP 2017



121:12 Threshold Constraints with Guarantees for Parity Objectives in MDPs

sufficiently small so that the total probability to satisfy p2 is higher than c. If no VGEC is
reached, λ switches to λ1, hence ensuring S(p1). J

This second lemma gives a necessary condition. Its proof uses Lemma 17.

I Lemma 20. The following holds: s0 |= S(p1) ∧ P>c(p2) =⇒ s0 |= S(p1) ∧ P>c(♦V).

The non-strict threshold case. As we solved the strict case, the only interesting remaining
case is when P1, while surely forcing p1, can force p2 with probability c, but no more.
The main tool here is UGECs. The first lemma gives a sufficient condition. Its proof is
constructive. Recall that U = ∪U∈UGEC(M)U .

I Lemma 21. The following holds: s0 |= S(p1) ∧ P≥c(♦U) =⇒ s0 |= S(p1) ∧ P≥c(p2).

Proof Sketch. We define a witness strategy based on (i) λ♦U , a witness for s0 |= S(p1) ∧
P≥c(♦U), and (ii) strategies λC for every UGEC C: it suffices to play λ♦U as long as no
UGEC C is reached and to switch to λC when reached, if ever. J

The next lemma gives a necessary condition, keeping in mind that we consider the case
where P1 cannot ensure probability strictly larger than c.

I Lemma 22. The following holds: (s0 |= S(p1) ∧ P≥c(p2)) ∧ (s0 6|= S(p1) ∧ P>c(p2)) =⇒
s0 |= S(p1) ∧ P≥c(♦U).

Algorithm. Based on the reductions shown above, we can now establish an algorithm and
complexity results for the threshold problem.

I Theorem 23. Given an MDPM = (G = (S,E), S1, S2, δ), a state s0 ∈ S, and two priority
functions pi : S → {1, . . . , d}, i ∈ {1, 2}, it can be decided in NP∩coNP if s0 |= S(p1)∧P∼c(p2)
for ∼∈ {>,≥} and c ∈ Q∩ [0, 1). If the answer is Yes, then there exists an infinite-memory
witness strategy, and infinite memory is in general necessary. This decision problem is at
least as hard as solving parity games.

Proof. The algorithm can be sketched as follows:
1. Remove fromM all states where S(p1) does not hold, as well as their attractor for P2:

if s0 is removed, then answer No. LetM′ be the remaining MDP. This operation is in
NP ∩ coNP as it consists in solving a classical parity game [19].

2. Compute the set V representing the union of VGECs in M′. This can be done in
polynomial time by computing the maximal ECs ofM′ and applying Lemma 7 to check
condition (2V) for each of them (condition (1V) holds thanks to the previous step).

3. Decide if s0 |= S(p1) ∧ P>c(♦V) using Theorem 4. This is in NP ∩ coNP. If it holds, then
answer Yes. If it does not hold and ∼ is >, then answer No, otherwise, i.e., if ∼ is ≥,
continue with the next step.

4. Use the sub-algorithm described in Theorem 15 to compute the set U representing the
union of UGECs inM′. This is in NP ∩ coNP.

5. Decide if s0 |= S(p1) ∧ P≥c(♦U) using Theorem 4. This is in NP ∩ coNP. If it holds,
answer Yes, otherwise answer No.

The correctness of this algorithm follows from Lemma 19, Lemma 20, Lemma 21, and
Lemma 22. It belongs to PNP∩coNP = NP ∩ coNP [6], and it trivially generalizes classical
parity games (e.g., by taking p2 : s 7→ 0 for all s ∈ S).
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Finally, let us discuss strategies. Witness strategies for the case > (resp. ≥) were described
in Lemma 19 (resp. Lemma 21). In both cases, infinite memory is in general required, because
it is in general necessary to play optimally in both VGECs and UGECs. For UGECs, see
Theorem 15 for an example. For VGECs, consider the VGEC {a, b, c} in the MDP of Figure 3.
We claim that for every finite-memory strategy λ ensuring S(p1), the probability to ensure p2
is zero, hence there is no finite-memory witness for a |= S(p1)∧ P>1−ε(p2). As argued for the
UGEC case, in order to ensure p1 on the play in which P2 always goes to a from b, P1 must
go to d at some point, and because of the finite memory of λ, he must do it after a bounded
number of steps along which c is not visited: say n steps. Again, the probability to do it will
be bounded from below by a strictly positive constant, here 2−n

2 (the probability that P2
chooses a for n

2 times in a row), all along a consistent play. Therefore, P1 will almost-surely
go to d, and p2 will actually be satisfied with probability zero. J

6 Conclusion

We further extended the beyond worst-case synthesis framework by studying the case of two
parity objectives and proved NP ∩ coNP membership for all considered variants.

Our algorithms can easily be generalized to more than two parity objectives as long as we
consider only the S and AS operators. Indeed, we have that for any MDPM, any state s in
M, and any number of priority functions p1, . . . pn, it holds that s |=

∧
i S(pi)

∧
j AS(pj) ⇐⇒

s |= S
(∧

i pi
)
∧AS

(∧
j pj
)
, and it is easy to reduce the latter problem to s′ |= S(p′)∧AS(p′′) on

a (larger) MDPM′, using classical techniques (e.g., any conjunction of parity objectives can
be expressed as a Muller condition [13], that in turn can be transformed into a single parity
condition on a larger graph [20]). Extending this generalization to the operator P∼c is more
challenging and would require to mix our techniques to methods for percentile queries [24]:
an interesting direction for future work.

Another question is the limits of finite-memory strategies. We saw that in general,
infinite memory is needed. We would like to investigate under which additional conditions
finite-memory strategies suffice, and to develop corresponding algorithms.
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