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Abstract
Recent developments in formal verification have identified approximate liftings (also known as ap-
proximate couplings) as a clean, compositional abstraction for proving differential privacy. There
are two styles of definitions for this construction. Earlier definitions require the existence of
one or more witness distributions, while a recent definition by Sato uses universal quantification
over all sets of samples. These notions have different strengths and weaknesses: the universal
version is more general than the existential ones, but the existential versions enjoy more precise
composition principles.

We propose a novel, existential version of approximate lifting, called ?-lifting, and show that
it is equivalent to Sato’s construction for discrete probability measures. Our work unifies all
known notions of approximate lifting, giving cleaner properties, more general constructions, and
more precise composition theorems for both styles of lifting, enabling richer proofs of differential
privacy. We also clarify the relation between existing definitions of approximate lifting, and
generalize our constructions to approximate liftings based on f -divergences.
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1 Introduction

Differential privacy [7] is a rigorous notion of statistical privacy that delivers strong individual
guarantees for privacy-preserving computations. Informally, differential privacy guarantees to
every individual that their (non)-participation in a database will have a small (in a rigorous,
quantitative sense) effect on the results obtained by third parties when querying the database.
The formal definition of differential privacy is parametrized by two non-negative real numbers,
(ε, δ). These parameters quantify the effect of individuals on the output of the private query;
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smaller values give stronger privacy guarantees. The main strengths of differential privacy
lie in its theoretical elegance, minimal assumptions, and flexibility for many applications.

Motivated by the importance of differential privacy, programming language researchers
have developed approaches based on dynamic analysis, type systems, and program logics
for formally proving differential privacy for programs. (We refer the interested reader to a
recent survey [4] for an overview of this growing field.) In this paper, we consider approaches
based on relational program logics [5, 6, 10, 2, 3, 11]. To capture the quantitative nature
of differential privacy, these systems rely on a quantitative generalization of probabilistic
couplings (see, e.g., [9, 13, 14]), called approximate liftings or (ε, δ)-liftings. Existing works
have considered several potential definitions. While all definitions support compositional
reasoning and enable program logics that can verify complex examples from the privacy
literature, the various notions of approximate liftings have different strengths and weaknesses.

Broadly speaking, one class of definitions require the existence of one or two witness
distributions that “couple’ the two executions of programs. The earliest definition [5] supports
accuracy-based reasoning for the Laplace mechanism, while subsequent definitions [6, 10]
support more precise composition principles from differential privacy and can be generalized
to other notions of distance on distributions. These definitions, and their associated program
logics, were designed for discrete distributions.

In the course of extending these ideas to continuous distributions, Sato [11] proposes a
radically different notion of approximate lifting, which does not rely on witness distributions.
Instead, it uses a universal quantification over all sets of samples. Sato shows that this
definition is strictly more general than the existential versions, but it is unclear (a) whether
the gap can be closed and (b) whether his construction satisfies the same composition
principles enjoyed by some existential definitions.

As a consequence, there is currently no single approximate lifting with the properties
needed to support all existing formalized proofs of differential privacy. Furthermore, some
of the most involved privacy proofs cannot be formalized at all, as their proofs require a
combination of tools from several kinds of approximate liftings.

Outline of the paper

After reviewing the necessary mathematical preliminaries in Section 2, we introduce our
main technical contribution: a new, existential definition of approximate lifting. This
construction, which we call ?-lifting, is a generalization of an existing definition by Barthe
and Olmedo [6, 10]. The key idea is to allow the witness distributions to have a larger
domain, broadening the class of approximate liftings. By a maximum flow/minimum cut
argument, we show that ?-liftings are equivalent to Sato’s lifting over discrete distributions.
This equivalence can be viewed as an approximate version of Strassen’s theorem [12], a
classical result in probability theory describing the existence of probabilistic couplings. We
present the definition of ?-lifting and the proof of equivalence in Section 3.

Then, we show that ?-liftings satisfy desirable theoretical properties. We are able to
leverage the equivalence of liftings in two ways. In one direction, Sato’s definition gives
simpler proofs of more general properties of ?-liftings. In the other direction, ?-liftings –
like other existential definitions – can smoothly incorporate composition principles from the
theory of differential privacy. Our connection shows that Sato’s definition can use these
principles in the discrete case. We describe the key theoretical properties of ?-liftings in
Section 4.

Finally, we provide a thorough comparison of ?-lifting with existing definitions of approx-
imate lifting in Section 5, and describe how to construct ?-liftings for more general version of
approximate liftings based on f -divergences in Section 6.
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Overall, the equivalence of ?-liftings and Sato’s lifting, along with the natural theoretical
properties satisfied by the common notion, suggest that these definitions are two views on
the same concept: an approximate version of probabilistic coupling.

2 Background

To model probabilistic behavior, we work with discrete sub-distributions.

I Definition 1. A sub-distribution over a set A is defined by its mass function µ : A→ R+,
which gives the probability of the singleton events a ∈ A. This mass function must be s.t.
|µ| 4=

∑
a∈A µ(a) is well-defined and at most 1. In particular, the support supp(µ) 4= {a ∈

A | µ(a) 6= 0} must be discrete (i.e. finite or countably infinite). When the weight |µ| is
equal to 1, we call µ a (proper) distribution. We let D(A) denote the set of sub-distributions
over A. The probability of an event E(x) w.r.t. µ, written Px∼µ[E(x)] or Pµ[E], is defined
as
∑
x∈A|E(x) µ(x).

Simple examples of sub-distributions include the null sub-distribution 0A ∈ D(A), which
maps each element of A to 0, and the Dirac distribution centered on x, written 1x, which
maps x to 1 and all other elements to 0. One can equip distributions with a monadic structure
using the Dirac distributions 1x for the unit and distribution expectation Ex∼µ[f(x)] for
the bind; if µ is a distribution over A and f has type A → D(B), then the bind defines a
sub-distribution over B: Ea∼µ[f(a)] : b 7→

∑
a µ(a) · f(a)(b).

If f : A→ B, we can lift f to a function f ] : D(A)→ D(B) as follows: f ](µ) 4= Ea∼µ[1f(a)]
– or, equivalently, f ](µ) : b 7→ Pa∼µ[a ∈ f−1(b)]. For instance, when working with sub-
distributions over pairs, this allows to obtain the probabilistic versions π]1 and π]2 (called
marginals) of the usual projections π1 and π2. One can check that the first and second
marginals π]1(µ) and π]2(µ) of a distribution µ over A × B are also given by the following
equations: π]1(µ)(a) =

∑
b∈B µ(a, b) and π]2(µ)(b) =

∑
a∈A µ(a, b). When f : A→ D(B), we

will abuse notation and write the lifting f ] : D(A)→ D(B) to mean f ](µ) 4= Ex∼µ[f(x)].
Finally, if α : A → R+, we write α[X] ∈ R+ ∪ {∞} for

∑
x∈X α(x). Moreover, if

α : A× B → R+, we write α[X,Y ] (resp. α[x, Y ], α[X, y]) for α[X × Y ] (resp. α[{x} × Y ,
α[X × {y}]). Note that for a sub-distribution µ ∈ D(A) and an event E ⊆ A, Pµ[E] = µ[E].

We now review the definition of differential privacy.

I Definition 2 (Dwork et al. [7]). A probabilistic computation M : A → D(B) satisfies
(ε, δ)-differential privacy w.r.t. an adjacency relation φ ⊆ A×A iff for every pair of inputs
a, a′ ∈ A such that a φ a′ and every subset of outputs E ⊆ B,

PM(a)[E] ≤ eε · PM(a′)[E] + δ.

It is useful to define a notion of distance on distributions, reflecting differential privacy.

I Definition 3 (Barthe and Olmedo [5], Barthe et al. [6], Olmedo [10]). Let ε ≥ 0. The ε-DP
divergence ∆ε(µ1, µ2) between two sub-distributions µ1, µ2 ∈ D(B) is defined as

sup
E⊆B

(Pµ1 [E]− eε · Pµ2 [E]) .

Then, differential privacy admits an alternative characterization based on DP divergence.

I Lemma 4. A probabilistic computation M : A→ D(B) satisfies (ε, δ)-differential privacy
w.r.t. an adjacency relation φ ⊆ A × A iff ∆ε(M(a),M(a′)) ≤ δ for every pair of inputs
a, a′ ∈ A such that a φ a′.

ICALP 2017
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Our new definition of approximate lifting is inspired by a version of approximate liftings
involving two witness distributions, proposed by Barthe and Olmedo [6], Olmedo [10].

I Definition 5 (Barthe and Olmedo [6], Olmedo [10]). Let µ1 ∈ D(A) and µ2 ∈ D(B) be
sub-distributions, ε, δ ∈ R+ and R be a binary relation over A & B. An (ε, δ)-approximate
2-lifting of µ1 & µ2 for R is a pair (µC, µB) of sub-distributions over A×B s.t.
1. π]1(µC) = µ1 and π]2(µB) = µ2;
2. ∆ε(µC, µB) ≤ δ; and
3. supp(µ) ⊆R.
We write µ1 R(2)

ε,δ µ2 if there exists an (ε, δ)-approximate (2-)lifting of µ1 & µ2 for R; the (2)
indicates that there are two witnesses in this definition of lifting.

Combined with Lemma 4, a probabilistic computation M : A→ D(B) is (ε, δ)-differentially
private if and only if for every two adjacent inputs a φ a′, there is an approximate lifting of
the equality relation: M(a) =(2)

ε,δ M(a′).
2-liftings can be generalized by varying the notion of distance given by ∆ε; we will return

to this point in Section 6. These liftings also satisfy useful theoretical properties, but some
of the properties are not as general as we would like. For example, it is known that 2-liftings
satisfy the following mapping property.

I Theorem 6 (Barthe et al. [2]). Let µ1 ∈ D(A1), µ2 ∈ D(A2), f1 : A1 → B1, f2 : A2 → B2
surjective maps and R a binary relation on B1 & B2. Then

f ]1(µ1) R(2)
ε,δ f

]
2(µ2) ⇐⇒ µ1 S(2)

ε,δ µ2

where a1 S a2
4⇐⇒ f1(a1) R f2(a2).

This property can be used to pull back an approximate lifting on two distributions
over B1, B2 to an approximate lifting on two distributions over A1, A2. For applications in
program logics, B1, B2 could be the domain of a program variable, A1, A2 could be the set
of memories, and f1, f2 could project a memory to a program variable. While the mapping
theorem is quite useful, it is puzzling why it only applies to surjective maps. For instance,
this theorem cannot be used when the maps f1, f2 embed a smaller space into a larger space.

For another example, there exist 2-liftings of the following form, sometimes called the
optimal subset coupling.

I Theorem 7 (Barthe et al. [2]). Let µ ∈ D(A) and consider two subsets P1 ⊆ P2 ⊆ A.
Suppose that P2 is a strict subset of A. Then, we have the following equivalence:

Pµ[P2] ≤ eε · Pµ[P1] ⇐⇒ µ R(2)
ε,0 µ,

where a1 R a2
4⇐⇒ a1 ∈ P1 ⇐⇒ a2 ∈ P2.

In this construction, it is puzzling why the larger subset P2 must be a strict subset of the
domain A. For example, this theorem does not apply for P2 = A, but we may be able to
construct the approximate lifting if we simply embed A into a larger space B – even though
µ has support over A! Furthermore, it is not clear why the subsets must be nested, nor is it
clear why we can only relate µ to itself.

These shortcomings suggest that the definition of 2-liftings may be problematic. While
the distance condition appears to be the most constraining requirement, the marginal and
support conditions are responsible for the main issues.
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Witnesses can only use pairs in the relation

For some relations R, there may be elements a such that a R b does not hold for any b, or vice
versa. It can be impossible find witnesses with the correct marginals on these elements, even
if the distance condition can be easily satisfied. For instance, we can sometimes construct a
pair µC and µB satisfying the distance requirement, but where µB needs additional mass to
achieve the marginal requirement for an element b. Adding this mass anywhere preserves the
distance bound, but there may not be an element a such that a R b.

No canonical choice of witnesses

A related problem is that the marginal requirement only constrains one marginal of each
witness distribution. Along the other component, the witnesses may place the mass anywhere
on any pair in the relation. As a result, witnesses to an approximate lifting µ1 R(2)

ε,δ µ2 may
have mass outside of supp(µ1)× supp(µ2), even though it seems that only elements in the
support should be relevant to the lifting.

3 ?-Liftings and Strassen’s Theorem

To improve the theoretical properties of 2-liftings, we propose a simple extension: allow
witnesses to be distributions over a larger set.

I Notation 8. Let A be a set. We write A? for A ] {?}.

I Definition 9 (?-lifting). Let µ1 ∈ D(A) and µ2 ∈ D(B) be sub-distributions, ε, δ ∈ R+ and
R be a binary relation over A & B. An (ε, δ)-approximate ?-lifting of µ1 & µ2 for R is a pair
of sub-distributions ηC ∈ D(A×B?) and ηB ∈ D(A? ×B) s.t.
1. π]1(ηC) = µ1 and π]2(ηB) = µ2;
2. supp(ηC|A×B), supp(ηB|A×B) ⊆ R; and
3. ∆ε(ηC, ηB) ≤ δ, where η• is the canonical lifting of η• to A? ×B?.
We write µ1 R

(?)
ε,δ µ2 if there exists an (ε, δ)-approximate lifting of µ1 & µ2 for R.

By adding an element ?, we address both problems discussed at the end of the previous
section. First, for every a ∈ A, witnesses may place mass at (a, ?); for every b ∈ B, witnesses
may place mass at (?, b). Second, ? can serve as a generic element where all mass that lies
outside the supports supp(µ1)× supp(µ2) may be placed, while preserving the marginal and
distance requirements, giving more control over the form of the witnesses.

I Lemma 10. Let µ1 ∈ D(A) and µ2 ∈ D(B) be distributions such that µ1 R(?)
ε,δ µ2 . Then,

there are witnesses with support contained in supp(µ1)? × supp(µ2)?.

3.1 Basic Properties
?-liftings satisfy all basic properties satisfied by other notions of lifting. We start by proving
that this new definition of lifting still characterizes differential privacy.

I Lemma 11. A randomized algorithm P : A→ D(B) is (ε, δ)-differentially private for φ iff
for all a1, a2 ∈ A, a1 φ a2 implies P (a1) =(?)

ε,δ P (a2).

The next lemma establishes several other basic properties of ?-liftings: monotonicity, and
closure under relational and sequential composition.

ICALP 2017
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I Lemma 12.
Let µ1 ∈ D(A), µ2 ∈ D(B), and R be a binary relation over A & B. If µ1 R(?)

ε,δ µ2, then
for any ε′ ≥ ε, δ′ ≥ δ and S ⊇ R, we have µ1 S(?)

ε′,δ′ µ2.
Let µ1 ∈ D(A), µ2 ∈ D(B), µ2 ∈ D(C) and R (resp. S) be a binary relation over A & B

(resp. over B & C). If µ1 R(?)
ε,δ µ2 and µ2 S(?)

ε′,δ′ µ3, then µ1 (S ◦ R)(?)
ε+ε′,δ+eε·δ′ µ3.

For i ∈ {1, 2}, let µi ∈ D(Ai) and ηi : Ai → D(Bi). Let R (resp. S) be a binary relation
over A1 & A2 (resp. over B1 & B2). If µ1 R(?)

ε,δ µ2 for some ε, δ ≥ 0 and for any
(a1, a2) ∈R, η1(a1) S(?)

ε′,δ′ η2(a2) for some ε′, δ′ ≥ 0, then

Eµ1 [η1] S(?)
ε+ε′,δ+δ′ Eµ2 [η2].

3.2 Equivalence with Sato’s Definition
In recent work on verifying differential privacy over general, continuous distributions, Sato [11]
proposes an alternative definition of approximate lifting. In the special case of discrete
distributions, where measurability of events can be forgotten, his definition can be stated as
follows.

I Definition 13 (Sato [11]). Let µ1 ∈ D(A) and µ2 ∈ D(B), R be a binary relation over
A & B and ε, δ ≥ 0. Then, there is an (ε, δ)-approximate lifting of µ1 & µ2 for R if

∀X ⊆ A.µ1[X] ≤ eε · µ2[R(X)] + δ.

Notice that this definition has no witness distributions at all; instead, it uses a universal
quantifier over all subsets. We can show that ?-liftings are equivalent to Sato’s definition in
the case of discrete distributions. This equivalence is reminiscent of Strassen’s theorem from
probability theory, which characterizes the existence of probabilistic couplings.

I Theorem 14 (Strassen [12]). Let µ1 ∈ D(A), µ2 ∈ D(B) be two proper distributions, and
R let be a binary relation over A & B. Then there exists a joint distribution µ ∈ D(A×B)
with support in R such that π]1(µ) = µ1 and π]2(µ) = µ2 if and only if

∀X ⊆ A.µ1[X] ≤ µ2[R(X)].

Our result (Theorem 19) can be viewed as a generalization of Strassen’s theorem to ap-
proximate couplings. The key ingredient in our proof is the max-flow min-cut theorem for
countable networks; we begin by reviewing the basic setting.

I Definition 15 (Flow network). A flow network is a structure ((V,E),>,⊥, c) s.t. N = (V,E)
is a loop-free directed graph without infinite simple path (or rays), > and ⊥ are two distinct
distinguished vertices of N s.t. no edge starts from ⊥ and ends at >, and c : E → R+∪{+∞}
is a function assigning to each edge of N a capacity. The capacity c is extended to V 2 by
assigning capacity 0 to any pair (u, v) s.t. (u, v) /∈ E.

I Definition 16 (Flow). Given a flow network N 4= ((V,E),>,⊥, c), a function f : V 2 → R

is a flow for N iff
1. ∀u, v ∈ V. f(u, v) ≤ c(u, v),
2. ∀u, v ∈ V. f(u, v) = −f(v, u), and
3. ∀u ∈ V. u /∈ {>,⊥} =⇒

∑
v∈V f(u, v) = 0 (Kirchhoff’s Law).

The mass |f | of a flow f is defined as |f | 4=
∑
v∈V f(>, v) ∈ R{∪+∞}.
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?>

a>1

a>2

a>n

?⊥

b⊥1

b⊥2

b⊥n

> ⊥
ai R bj
⇓
∞

∞

e−ε · µ1(ai)

ω − e−ε|µ1|

µ2(bj)

e−εδ

Figure 1 Flow Network in Theorem 19.

I Definition 17 (Cut). Given a flow network N 4= ((V,E),>,⊥, c), a cut for N is any set
C ⊆ V that partition V s.t. > ∈ V but ⊥ /∈ V . The cut-set E(C) of a cut C is defined
as: {(u, v) ∈ E | u ∈ S, v /∈ S}. The capacity |C| ∈ R+ ∪ {∞} of a cut is defined as
|C| 4=

∑
(u,v)∈E(C) c(u, v).

For flow networks with finitely many vertices an edges, the maximum flow is equal to the
minimum cut. Aharoni et al. [1] consider when this is the case for a countable network. For
the flow networks that we consider in this paper – where there are no infinite directed paths
– equality holds.

I Theorem 18 (Weak Countable Max-Flow Min-Cut). Let N be a network flow. Then,

sup{|f | | f is a flow for N} = inf{|C| | C is a cut for N}

and both the supremum and infimum are reached.

We are now ready to prove an approximate version of Strassen’s theorem, thereby showing
equivalence between ?-liftings and Sato’s liftings.

I Theorem 19. Let µ1 ∈ D(A) and µ2 ∈ D(B), R be a binary relation over A & B and
ε, δ ∈ R+. Then, µ1 R

(?)
ε,δ µ2 iff ∀X ⊆ A.µ1(X) ≤ eε · µ2(R(X)) + δ.

Proof. We only detail the reverse direction. We can assume that A and B are countable; in
the case where A and B are not both countable, we first consider the restriction of µ1 and
µ2 to their respective supports – which are countable sets – and construct witnesses to the
?-lifting. The witnesses can then be extended to a coupling of µ1 and µ2 by adding a null
mass to the extra points.

Let ω 4= |µ2|+ e−ε · δ and let > and ⊥ be fresh symbols. For any set X, define X> and
X⊥ resp. as {x> | x ∈ X} and {x⊥ | x ∈ X}. Let N be the flow network of Figure 1 whose
resp. source and sink are > and ⊥, whose set of vertices V is {>,⊥} ] (A?)> ] (B?)⊥, and
whose set of edges E is E> ] E⊥ ] ER ] E? with

E>
4= {> 7→µ1(a) a

> | a ∈ A} E⊥
4= {b⊥ 7→e−εµ2(b) ⊥ | b ∈ B}

ER
4= {a> 7→∞ b⊥ | a R b ∨ a = ? ∨ b = ?} E?

4= {> 7→(ω−e−ε|µ1|) ?
>, ?⊥ 7→e−εδ ⊥}.

Let C be a cut of N – in the following, we use C independently for the cut C and its cut-set
E(C). We check |C| ≥ ω. If C ∩ ER 6= ∅ then |C| = ∞. Note that C ∩ E? = ∅ implies
C ∩ ER 6= ∅. If (>, ?>) ∈ C and (⊥, ?⊥) /∈ C then we must have E> ⊆ C. This implies that
|C| ≥ ω since E> ] {(>, ?>)} is a cut with capacity ω. If (>, ?>) /∈ C and (⊥, ?⊥) ∈ C then

ICALP 2017
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we have |C| ≥ ω in the similar way as above. Otherwise (i.e. C ∩ ER = ∅ and E? ⊆ C),
for C to be a cut, we must have R(A − A†) ⊆ B† where A† 4= {x ∈ A | (>, x>) ∈ C} and
B†

4= {y ∈ B | (y⊥,⊥) ∈ C}. Thus,

|C| = e−ε · µ1[A†] + µ2[B†] + |E?|
≥ e−ε · µ1[A†] + µ2[R(A − A†)] + e−ε · δ + (ω − e−ε · |µ1|)
≥ e−ε · (µ1[A†] + µ1[A − A†]) + ω − e−ε · |µ1| = ω.

Hence, E> ] {(?⊥,⊥)} is a minimum cut with capacity ω. By Theorem 18, we obtain a
maximum flow f with mass ω. Note that the flow f saturates the capacity of all edges
in E>, E⊥, and E?. Let f̂ : (a, b) ∈ A? × B? 7→ f(a>, b⊥). We now define the following
distributions:

ηC : A×B? → R+

(a, b) 7→ eε · f̂(a, b)
ηB : A? ×B → R+

(a, b) 7→ f̂(a, b).

We clearly have π]1(ηC) = µ1 and π]2(ηB) = µ2. Moreover, by construction of the flow
network N , supp(f̂|A×B) ⊆ R. Hence, supp(ηC|A×B), supp(ηB|A×B) ⊆ R. It remains to
show that ∆ε(ηC, ηB) ≤ δ. Let X be a subset of A? × B?. Let Xa

4= {a ∈ A | (a, ?) ∈ X},
Xb

4= {b ∈ B | (?, b) ∈ X} and X 4= X ∩ (A×B). Then,

ηC[X]− eε · ηB[X] = eε
(
f̂ [X] + f̂ [Xa × {?}]

)
− eε

(
f̂ [X] + f̂ [{?} ×Xb]

)
≤ eε · f̂ [Xa × {?}] ≤ eε · f̂ [A× {?}] = δ.

The last equality holds by Kirchhoff’s law: f̂ [A × {?}] =
∑
a∈A f(a>, ?⊥) = f(?⊥,⊥) =

e−ε · δ. J

4 Properties of ?-Liftings

Our main theorem can be used to show a variety of natural properties of ?-liftings. To begin,
we can generalize the mapping property from Theorem 6, lifting the requirement that the
maps must be surjective.

I Lemma 20. Let µ1 ∈ D(A1), µ2 ∈ D(A2), f1 : A1 → B1, f2 : A2 → B2 and R a binary
relation on B1 & B2. Let S such that a1 S a2

4⇐⇒ f1(a1) R f2(a2). Then

f ]1(µ1) R(?)
ε,δ f

]
2(µ2) ⇐⇒ µ1 S(?)

ε,δ µ2.

Similarly, we can generalize the existing rules for up-to-bad reasoning (cf. Barthe et al. [2,
Theorem 13]), which restrict the post-condition to be equality. There are two versions: the
conditional event is either on the left side, or the right side. Note that the resulting index δ
are different in the two cases.

I Lemma 21. Let µ1 ∈ D(A), µ2 ∈ D(B), θ ⊆ A and R ⊆ A × B. Assume that
µ1 (θC =⇒ R)(?)

ε,δ µ2 for some parameters ε, δ ≥ 0. Then, µ1 R(?)
ε,δ

µ2, where δ
4= δ + µ1[θ].

I Lemma 22. Let µ1 ∈ D(A), µ2 ∈ D(B), θ ⊆ B and R ⊆ A × B. Assume that
µ1 (θB =⇒ R)(?)

ε,δ µ2 for some parameters ε, δ ≥ 0. Then, µ1 R(?)
ε,δ

µ2, where δ
4= δ+ eε ·µ2[θ].



G. Barthe, T. Espitau, J. Hsu, T. Sato, and P.-Y. Strub 102:9

As a consequence, an approximately lifted relation can be conjuncted with a one-sided
predicate if the δ parameter is increased. This principle is useful for constructing approximate
liftings that express accuracy bounds: when θa,C is an event that happens with high
probability, we can assume that θa,C holds if we increase the δ parameter of the approximate
lifting.

I Lemma 23. Let µ1 ∈ D(A), µ2 ∈ D(B), θa ⊆ A, θb ⊆ B and R ⊆ A × B. Assume that
µ1 R(?)

ε,δ µ2. Then, µ1 (θa,C∧ R)(?)
ε,δa

µ2 and µ1 (θb,B∧ R)(?)
ε,δb

µ2 where δa
4= δ + µ1[θa] and

δb
4= δ + eε · µ2[θb].

?-liftings also support a significant generalization of optimal subset coupling. Unlike the
known construction for 2-liftings (Theorem 7), the two subsets need not be nested, and either
subset may be the entire domain. Furthermore, the distributions µ1, µ2 need not be the
same, or even have the same domain. Finally, the equivalence is valid for any parameters
(ε, δ), not just δ = 0.

I Theorem 24 (Barthe et al. [2]). Let µ1 ∈ D(A1), µ2 ∈ D(A2) and consider two subsets
P1 ⊆ A1, P2 ⊆ A2. Then, we have the following equivalence:

Pµ1 [P1] ≤ eε · Pµ2 [P2] + δ ∧ Pµ1 [A1 − P1] ≤ eε · Pµ2 [A2 − P2] + δ ⇐⇒ µ1 R(?)
ε,δ µ2,

where a1 R a2
4⇐⇒ a1 ∈ P1 ⇐⇒ a2 ∈ P2.

Proof. Immediate by Theorem 19. J

Finally, we can directly extend known composition theorems from differential privacy
to ?-liftings. This connection is quite useful for lifting existing results from the privacy
literature–which can be quite sophisticated – to approximate liftings.

I Lemma 25. Pose R+
2
4= R+ × R+ and let (R+

2 )∗ be the set of finite sequences over R+
2 .

Let r : (R+
2 )∗ → R+

2 be a DP-composition operator, i.e. r is an operator such that for any
sets A,D and family {fi : D × A → D(A)}i<n of functions, if for every a ∈ A and i < n,
fi(−, a) : D → D(A) is (εi, δi)-differentially private for some parameters εi, δi ≥ 0 and fixed
adjacency relation φ, then, for any a ∈ A, F (−, a) is (ε∗, δ∗)-differentially private for φ,
where F : (d, a) 7→ (©i<n (fi(d,−))])(1a) is the the n-fold composition of the [fi]i<n and
(ε∗, δ∗) 4= r([(εi, δi)]i<n).

Let n ∈ N and assume given two families of sets {Ai}i≤n and {Bi}i≤n, together with a
family of binary relations {R(i) ⊆ Ai × Bi}i≤n. Fix two families of functions {gi : Ai →
D(Ai+1)}i<n and {hi : Bi → D(Bi+1)}i<n s.t. for any i < n and (a, b) ∈ R(i) we have:
1. gi(a) R(i+ 1)(?)

εi,δi
hi(b) for some parameters εi, δi ≥ 0, and

2. gi(a) and hi(b) are proper distributions.
Then, for (a0, b0) ∈ R0, there exists a ?-lifting

G(a0) R(n)(?)
ε∗,δ∗ H(b0)

where (ε∗, δ∗) 4= r([(εi, δi)]i<n), and G : A0 → D(An) and H : B0 → D(Bn) are the
n-fold compositions of [gi]i≤n and [hi]i≤n respectively – i.e. G(a) 4= (©i<n g]i )(1a) and
H(b) 4= (©i<n h

]
i)(1b).

For some of the more sophisticated composition results (notably, the advanced composition
theorem by Dwork et al. [8]), Lemma 25 is not quite strong enough and requires a slight
adaptation of the notion of ?-lifting. We refer to the full version of the paper for more details.

ICALP 2017
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5 Comparison with Existing Approximate Liftings

Now that we have seen ?-liftings, we briefly consider other definitions of approximate liftings.
We have already seen 2-liftings, which involve two witnesses (Definition 5). Evidently,
?-liftings strictly generalize 2-liftings.

I Theorem 26. For all binary relations R over A & B and parameters ε, δ ≥ 0, we have
R(2)
ε,δ⊆R

(?)
ε,δ . There exist relations and parameters where the inclusion is strict.

Proof. The inclusion R(2)
ε,δ⊆R

(?)
ε,δ is immediate. We have a strict inclusion R(2)

ε,δ(R
(?)
ε,δ even for

δ = 0 by considering the optimal subset coupling from Theorem 7. Consider a distribution µ
over set A, and let P1 ⊆ P2 = A. There is an (ε, 0)-approximate ?-lifting (by Theorem 24),
but a (ε, 0)-approximate 2-lifting does not exist if µ has non-zero mass outside of P1: the first
witness µC must place non-zero mass at (a1, a2) with a1 /∈ P1 in order to have π]1(µC) = µ,
but we must have a2 /∈ P2 for the support requirement, and there is no such a2. J

It is more interesting to compare ?-liftings with the original definitions of (ε, δ)-approximate
lifting, by Barthe et al. [5]. They introduce two notions, a symmetric lifting and an asym-
metric lifting, each using a single witness distribution. We will focus on the asymmetric
version.

I Definition 27 (Barthe et al. [5]). Let µ1 ∈ D(A) and µ2 ∈ D(B) be sub-distributions,
ε, δ ∈ R+ and R be a binary relation over A & B. An (ε, δ)-approximate 1-lifting of µ1 & µ2
for R is a sub-distribution µ ∈ D(A×B) s.t.
1. π]1(µ) ≤ µ1 and π]2(µ) ≤ µ2;
2. ∆ε(µ1, π

]
1(µ)) ≤ δ; and

3. supp(µ) ⊆R.
In the first point we take the point-wise order on sub-distributions: if µ and µ′ are sub-
distributions over X, then µ ≤ µ′ when µ(x) ≤ µ′(x) for all x ∈ X. We will write µ1 R(1)

ε,δ µ2
if there exists an (ε, δ)-approximate 1-lifting of µ1 & µ2 for R; the (1) indicates that there is
one witness for this lifting.

1-liftings bear a close resemblance to probabilistic couplings from probability theory, which
also have a single witness. However, 1-liftings are less well-understood theoretically than
2-liftings – basic properties such as mapping (Theorem 20) are not known to hold; the subset
coupling (Theorem 7) is not known to exist.

Somewhat surprisingly, 1-liftings are equivalent to ?-liftings (and hence by Theorem 19,
also to Sato’s approximate lifting).

I Theorem 28. For all binary relations R over A & B and parameters ε, δ ≥ 0, we have
R(1)
ε,δ=R(?)

ε,δ .

6 ?-Lifting for f-Divergences

The definition of ?-lifting can be extended to lifting constructions based on general f -
divergences, as previously proposed by Barthe and Olmedo [6], Olmedo [10]. Roughly, a
f -divergence a function ∆f (µ1, µ2) that measures the difference between two probability
distributions µ1 and µ2. Much like we generalized their definition for (ε, δ)-liftings, we can
define ?-lifting with f -divergences. Before going any further, let us first define formally
f -divergences. We denote by F the set of non-negative convex functions vanishing at 1:
F = {f : R+ → R+ | f(1) = 0}. We also adopt the following notational conventions:
0 · f(0/0) 4= 0, and 0 · f(x/0) 4= x · limt→0+ t · f(1/t); we write Lf for the limit.
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I Definition 29. Given f ∈ F , the f -divergence ∆f (µ1, µ2) between two distributions µ1
and µ2 in D(A) is defined as:

∆f (µ1, µ1) =
∑
a∈A

ν(a)f
(
µ1(a)
µ2(a)

)
.

Examples of f -divergences include statistical distance (f(t) = 1
2 |t− 1|), Kullback-Leibler

divergence (f(t) = ln(t)− t+ 1), and Hellinger distance (f(t) = 1
2 (
√
t− 1)2).

I Definition 30 (?-lifting for f -divergences). Let µ1 ∈ D(A) and µ2 ∈ D(B) be distributions,
R be a binary relation over A & B, and f ∈ F . An (f ; δ)-approximate lifting of µ1 & µ2 for
R is a pair of distributions ηC ∈ D(A×B?) and ηB ∈ D(A? ×B) s.t.

π]1(ηC) = µ1 and π]2(ηB) = µ2;
supp(ηC|A×B), supp(ηB|A×B) ⊆R; and
∆f (ηC, ηB) ≤ δ,

where η• is the canonical lifting of η• to A? ×B?. We will write: µ1 R
(?)
f ;δ µ2 if there exists

an (f ; δ)-approximate lifting of µ1 & µ2 for R.

?-liftings for f -divergences compose sequentially.

I Lemma 31. Suppose f has divergence statistical distance, Kullback-Leibler, or Hellinger
distance. For i ∈ {1, 2}, let µi ∈ D(Ai) and ηi : Ai → D(Bi). Let R (resp. S) be a binary
relation over A1 & A2 (resp. over B1 & B2). If µ1 R(?)

f ;δ µ2 for some δ ≥ 0 and for any
(a1, a2) ∈R we have η1(a1) S(?)

f ;δ′ η2(a2) for some δ′ ≥ 0, then

Eµ1 [η1] S(?)
f ;δ+δ′ Eµ2 [η2].

Much like the ?-liftings we saw before, ?-liftings for f -divergences have witness distribu-
tions with support determined by the support of µ1 and µ2 (cf. Lemma 10).

I Lemma 32. Let µ1 ∈ D(A) and µ2 ∈ D(B) be distributions such that µ1 R
(?)
f ;δ µ2 . Then,

there are witnesses with support contained in supp(µ1)? × supp(µ2)?.

Finally, the mapping property from Lemma 20 holds also for these ?-liftings. While the
proof of Lemma 20 relies on the equivalence for Sato’s definition, there is no such equivalence
(or definition) for general f -divergences. Therefore, we must work directly with the witnesses
of the approximate lifting.

I Lemma 33. Let µ1 ∈ D(A1), µ2 ∈ D(A2), g1 : A1 → B1, g2 : A2 → B2 and R a binary
relation on B1 & B2. Let S such that a1 S a2

4⇐⇒ g1(a1) R g2(a2). Then

g]1(µ1) R(?)
f ;δ g

]
2(µ2) ⇐⇒ µ1 S(?)

f ;δ µ2.

7 Conclusion

We have proposed a new definition of approximate lifting that unifies existing constructions
and satisfies an approximate variant of Strassen’s theorem. Our notion is useful both to
simplify the soundness proof of existing program logics and to strengthen some of their proof
rules. We see at least two important directions for future work. First, adapting existing
program logics (for instance, apRHL [5]) to use ?-liftings, and formalizing examples that
were out of reach of previous systems. Second, our notion of ?-liftings only applies when
distributions have discrete support. It would be interesting to see if ?-liftings – and the
approximate Strassen’s theorem – can be generalized to the continuous setting.
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