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Abstract
We consider the problem of sampling from a distribution on graphs, specifically when the dis-
tribution is defined by an evolving graph model, and consider the time, space and randomness
complexities of such samplers.

In the standard approach, the whole graph is chosen randomly according to the randomized
evolving process, stored in full, and then queries on the sampled graph are answered by simply
accessing the stored graph. This may require prohibitive amounts of time, space and random
bits, especially when only a small number of queries are actually issued. Instead, we propose to
generate the graph on-the-fly, in response to queries, and therefore to require amounts of time,
space, and random bits which are a function of the actual number of queries.

We focus on two random graph models: the Barabási-Albert Preferential Attachment model
(BA-graphs) [3] and the random recursive tree model [24]. We give on-the-fly generation algo-
rithms for both models. With probability 1 − 1/poly(n), each and every query is answered in
polylog(n) time, and the increase in space and the number of random bits consumed by any
single query are both polylog(n), where n denotes the number of vertices in the graph.

Our results show that, although the BA random graph model is defined by a sequential
process, efficient random access to the graph’s nodes is possible. In addition to the conceptual
contribution, efficient on-the-fly generation of random graphs can serve as a tool for the efficient
simulation of sublinear algorithms over large BA-graphs, and the efficient estimation of their
performance on such graphs.
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1 Introduction

Consider a Markov process in which a sequence {St}t of states, St ∈ S, evolves over time
t ≥ 1. Suppose there is a set P of predicates defined over the state space S. Namely, for
every predicate P ∈ P and state S ∈ S, the value of P (S) is well defined. A query is a pair
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6:2 Sublinear Random Access Generators for Preferential Attachment Graphs

(P, t) and the answer to the query is P (St). In the general case, answering a query (P, t)
requires letting the Markov process run for t steps until St is generated. In this paper we
are interested in ways to reduce the dependency, on t, of the computation time time, the
memory space, and the number of used random bits, required to answer a query (P, t).

We focus on the case of generative models for random graphs, and in particular, on
the Barabási-Albert Preferential Attachment model [3] (which we call BA-graphs), on the
equivalent linear evolving copying model of Kumar et al. [10], and on the random recursive
tree model [24]. The question we address is whether one can design a randomized on-the-fly
graph generator that answers adjacency list queries of BA-graphs (or random recursive
trees), without having to generate the complete graph. Such a generator outputs answers
to adjacency list queries as if it first selected the whole graph at random (according the
appropriate distribution) and then answered the queries based on the samples graph.

We are interested in the following resources of a graph generator: (1) the number of
random bits consumed per query, (2) the running time per query, and (3) the increase in
memory space per query.

Our main result is a randomized on-the-fly graph generator for BA-graphs over n vertices
that answers adjacency list queries. The generated graph is sampled according to the
distribution defined for BA-graphs over n vertices, and the complexity upper bounds that
we prove hold with probability 1− 1/poly(n). That is, with probability 1− 1/poly(n) each
and every query is answered in polylog(n) time, and the increase in space, and the number
of random bits consumed during that query are polylog(n). Our result refutes (definitely
for polylog(n) queries) the recent statement of Kolda et al. [9] that: “The majority of graph
models add edges one at a time in a way that each random edge influences the formation of
future edges, making them inherently serial and therefore unscalable. The classic example is
Preferential Attachment, but there are a variety of related models...”

We remark that the entropy of the edges in BA-graphs is Θ(logn) per edge in the second
half of the graph [23]. Hence it is not possible to consume a sublogarithmic number of
random bits per query in the worst case if one wants to sample according to the BA-graph
distribution. Similarly, to insure consistency (i.e., answer the same query twice in the same
way) one must use Ω(logn) space per query.

From a conceptual point of view, the main ingredient of our result are techniques to
“invert” the sequential process where each new vertex randomly selects its “parent” in the
graph among the previous vertices. Instead, vertices randomly select their “children” among
the “future” vertices, while maintaining the same probability distribution as if each child
picked “in the future” its parent. We apply these techniques in the related model of random
recursive trees [24] (also used within the evolving copying model [10]), and use them as a
building block for our main result for BA-graphs.

Due to space limitations, some of the proofs are omitted from this extended abstract.

Related work. A linear time randomized algorithm for efficiently generating BA-graphs
is given in Betagelj and Brandes [4]. See also Kumar et al. [10] and Nobari et al. [18]. A
parallel algorithm is given in Alam et al. [1]. See also Yoo and Henderson [25]. An external
memory algorithm was presented by Meyer and Peneschuck [16]. Generating huge random
objects while using “small” amounts of randomness was studied by Goldreich, Goldwasser
and Nussboim [8]. Mansour et al. [14] consider local generation of bipartite graphs in the
context of local simulation of Balls into Bins online algorithms.

Applications. One reason for generating large BA-graphs is to simulate algorithms over
them. Such algorithms often access only small portions of the graphs. In such instances, it is
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wasteful to generate the whole graph. An interesting example is sublinear approximation
algorithms [20, 26, 17, 19] which probe a constant number of neighbors. In addition, local
computation algorithms probe a small number of neighbors to provide answers to optimization
problems such as maximal independent sets and approximate maximum matchings [6, 7, 21,
22, 2, 14, 15, 11, 12, 13]. Support of adjacency list queries is especially useful for simulating
(partial) DFS and BFS over graphs.

2 Preliminaries

Let Vn , {v1, . . . , vn}. Let G = (Vn, E) denote a directed graph on n nodes.1 We refer to
the endpoints of a directed edge (u, v) as the head v and the tail u. Let deg(vi, G) denote the
degree of the vertex vi in G (both incoming and outgoing edges). Similarly, let degin(vi, G)
and degout(vi, G) denote the in-degree and out-degree, respectively, of the vertex vi in G.

In the sequel, when we say that an event occurs with high probability (or w.h.p) we mean
that it occurs with probability at least 1− 1

nc , for some constant c.
For ease of presentation, we extensively use in the algorithms arrays of size n. However,

in order to keep the space complexity low, we implement these arrays by means of balanced
search trees, with keys in [1, n]. Thus, the space used by the “arrays” is the number of keys
stored. The time complexities that we give are therefore to be multiplied by a factor of
O(logn).

3 Queries and On-the-Fly Generators

Consider an undirected graph G = (Vn, E), where Vn = {v1, . . . , vn}. Slightly abusing
notation, we sometimes consider and denote node vi as the integer number i and so we
have a natural order on the nodes. The access to the graph is done by means of a user-
query BA-next-neighbor : [1, n]→ [1, n+ 1], where n+ 1 denotes “no additional neighbor”.
We number the queries according to the order they are issued, and call this number the
time of the query. Let qt be the node on which the query at time t was issued, i.e, at
time t the query BA-next-neighbor(qt) is issued by the user. For each node v ∈ V

and any time t, let lastt(j) be the largest numbered node which was previously returned
as the value of BA-next-neighbor(j), or 0 if no such query was issued before time t.
That is, lastt(v) = min{0,mint′<t{BA-next-neighbor(qt′)|qt′ = v}. At time t the query
BA-next-neighbor(v) returns arg mini>lastt(j){(i, j) ∈ E}, or n+1 if no such i exists. When
the implementation of the query has access to a data structure holding the whole of E,
then the implementation of BA-next-neighbor is straightforward just by accessing this data
structure.

An on-the-fly graph generator is an algorithm that gives access to a graph by means
of the BA-next-neighbor query defined above, but itself does not have access to a data
structure that encodes the whole graph. Instead, in response to the queries issued by the
user, the generator modifies its internal data structure (a.k.a state), which is initially some
empty (constant) state. The generator must ensure however that its answers are consistent
with some graph G. An on-the-fly graph generator for a given distribution on a family of
graphs (such as the family of Preferential Attachment graphs on n nodes) must in addition

1 Preferential attachment graphs are usually presented as undirected graphs. For convenience of discussion
we orient each edge from the high index vertex to the low index vertex, but the graphs we consider
remain undirected graphs.
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6:4 Sublinear Random Access Generators for Preferential Attachment Graphs

ensure that it samples the graphs according to the required distribution. That is, its answers
to a sequence of queries must be distributed identically to those returned when a graph
was first sampled (according to the desired distribution), stored, and then accessed (See
Definition 16 and Theorem 17).

4 Random Graph Models

Preferential attachment [3]. We restrict our attention to the case in which each vertex is
connected to the previous vertices by a single edge (i.e., m = 1 in the terminology of [3]). We
thus denote the random process that generates a graph over Vn according to the preferential
attachment model by BAn. The random process BAn generates a sequence of n directed
edges En , {e1, . . . , en}, where the tail of ei is vi, for every i ∈ [1, n]. (We abuse notation
and let BAn = (Vn, En) also denote the graph generated by the random process.) We refer
to the head of ei as the parent of vi.

The process BAn draws the edges sequentially starting with the self-loop e1 = (v1, v1).
Suppose we have selected BAj−1, namely, we have drawn the edges e1, . . . , ej−1, for j > 1.
The edge ej is drawn such its head is node vi with probability deg(vi,G)

2(j−1) .
Note that the out-degree of every vertex in (the directed graph representation of) BAn is

exactly one, with only one self-loop in v1. Hence BAn (without the self-loop) is an in-tree
rooted at v1.

Evolving copying model [10]. Let Zn denote the evolving copying model with out-degree
d = 1 and copy factor α = 1/2. As in the case of BAn, the process Zn selects the edges
E′n = {e′1, . . . , e′n} one-by-one starting with a self-loop e′1 = (v1, v1). Given the graph
Zn−1 = (Vn, E

′
n), the next edge e′n emanates from vn. The head of edge e′n is chosen as

follows. Let bn ∈ {0, 1} be an unbiased random bit. Let u(n) ∈ [1, n − 1] be a uniformly
distributed random variable (the random variables b1, . . . , bn and u(1), . . . , u(n) are all
pairwise independent.) The head vi of e′n is determined as follows: head(e′n) , u(n), if bn = 1;
and head(e′n) , head(eu(n)), if bn = 0.

Random recursive tree model [24]. If we eliminate from the evolving copying model the
bits bi and the “copying effect” we get a model where each new node n is connected to one
of the previous nodes, chosen uniformly at random. This is the extensively studied (random)
recursive tree model [24].

We now relate the various models. Proof omitted from this extended abstract.
I Claim 1 ([1]). The random graphs BAn and Zn are identically distributed.

We use the following claim in the sequel.
I Claim 2 (cf. [5], Thm. 6.12 and Thm. 6.32). Let T be a rooted directed tree on n nodes
denoted 1, . . . , n, and where node 1 is the root of the tree. If the head of the edge emanating
from node j > 1 is uniformly distributed among the nodes in [1, j − 1], then, with high
probability, the following two properties hold:
1. The maximum in-degree of a node in the tree is O(logn).
2. The height of the tree is O(logn).

5 The Pointers Tree

We now consider a graph inspired by the the random recursive tree model [24] and the
evolving copying model [10]. Each vertex i has a variable u(i) that is uniformly distributed
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over [1, i− 1], and can be viewed as a directed edge (or pointer) from i to u(i). We denote
this random rooted directed in-tree by UT . Let u−1(j) denote the set {i : u(i) = j}. We refer
to the set u−1(i) as the u-children of i and to u(i) as the u-parent of i. In conjunction with
each pointer, we keep a flag indicating whether this pointer is to be used as a dir (direct)
pointer or as a rec (recursive) pointer. We thus use the directed pointer tree to represent a
graph in the evolving copying model (which is equivalent, when the flag of each pointer is
equality distributed between rec and dir, to the BA model).

In this section we consider the subtask of giving access to a random UT , together with
the flags of each pointer. Ignoring the flags, this section thus gives an on-the-fly random
access generator for the extensively studied model of random recursive trees (cf. [24]). We
define the following queries.

(i, f lag)← parent(j): i is the parent of j in the tree, and flag is the associated flag.
i ← next-child-tp(j, k, type), where k ≥ j: i is the least numbered node i > k such
that the parent of i is j and the flag of that pointer is of type “type”. If no such node
exists then i is n+ 1.

The “ideal” way to implement this task is to go over all n nodes, and for each node j
(1) uniformly at random choose its parent in [1, j − 1], (2) uniformly at random chose the
associated flag in {dir, rec}. Then store the pointers and flags, and answer the queries by
accessing this data structure.

In this section we give an on-the-fly generator that answers the above queries. We
start with some notations. We say that j is exposed if u(j) 6= nil (initially all pointers u(j)
are set to nil). We denote the set of all exposed vertices by F . We say that j is directly
exposed if u(j) was set during an invocation of next-child-tp(i, ·, ·). We say that j is
indirectly exposed if u(j) was determined during an invocation of parent(j). As a result
of answering and processing next-child-tp and parent queries, the on-the-fly generator
commits to various decisions (e.g., prefixes of adjacency lists). These commitments include
edges but also non-edges (i.e., vertices that can no longer serve as u(j) for a certain j). For
a node i, front(i) denotes the largest value (node) k ∈ [1, n+ 1] such that k was returned
by a next-child-tp(i, ·, ·) query, and nil if no such returned value exists. Observe that
front(i) = k implies that (1) u(k) = i; and (2) we know already for each node j ∈ [j+1, k−1]
if u(j) = i or not. We denote - roughly speaking - the set of vertices that cannot serve as
u-parents of j by not-u-parent-candidate(j), the nodes that can still be u-parents of j by
Φ(j), and their number by ϕ(j) = |Φ(j)|. The formal definitions are:

not-u-parent-candidate(j) , {i ∈ [1, j − 1] : front(i) ≥ j} ,
Φ(j) , [1, j − 1] \ not-u-parent-candidate(j) ,
ϕ(j) , |Φ(j)| .

5.1 An efficient implementation of next-child

We first shortly discuss the challenges on the way to an efficient implementation of next-child.
Observe that before the first next-child(j) query, for a given j, is issued, the probability for
any x > j to be a u-child of j is 1/ϕ(x), because all nodes x′ < x can still be the u-parent of
x. But once next-child(·) queries are issued, this may no longer be the case. For example,
if x > front(j′), then, even if the u-parent of x is not yet determined, j′ is no longer an option
to be the u-parent of x. This renders the calculation of Pr[u(x) = j] more complicated
and more computation-time consuming, which renders the process of selecting the next
child of a node j non-efficient. In the rest of this section we show how to overcome these

ICALP 2017



6:6 Sublinear Random Access Generators for Preferential Attachment Graphs

difficulties and give a procedure that selects the next child, with the appropriate probability
distribution, using polylog(n) random bits and in polylog(n) time, and while increasing the
space by polylog(n). This procedure will be at the heart of our efficient implementation of
next-child.

The efficient implementation of next-child (and of parent) makes use of the following
data structures.

An array of length n, u(j)
An array of length n, type(j)
An array of length n, front(j) (We also maintain an array front−1(i) with the natural
definition.)
An array of n balanced search trees, called child(j), each holding a set of nodes i > j

such that u(i) = j (not necessarily all such nodes). For technical reasons we initiate all
trees child(j) with n+ 1 ∈ child(j).
A number of additional data structures that are implicit in the listing, described and
analyzed in the sequel.

In the implementation we maintain the following two invariant.

I Invariant 3. For every node j, the first next-child-tp(j, ·, ·) query is always preceded by
a parent(j) query.

We will use this invariant to infer that front(j) 6= nil implies that u(j) 6= nil. One can
easily maintain this invariant by introducing a parent(j) query as the first step of the
implementation of the next-child-tp(j, ·, ·) query (for technical reasons we do that in a
lower-level procedure next-child.)

I Invariant 4. For every vertex j, front(j) 6= nil implies that front(front(j)) 6= nil.

The second invariant is maintained by issuing an “internal” next-child(front(j), front(j))
query whenever front(j) is updated. This is done recursively, the base of the recursion being
node n+ 1. Let front−1(j) denote the vertex i such that front(i) = j, if such a vertex i exists;
otherwise front−1(j) = nil. We get that if front−1(j) 6= nil, then u(j) 6= nil.

I Definition 5. At a given time t, and for any node j, let Φ(j) and φ(j) be defined as follows:
Φ(j) , {i | i < j and (front(i) < j or front(i) = nil)}, and φ(j) = |Φ(j)|.

The following lemma gives properties of the series {Φ(x)}x. Proof omitted.

I Lemma 6. For every x ∈ [1, n− 1]:
1. Φ(x) ⊆ Φ(x+ 1) ⊆ Φ(x) ∪ {x, front−1(x)}.
2. Φ(x+ 1) = Φ(x) iff x ∈ K.
3. ϕ(x+ 1)− ϕ(x) ≤ 1.

We now describe the implementation of next-child-tp(j, k, type) and next-child(j).
next-child-tp(j, k, type) is a loop of next-child-from(j, k) until the right type is found,
and next-child-from(j, k) is essentially a call to next-child(j) (see Figure 1). Note that
if j does not have children larger than k, then next-child-from(j, k) returns n+ 1.

If front(j) > k when next-child-from(j, k) is called, then the next child is already fixed
and it is just extracted from the data structures. Otherwise, an interval I = [a, b] is defined,
and it will contain the answer of next-child(j). Let a = front(j) + 1 if front(j) 6= nil;
otherwise a = j + 1. Let b denote the smallest, larger than front(j), indirectly exposed child
of j if one exists (i.e., if front(j) 6= nil then b = min{` > front(j) | u(`) = j}); if no such b
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exists then b = n+ 1. By the definition of K, K ⊆ F , and no vertex x ∈ F ∩ [a, b) can satisfy
u(x) = j. Hence, the answer is in I \ (F \ {b}).

The next child can be sampled according to the desired distribution in a straightforward
way by going sequentially over the vertices in I \ F \ {b}, and tossing for each vertex x a
coin that has probability 1/ϕ(x) to be 1, until indeed one of those coins comes out 1, or
all vertices are exhausted (in which case node b is taken as the next child). However, this
procedure takes linear time. We denote by D(x), x ∈ I \ F , the probability that x is chosen
according to the above procedure. In order to start building our efficient implementation for
next-child we consider the same process, with the same probabilities 1/ϕ(x), but this time
for [a, b) \K, rather than [a, b) \ F . The vertex on which we stop, denote is x, is a candidate
next u-child. If x ∈ F \K, then x cannot be a child of j so we proceed in the same way, but
with the interval [x+ 1, b].

We now build our efficient procedure that selects the candidate, without sequentially going
over the nodes. To this end, observe that the sequence of probabilities of the coins tossed in
the last-described process behaves “nicely”. Namely, the probabilities 1/ϕ(x), for x ∈ [a, b)\K,
form the harmonic sequence starting from 1/ϕ(a) and ending in 1/(ϕ(a) + |[a, b) \K| − 1).
Indeed, Lemma 6 implies that if vertex i is the smallest vertex in I \K, then ϕ(i) = ϕ(a)
and an increment between ϕ(x) and ϕ(x+ 1) occurs if and only if x /∈ K. Let s = |I \K|
and let Pq, 0 ≤ q ≤ s− 1 be the probability that the node of rank q in I \K is chosen as
candidate in the sequential procedure defined above. Since ϕ(x) form the harmonic sequence
for x ∈ [a, b) \ K, we can calculate in O(1) time, for any 0 ≤ i ≤ s − 1, the probability
P ′i =

∑
q<i Pq (i.e., a node of some rank q, q < i, is chosen). Indeed, for i = 0, Pi = 1

ϕ(a) ;

for 0 < i < s − 1, Pi = 1
ϕ(a)+i ·

∏i−1
`=0

(
1− 1

ϕ(a)+`

)
= ϕ(a)−1

(ϕ(a)+i−1)(ϕ(a)+i) ; and for i = s − 1,

Ps−1 =
∏s−2

`=0

(
1− 1

ϕ(a)+`

)
= ϕ(a)−1

ϕ(a)+s−2 . Hence, for 0 ≤ i ≤ s− 1, P ′i = 1− ϕ(a)−1
ϕ(a)+(i−1) , and

for i = s, P ′s = 1. This allows us to simulate one iteration (i.e., choosing the next candidate
next u-child) by choosing uniformly at random a single number in [0, 1], and then performing
a binary search over 0 to s− 1 to decide what rank h this number “represents”. After we
randomly chose a rank h ∈ [0, s − 1], h is then mapped to the vertex of rank h in I \K,
denote it x, and this is the candidate next u-child. As before, if x ∈ (F \K), then x cannot
be a child of j so we ignore it and proceed in the same way, this time with the interval
[x+ 1, b]. See the pseudo code of of next-child and toss (Figure 1). We denote by D̂(x),
x ∈ I \ F the probability that x is chosen according to this third procedure. See Figure 1 for
a formal definition of this procedure.

Observe that this procedure takes O(log s) time (see Section 5.2 for a formal statement
of the time and randomness complexities). We note that we cannot perform this selection
procedure in the same time complexity for the set [a, b) \ F , because we do not have a way
to calculate each and every probability P ′i , i ∈ [a, b) \ F , in O(1) time.

To conclude the description of the implementation of next-child, we give the following
lemma which states that the probability distribution on the next child is the same for all
three processes described above. The (technical) proof is omitted.

I Lemma 7. For all x ∈ I \ F , D̂(x) = D(x).

The implementation of parent is straightforward (see Figure 1). However, note that
updating the various data structures, while implicit in the listing, is accounted for in the
time analysis.
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6:8 Sublinear Random Access Generators for Preferential Attachment Graphs

1: procedure next-child-tp(j, k, type)
2: x← k
3: repeat
4: x← next-child-from(j, x)
5: until flag(x) = type or x = n+ 1
6: return x

7: end procedure

1: procedure next-child-from(j, k)
2: If (k ≥ n) return (n+ 1)
3: q ← succ(child(j), k)
4: if q ≤ front(j) then
5: return q
6: else
7: return next-child(j)
8: end if
9: end procedure

1: procedure parent(j)
2: if u(j) = nil then
3: u(j)←R [1, j − 1]
4: type(j)←R {dir, rec}
5: end if
6: return (u(j), type(j))
7: end procedure

1: procedure next-child(j)
2: (p, t)← parent(j)
3: If (front(j) ≥ n) return (n+ 1)

4: a←
{

front(j) + 1 if front(j) 6= nil
j + 1 if front(j) = nil

5: b←
{

succ(child(j), front(j)) if front(j) 6= nil
n+ 1 if front(j) = nil

6: repeat
7: s← |[a, b] \K|
8: h← toss(ϕ(a), s)
9: x← the vertex of rank h in [a, b] \K

10: if x = b then
11: return b
12: else
13: if u(x) = nil then
14: u(x) = j
15: type(x)←R {dir, rec}
16: front(j)← x
17: front−1(x)← j
18: if (front(x) = nil) next-child(x)
19: return (x)
20: else
21: if u(x) = j then
22: front(j)← x
23: front−1(x)← j
24: if (front(x) = nil) next-child(x)
25: return(x)
26: else
27: a← x+ 1
28: end if
29: end if
30: end if
31: until forever
32: end procedure

1: procedure toss(ϕ, s)
2: α← nc (for some constant c > 1).
3: Choose uniformly at random an integer H ∈ [0, α]
4: M ← H · 1

α

5: Using binary search on [0, s− 1] find y such that P ′y ≤M < P ′y+1
6: (where, for 0 ≤ y ≤ s− 1, P ′y = 1− ϕ−1

ϕ+(y−1) , and P ′s = 1)
7: if (H + 1) 1

α ≤ Pry+1 then
8: return y
9: else
10: α← α ·Πs−1

y=0(P ′y+1 − P ′y)
11: Choose uniformly at random an integer H ∈ [0, α]
12: M ← H · 1

α

13: Using binary search on [0, s− 1] find y such that P ′y ≤ H < P ′y+1
14: (where, for 0 ≤ y ≤ s− 1, P ′y = 1− ϕ−1

ϕ+(y−1) , and P ′s = 1)
15: return y
16: end if
17: end procedure

Figure 1 Pseudo code of the pointers tree generator.
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5.2 Analysis of the pointer tree generator

We first give the following claim that we later use a number of times.

I Lemma 8. With high probability, for each and every invocation of next-child, the size
of the recursion tree of that invocation for calls to next-child is O(logn).

Proof. Consider the recursive invocation tree that results from a call to next-child. Observe
that (1) by the code of next-child this tree is in fact a path; and (2) this path corresponds
to a path in the pointers tree, where each edge of this tree-path is “discovered” by the
corresponding call to next-child. That is, the maximum size of an invocation tree of a call
of next-child is bounded from above by the height of the pointers tree. By Claim 2, with
high probability, this is O(logn). J

5.2.1 Data structures and space complexity

The efficient implementation of next-child makes use of the following data structures.
A number of arrays of length n, u(j) and type(j), front(j) and front−1(j), used to store
various values for nodes j. Since we implement arrays by means of search trees, the space
complexity of each array is O(m), where m is the maximum number of distinct keys
stored with a non-null value in that array, at any given time. The time complexity for
each operation is O(logm) = O(logn).
For each node j, a balanced binary search tree called child(j), where child(j) stores
(some of the known) children of node j. (for technical reasons we define child(j) to
always include node n + 1.) Observe that for each child i stored in one of these trees,
u(i) is already determined. Thus, the increase, during a given period, in the space used
by the child trees is bounded from above by the the number of nodes i for which u(i)
got determined during that period. For the time complexity of the operations on these
trees we use a coarse standard upper bound of O(logn).

The listings of the implementations of the various procedures leave implicit the mainte-
nance of two data structures, related to the set K and to the computation of ϕ(·):

A data structure that allows one to retrieve the value of ϕ(a) for a given vertex a. This
data structure is implemented by retrieving the cardinality of not-u-parent-candidate(a)
for a given node a. The latter is equivalent to counting how many nodes i < a have
front(i) 6= nil and front(i) ≥ a. We use two balanced binary search trees (or order statistics
trees) in a specific way and have that by standard implementations of balanced search trees
the space complexity is O(k) (and all operations are done in time O(log k) = O(logn)).
Here k denotes the number of nodes i such that front(i) 6= nil. The details of the
implementation are omitted from this extended abstract.
A data structure that allows one to find the vertex of rank h in the ordered set [a, n+1]\K.
This data structure is implemented by a balanced binary search tree storing the nodes
in K, augmented with the queries rankK(i) (as in an order-statistics tree) as well as
rankK̄(i) and selectK̄(s), i.e., finding the element of rank s in the complement of K. To
find the vertex of rank h in [a, n+ 1] \K we use the query selectK̄(rankK̄(a) + h). The
space complexity of this data structure is O(k), and all operations are done in time
O(log k) = O(logn) or O(log2 k) = O(log2 n) (for the selectK̄(i) query). Here k denotes
the number of nodes in K, which is upper bounded by the number of nodes i such that
front(i) 6= nil. The details of the implementation are omitted from this extended abstract.
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5.2.2 Time complexity
Time complexity of toss(ϕ, s). The time complexity of this procedure is O(1) regardless
of whether or not the if condition holds or not.

Time complexity of “x ← the vertex of rank h in [a, n + 1] \ K”. This operation is
implemented using the data structure defined above, and takes O(log2 n) time.

Time complexity of parent(j). Examining the listing (Figure 1), one observes that the
number of operations is constant. However, though implicit in the listing, one should take
into account the update of the data structures child(j) as well as the data structure that
stores the set K, each taking O(logn) time.

Time complexity of next-child. First consider the time complexity of a single invocation
of next-child, involving the update of the various data structures: The call to parent takes
O(logn) time. Therefore, until the start of the repeat loop, the time is O(logn) (the time
complexity of succ is O(logn)). Now, the time complexity of a single iteration of the loop
(without taking into account recursive calls to next-child) is (O log2 n) because:

The call to toss takes O(1) time.
Finding the vertex of rank h in [a, n+ 1] \K takes O(log2 n) time.
Each of the O(1) updates of front(·) or front−1(·) may change the set K, and therefore
may take O(logn) time to update the data structure involving K.
Each update of a pointer u(·) results also in an (implicit) update in a certain child
search tree, taking O(logn) time.

We now examine the number of iterations of the loop.

I Claim 9. With high probability, the number of iterations of the loop in a single invocation
of next-child is O(logn).

Proof. We consider a process where the iterations continue until the selected node is node
b. A random variable, R, depicting this number dominates a random variable that depicts
the actual number of iterations. For each iteration, an additional node is selected by toss.
By Lemma 7 the probability that a node j < b is selected by toss is 1/ϕ(j), and we have
that 1/ϕ(j) ≤ 1

j−1 . Thus, R = 1 +
∑b−1

j=a Xj , where Xj is 1 iff node j was selected, 0
otherwise. Since µ =

∑b−1
j=a

1
ϕ(j) ≤ logn, using Chernoff bound we have, for any constant

c > 6, P [R > c · logn] ≤ 2−c·log n = n−Ω(1). J

We thus have the following.

I Lemma 10. For any given invocation of next-child, with high probability, the time
complexity is O(log3 n).

5.2.3 Randomness complexity
In procedure parent we use O(logn) random bits whenever, for a given j, this procedure is
called with parameter j for the first time.

In procedure toss the if condition holds with probability 1 − 1/nc−1 (where c is the
constant used in that procedure). Therefore, given an invocation of toss, with probability
1− 1/nc−1 this procedure uses O(logn) bits. By Claim 9, in each invocation of next-child
the number of times that toss is called is, w.h.p., O(logn). We thus have the following.
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I Lemma 11. During a given call to next-child, w.h.p., O(log2 n) random bits are used.

The following lemma states the time, space, and randomness complexities of the queries.

I Lemma 12. The complexities of next-child-tp and parent are as follows.
Given an invocation of parent the following hold for this invocation:
1. The increase, during that invocation, of the space used by our algorithm is O(1).
2. The number of random bits used during that invocation is O(logn).
3. The time complexity of that invocation is O(logn).
Given an invocation of next-child-tp, with high probability, all of the following hold
for this invocation:
1. The increase, during that invocation, of the space used by our algorithm is O(log2 n).
2. The number of random bits used during that invocation is O(log4 n).
3. The time complexity of that invocation is O(log5 n).

Proof.
parent. During an invocation of parent(j) the size of the used space increases when a
pointer u(j) becomes non-nul or when additional values are stored in child(u(j)). To select
u(j), O(logn) random bits are used, and O(logn) time is consumed to insert j in child(u(j))
and to update the data structure for the set K (this is implicit in the listing).

next-child-tp. We first consider next-child. Observe that by Lemma 8, w.h.p., each and
every root (non-recursive) invocation of next-child has a recursion tree of size O(logn). In
each invocation of next-child, O(1) variables front(j) and u(j) may be updated. Therefore,
w.h.p., for all root (non-recursive) calls to next-child it holds that the increase in space
during this invocation is O(logn) (see Section 5.2.1). Using Lemmas 11 and 8 we have that,
w.h.p., each root invocation of next-child uses O(log3 n) random bits. Using Lemmas 10
and 8, we have that, w.h.p., the time complexity of each root invocation of next-child is
O(log4 n).

Because the types of the pointers are uniformly distributed in {dir, rec}, each call to
next-child-tp results, w.h.p., in O(logn) calls to next-child. The above complexities are
thus multiplied by an O(logn) factor to get the (w.h.p.) complexities of next-child-tp. J

6 On-the-fly Generator for BA-Graphs

Our on-the-fly generator for BA-graphs is called O-t-F-BA, and simply calls
BA-next-neighbor(v) for each query on node v. We present an implementation for the
BA-next-neighbor query, and prove its correctness, as well as analyze its time, space, and
randomness complexities. The on-the-fly BA generator maintains n standard heaps, one
for each node. The heaps store nodes, where the order is the natural order of their serial
numbers. The heap of node j stores some of the nodes already known to be neighbors of j.

For the first BA-next-neighbor(v) query, for a given v, we proceed as follows. We find
the parent of v in the BA-graph, which is done by following, in the pointers tree, the
pointers of the ancestors of v until we find an ancestor pointed to by a dir pointer (and
not a rec pointer). See Figure 2. In addition, we initialize the process of finding neighbors
of v to its right (i.e., with a bigger serial number) by inserting into the heap of v the
“final node” n+ 1 as well as the first child of v.
Observe that any subsequent BA-next-neighbor(v) query is to return a child of v in the
BA-graph. The children x of v in the BA-graph have, in the pointers tree, a path of u(·)
pointers starting at x and ending at v with all pointers, except the last one, being rec
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1: procedure BA-next-neighbor(v)
2: if first_query(v) = true then
3: /* first query for v */
4: first_query(v)← false
5: heap-insert(heapv, n+ 1)
6: heap-insert(heapv, next-child-tp(v, v, dir))
7: return BA-parent(v)
8: else
9: /* all subsequent queries for v */

10: r ← heap-extract-min(heapv)
11: if r = n+ 1 then
12: heap-insert(heapv, n+ 1)
13: return n+ 1
14: else
15: if type(r) = dir then
16: heap-insert(heapv, next-child-tp(v, r, dir))
17: heap-insert(heapv, next-child-tp(r, r, rec))
18: else
19: (q, type)← parent(r)
20: heap-insert(heapv, next-child-tp(q, r, rec))
21: end if
22: return r
23: end if
24: end if
25: end procedure

1: procedure BA-parent(v)
2: (i, f lag)← parent(v)
3: if flag = dir then
4: return i
5: else
6: return BA-parent(i)
7: end if
8: end procedure

Figure 2 Pseudo code of the on-the-fly BA generator.

(the last being dir). The query has to report the children in increasing index number.
To this end the heap of v is used; it stores some of the children of v, not yet returned by
a BA-next-neighbor(v) query. This heap is also updated so that BA-next-neighbor(v)
will continue to return the next child according to the index order. To do so, whenever a
node, r, is extracted from the heap, the heap is updated to include the following:

If r has a dir pointer to v, then we add to the heap (1) the next, after r, node with a
dir pointer to v, and (2) the first node that has a rec pointer to r.
If r has a rec pointer to a node r′, then we add to the heap the first, after r, node
with a rec pointer to r′.

The proof of the next lemma, by induction on the number of queries, is omitted.

I Lemma 13. The procedure BA-next-neighbor returns the next neighbor of v.

Since the flags in the pointers tree are uniformly distributed, and by Lemma 12, we have:

I Lemma 14. For any given root (non-recursive) invocation of BA-parent, with high proba-
bility, that invocation takes O(log2 n) time.

The next theorem follows from the code, standard heap implementation, and Lemma 12.

I Theorem 15. For any given invocation of BA-next-neighbor, with high probability, all
of the following hold for that invocation:
1. The increase, during that invocation, of the space used by our algorithm O(log2 n).
2. The number of random bits used during that invocation is O(log4 n).
3. The time complexity of that invocation is O(log5 n).

We now state the properties of our on-the-fly graph generator for BA-graphs.
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I Definition 16. For a number of queries T > 0 and a sequence of BA-next-neighbor
queries Q = (q1, . . . , qT ), let A(Q) be the sequence of answers returned by an algorithm A

on Q. If A is randomized then A(Q) is a probability distribution on sequences of answers.

Let Opt-BAn be the (randomized) algorithm that first runs the Markov process to generate
a graph G on n nodes according to the BA model, stores G, and then answers queries by
accessing the stored G. Let O-t-F-BAn be the algorithm O-t-F-BA run with graph-size n.

I Theorem 17. For any sequence of queries Q, Opt-BAn(Q) = O-t-F-BAn(Q).

I Theorem 18. For any T > 0 and any sequence of queries Q = (q1, . . . , qT ), when using
O-t-F-BAn it holds w.h.p. that, for all 1 ≤ t ≤ T :
1. The increase in the used space, while processing query t, is O(log2 n).
2. The number of random bits used while processing query t is O(log4 n).
3. The time complexity for processing query t is O(log5 n).

Proof. A query BA-next-neighbor(v) at time t is a trivial if at some t′ < t a query
BA-next-neighbor(v) returns n+ 1. Observe that trivial queries take O(logn) deterministic
time, do not use randomness, and do not increase the used space. Since there are less than
n2 non-trivial queries, the theorem follows from Theorem 15 and a union bound. J
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