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Abstract
We provide a counterexample to a conjecture by Thiagarajan (1996 and 2002) that regular prime
event structures correspond exactly to those obtained as unfoldings of finite 1-safe Petri nets. The
same counterexample is used to disprove a closely related conjecture by Badouel, Darondeau, and
Raoult (1999) that domains of regular event structures with bounded \-cliques are recognizable by
finite trace automata. Event structures, trace automata, and Petri nets are fundamental models
in concurrency theory. There exist nice interpretations of these structures as combinatorial
and geometric objects and both conjectures can be reformulated in this framework. Namely, the
domains of prime event structures correspond exactly to pointed median graphs; from a geometric
point of view, these domains are in bijection with pointed CAT(0) cube complexes.

A necessary condition for both conjectures to be true is that domains of respective regular
event structures admit a regular nice labeling. To disprove these conjectures, we describe a
regular event domain (with bounded \-cliques) that does not admit a regular nice labeling. Our
counterexample is derived from an example by Wise (1996 and 2007) of a nonpositively curved
square complex X whose universal cover X̃ is a CAT(0) square complex containing a particular
plane with an aperiodic tiling.
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1 Introduction

Event structures, introduced by Nielsen, Plotkin, and Winskel [18, 29, 30], are a widely
recognized abstract model of concurrent computation. An event structure is a partially
ordered set of events together with a conflict relation. The partial order captures the causal
dependency of events. The conflict relation models incompatibility of events so that two
events that are in conflict cannot simultaneously occur in any state of the computation.
Consequently, two events that are neither ordered nor in conflict may occur concurrently.
The domain of an event structure consists of all computation states, called configurations.
Each computation state is a subset of events subject to the constraints that no two conflicting
events can occur together in the same computation and if an event occurred in a computation
then all events on which it causally depends have occurred too. Therefore, the domain of an
event structure E is the set D(E) of all finite configurations ordered by inclusion. An event e
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101:2 A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures

is said to be enabled by a configuration c if e /∈ c and c ∪ {e} is a configuration. The degree
of an event structure E is the maximum number of events enabled by a configuration of E .
The future of a configuration c is the set of all finite configurations c′ containing c.

Among other things, the importance of event structures stems from the fact that several
fundamental models of concurrent computation lead to event structures. Nielsen, Plotkin,
and Winskel [18] proved that every 1-safe Petri net N unfolds into an event structure EN .
Later results of [19] and [30] show in fact that 1-safe Petri nets and event structures represent
each other in a strong sense. In the same vein, Stark [25] established that the domains of
configurations of trace automata are exactly the conflict event domains; a presentation of
domains of event structures as trace monoids (Mazurkiewicz traces) or as asynchronous
transition systems was given in [22] and [6], respectively. In both cases, the events of the
resulting event structure are labeled in a such a way that any two events enabled by the
same configuration are labeled differently (such a labeling is usually called a nice labeling).
To deal with finite 1-safe Petri nets, Thiagarajan [26, 27] introduced the notions of regular
event structure and regular trace event structure. A regular event structure E is an event
structure with a finite number of isomorphism types of futures of configurations and finite
degree. A regular trace event structure is an event structure E whose events can be nicely
labeled by the letters of a finite trace alphabet M = (Σ, I) in a such a way that any two
concurrent events define a pair of I and there exists only a finite number of isomorphism
types of labeled futures of configurations. These definitions were motivated by the fact that
the event structures EN arising from finite 1-safe Petri nets N are regular: Thiagarajan [26]
proved that event structures of finite 1-safe Petri nets correspond to regular trace event
structures. This lead Thiagarajan to formulate the following conjecture:

I Conjecture 1 ([26, 27]). An event structure E is isomorphic to the event structure EN
arising from a finite 1-safe Petri net N if and only if E is regular.

Badouel, Darondeau, and Raoult [2] formulated two similar conjectures about conflict
event domain that are recognizable by finite trace automata. The first one is equivalent to
Conjecture 1, while the second one is formulated in a more general setting with an extra
condition. We formulate their second conjecture in the particular case of event structures:

I Conjecture 2 ([2]). The domain of an event structure E is recognizable if and only if E is
regular and has bounded \-cliques.

In view of previous results, to establish Conjecture 1, it is necessary for a regular event
structure E to define a regular nice labeling with letters from some trace alphabet (Σ, I).
Nielsen and Thiagarajan [20] proved in a technically involved but very nice combinatorial
way that all regular conflict-free event structures satisfy Conjecture 1. In a equally difficult
and technical proof, Badouel et al. [2] proved that their conjectures hold for context-free
event domains, i.e., for domains whose underlying graph is a context-free graph sensu Müller
and Schupp [17]. In this paper, we present a counterexample to Thiagarajan’s Conjecture
based on a more geometric and combinatorial view on event structures. We show that our
example also provides a counterexample to Conjecture 2 of Badouel et al.

We use the striking bijections between the domains of event structures, median graphs,
and CAT(0) cube complexes. Median graphs have many nice properties and admit numerous
characterizations. They have been investigated in several contexts for more than half a
century, and play a central role in metric graph theory; for more detailed information, the
interested reader can consult the surveys [3, 4]. On the other hand, CAT(0) cube complexes
are central objects in geometric group theory [23, 24, 33]. They have been characterized in a
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nice combinatorial way by Gromov [12] as simply connected cube complexes in which the
links of 0-cubes are simplicial flag complexes. It was proven in [9, 21] that 1-skeleta of CAT(0)
cube complexes are exactly the median graphs. Barthélemy and Constantin [5] proved that
the Hasse diagrams of domains of event structures are median graphs and every pointed
median graph is the domain of an event structure. The bijection between pointed median
graphs and event domains established in [5] can be viewed as the classical characterization of
prime event domains as prime algebraic coherent partial orders provided by Nielsen, Plotkin,
and Winskel [18]. Via these bijections, the events of an event structure E correspond to the
parallelism classes of edges of the domain D(E) viewed as a median graph.

Our counter-example is based on Wise’s [31, 32] nonpositively curved square complex X
with one vertex and six squares, whose edges are colored in five colors, and whose colored
universal cover X̃ contains a particular plane with an aperiodic tiling. As a result, X̃ is a
CAT(0) square complex whose edges are colored by the colors of their images in X and are
directed in such a way that all edges in the same parallelism class are oriented in the same
way. With respect to this orientation, all vertices of X̃ are equivalent up to automorphism.
We modify the complex X by taking its barycentric subdivision and by adding to the middles
of the edges of X directed paths of five different lengths in order to encode the colors of the
edges of X (and X̃) and to obtain a nonpositively curved square complex W . The universal
cover W̃ of W is a directed (but no longer colored) CAT(0) square complex. Since W̃ is
the universal cover of a finite complex W , W̃ has a finite number of equivalence classes of
vertices up to automorphism. From W̃ we derive a domain of a regular event structure W̃ṽ

by considering the future of an arbitrary vertex ṽ of X̃. Using the fact that X̃ contains a
particular plane with an aperiodic tiling, we prove that W̃ṽ does not admit a regular nice
labeling, thus W̃ṽ does not have a regular trace labeling.

Due to space limitations, some proofs are omitted; a full version of the paper is available
on arXiv [8].

2 Event structures

2.1 Event structures and domains
An event structure is a triple E = (E,≤,#), where

E is a set of events,
≤ ⊆ E × E is a partial order of causal dependency,
# ⊆ E × E is a binary, irreflexive, symmetric relation of conflict,
↓e := {e′ ∈ E : e′ ≤ e} is finite for any e ∈ E,
e#e′ and e′ ≤ e′′ imply e#e′′.

What we call here an event structure is usually called a prime event structure. Two events
e′, e′′ are concurrent (notation e′‖e′′) if they are order-incomparable and they are not in
conflict. The conflict e′#e′′ between two elements e′ and e′′ is said to be minimal (notation,
e′#µe

′′) if there is no event e 6= e′, e′′ such that either e ≤ e′ and e#e′′ or e ≤ e′′ and e#e′.
Also define the binary relation l ⊆ E ×E as follows: set el e′ if and only if e ≤ e′, e 6= e′,
and for every e′′ if e ≤ e′′ ≤ e′, then e′′ = e or e′′ = e′. Given two event structures
E1 = (E1,≤1,#1) and E2 = (E2,≤2,#2), a map f : E1 → E2 is an isomorphism if f is a
bijection such that e ≤1 e

′ iff f(e) ≤2 f(e′) and e#1e
′ iff f(e)#2f(e′) for every e, e′ ∈ E1. If

such an isomorphism exists, then E1 and E2 are said to be isomorphic; notation E1 ≡ E2.
A labeled event structure Eλ = (E , λ) is defined by an underlying event structure E =

(E,≤,#) and a labeling λ that is a map from E to some alphabet Σ. Two labeled event
structures Eλ1

1 = (E1, λ1) and Eλ1
2 = (E2, λ2) are isomorphic (notation Eλ1

1 ≡ Eλ2
2 ) if there
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exists an isomorphism f between the underlying event structures E1 and E2 such that
λ2(f(e1)) = λ1(e1) for every e1 ∈ E1.

A configuration of an event structure E = (E,≤,#) is any finite subset c ⊂ E of events
which is conflict-free (e, e′ ∈ c implies that e, e′ are not in conflict) and downward-closed
(e ∈ c and e′ ≤ e implies that e′ ∈ c) [30]. Notice that ∅ is always a configuration and that
↓e and ↓e \ {e} are configurations for any e ∈ E. The domain of an event structure is the
set D := D(E) of all configurations of E ordered by inclusion; (c′, c) is a (directed) edge of
the Hasse diagram of the poset (D(E),⊆) if and only if c = c′ ∪ {e} for an event e ∈ E \ c.
An event e is said to be enabled by a configuration c if e /∈ c and c ∪ {e} is a configuration.
Denote by en(c) the set of all events enabled at the configuration c. Two events are called
co-initial if they are both enabled at some configuration c. Note that if e and e′ are co-initial,
then either e#µe

′ or e‖e′. It is easy to see that two events e and e′ are in minimal conflict
e#µe

′ if and only if e#e′ and e and e′ are co-initial. The degree deg(E) of an event structure
E is the least positive integer d such that |en(c)| ≤ d for any configuration c of E . We say
that E has finite degree if deg(E) is finite. The future (or the filter) F(c) of a configuration c
is the set of all configurations c′ containing c: F(c) = ↑c := {c′ ∈ D(E) : c ⊆ c′}, i.e., F(c) is
the principal filter of c in the ordered set (D(E),⊆).

For an event structure E = (E,≤, \), let \ be the least irreflexive and symmetric relation
on the set of events E such that e1\e2 if (1) e1‖e2, or (2) e1#µe2, or (3) there exists an
event e3 that is co-initial with e1 and e2 at two different configurations such that e1‖e3 and
e2#µe3. If e1\e2 and this comes from condition (3), then we write e1\(3)e2. A \-clique is a
subset S of events such that e1\e2 for any e1, e2 ∈ S.

A labeling λ : E → Σ of an event structure E (or of its domain D(E)) is called a nice
labeling if any two events that are co-initial have different labels [22]. A nice labeling of E
can be reformulated as a coloring of the directed edges of the Hasse diagram of its domain
D(E) subject to the following local conditions:

Determinism: The edges outgoing from the same vertex of D(E) have different colors.
Concurrency: the opposite edges of each square of D(E) are colored with the same color.

2.2 Regular event structures

In this subsection, we recall the definitions of regular event structures, regular trace event
structures, and regular nice labelings of event structures. We closely follow the definitions and
notations of [26, 27, 20]. Let E = (E,≤,#) be an event structure. Let c be a configuration
of E . Set #(c) = {e′ : ∃e ∈ c, e#e′}. The event structure rooted at c is defined to be the
triple E\c = (E′,≤′,#′), where E′ = E \ (c ∪ #(c)), ≤′ is ≤ restricted to E′ × E′, and
#′ is # restricted to E′ × E′. It can be easily seen that the domain D(E\c) of the event
structure E\c is isomorphic to the filter F(c) of c in D(E) such that any configuration c′ of
D(E) corresponds to the configuration c′ \ c of D(E\c).

For an event structure E = (E,≤,#), define the equivalence relation RE on its configura-
tions in the following way: for two configurations c and c′ set cREc′ if and only if E\c ≡ E\c′.
The index of an event structure E is the number of equivalence classes of RE , i.e., the number
of isomorphism types of futures of configurations of E . The event structure E is regular
[26, 27, 20] if E has finite index and finite degree.

Now, let Eλ = (E , λ) be a labeled event structure. For any configuration c of E , if
we restrict λ to E\c, then we obtain a labeled event structure (E\c, λ) denoted by Eλ\c.
Analogously, define the equivalence relation REλ on its configurations by setting cREλc′ if
and only if Eλ\c ≡ Eλ\c′. The index of Eλ is the number of equivalence classes of REλ . We
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say that an event structure E admits a regular nice labeling if there exists a nice labeling λ
of E with a finite alphabet Σ such that Eλ has finite index.

We continue by recalling the definition of regular trace event structures from [26, 27]. A
(Mazurkiewicz) trace alphabet is a pair M = (Σ, I), where Σ is a finite non-empty alphabet
set and I ⊂ Σ× Σ is an irreflexive and symmetric relation called the independence relation.
As usual, Σ∗ is the set of finite words with letters in Σ. The independence relation I induces
the equivalence relation ∼I , which is the reflexive and transitive closure of the binary relation
↔I : if σ, σ′ ∈ Σ∗ and (a, b) ∈ I, then σabσ′ ↔I σbaσ

′. The relation D := (Σ × Σ) \ I is
called the dependence relation. An M -labeled event structure is a labeled event structure
Eλ = (E , λ), where E = (E,≤,#) is an event structure and λ : E → Σ is a labeling function
which satisfies the following conditions:

(LES1) e#µe
′ implies λ(e) 6= λ(e′),

(LES2) el e′ or e#µe
′, then (λ(e), λ(e′)) ∈ D,

(LES3) if (λ(e), λ(e′)) ∈ D, then e ≤ e′ or e′ ≤ e or e#e′.
We call λ a trace labeling of E . The conditions (LES2) and (LES3) on the labeling

function ensures that the concurrency relation ‖ of E respects the independence relation I
of M . In particular, since I is irreflexive, from (LES3) it follows that any two concurrent
events are labeled differently. Since by (LES1) two events in minimal conflict are also labeled
differently, this implies that λ is a finite nice labeling of E .

An M -labeled event structure Eλ = (E , λ) is regular if Eλ has finite index. Finally, an
event structure E is called a regular trace event structure [26, 27] iff there exists a trace
alphabet M = (Σ, I) and a regular M -labeled event structure Eλ such that E is isomorphic
to the underlying event structure of Eλ. From the definition immediately follows that every
regular trace event structure is also a regular event structure. It turns out that the converse
is equivalent to Conjecture 1. Namely, [27] establishes the following equivalence (this result
dispenses us from giving a formal definition of 1-safe Petri nets; the interested readers can
find it in the papers [27, 20]):
I Theorem 3 ([27, Theorem 1]). E is a regular trace event structure if and only if there
exists a finite 1-safe Petri net N such that E and EN are isomorphic.

In view of this theorem, Conjecture 1 is equivalent to the following conjecture:
I Conjecture 4. E is a regular event structure iff E is a regular trace event structure.

Badouel et al. [2] considered recognizable conflict event domains that are more general
than the domains of event structures we consider in this paper. Since the domain of an event
structure E is recognizable if and only if E is a regular trace event structure (see [16, Section
5]), Conjecture 2 can be reformulated as follows:
I Conjecture 5. E is a regular event structure iff E is a regular trace event structure and E
has bounded \-cliques.

Since any regular trace labeling is a regular nice labeling, any regular event structure
E not admitting a regular nice labeling is a counter-example to Conjecture 4 (and thus to
Conjecture 1). If, additionally, E has bounded \-cliques, E is also a counter-example to
Conjecture 5 (and thus to Conjecture 2).

3 Domains, median graphs, and CAT(0) cube complexes

In this section, we recall the bijections between domains of event structures and median
graphs/CAT(0) cube complexes established in [1] and [5], and between median graphs and
1-skeleta of CAT(0) cube complexes established in [9] and [21].

ICALP 2017
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Let G = (V,E) be a simple, connected, not necessarily finite graph. The distance dG(u, v)
between two vertices u and v is the length of a shortest (u, v)-path, and the interval I(u, v)
between u and v consists of all vertices on shortest (u, v)–paths. A graph G is median if for
any three vertices x, y, z of G, there exists a unique vertex m = m(x, y, z), called the median
of x, y, z, simultaneously lying on the intervals I(x, y), I(x, z), and I(y, z). Basic examples of
median graphs are trees, hypercubes, rectangular grids, and Hasse diagrams of distributive
lattices and of median semilattices [3]. With any vertex v of a median graph G = (V,E) is
associated a canonical partial order ≤v defined by setting x ≤v y if and only if x ∈ I(v, y);
v is called the basepoint of ≤v. Since G is bipartite, the Hasse diagram Gv of the partial
order (V,≤v) is the graph G in which any edge xy is directed from x to y if and only if the
inequality dG(x, v) < dG(y, v) holds. We call Gv a pointed median graph.

Median graphs can be obtained from hypercubes by amalgams and median graphs are
themselves isometric subgraphs of hypercubes. The canonical isometric embedding of a
median graph G into a (smallest) hypercube can be determined by the so called Djoković-
Winkler (“parallelism”) relation Θ on the edges of G [11, 28]. For median graphs, the
equivalence relation Θ can be defined as follows. First say that two edges uv and xy are in
relation Θ0 if they are either equal or opposite edges of a 4-cycle uvxy in G. Then let Θ be
the transitive closure of Θ0. We denote by {Θi : i ∈ I} the equivalence classes of the relation
Θ (in [5], they were called parallelism classes). Each equivalence class Θi, i ∈ I, is a cutset
of G: namely, it splits V (G) in two convex subgraphs Ai, Bi of G (A subgraph H of G is
convex if for all u, v ∈ V (H), I(u, v) ⊆ V (H)). The equivalence relation Θ is fundamental in
the bijection between event structures and median graphs:

I Theorem 6 ([5]). The Hasse diagram of the domain (D(E),⊆) of any event structure
E = (E,≤,#) is a median graph. Conversely, for any median graph G and any basepoint v
of G, the pointed median graph Gv is isomorphic to the Hasse diagram of the domain of an
event structure.

In the construction of an event structure Ev from a median graph G pointed at a vertex
v, the events ei, i ∈ I of Ev correspond to the equivalence classes Θi, i ∈ I of Θ. Two classes
Θi and Θj define concurrent events if and only if they cross, i.e., there exists a square uvxy
where uv, xy ∈ Θi and uy, vx ∈ Θj . For two events ei, ej , we have ei ≺ ej if and only if the
cutset Θi separates v from the edges of Θj . Finally, two events ei, ej are in conflict if and
only if Θi and Θj do not cross and neither separates the other from v.

A cube complex is a cell complex X whose cells are unit Euclidean cubes of various
dimensions such that any two intersecting cubes of X intersect in a common face. The
0-cubes and the 1-cubes of X are called vertices and edges of X and define the graph X(1),
the 1-skeleton of X. The star St(v,X) of a vertex v of X is the subcomplex spanned by all
cubes containing v. A cube complex X is simply connected if every cycle C of its 1-skeleton is
null-homotopic, i.e., it can be contracted to a single point by elementary homotopies. Given
two cube complexes X and Y , a covering (map) is a surjection p : Y → X mapping cubes to
cubes and such that p|St(v,Y ) : St(v, Y )→ St(p(v), X) is an isomorphism for every vertex v
in Y . The space Y is then called a covering space of X. A universal cover of X is a simply
connected covering space; it always exists and it is unique up to isomorphism [13, Sections
1.3 and 4.1]. The universal cover of a complex X will be denoted by X̃. In particular, if X
is simply connected, then its universal cover X̃ is X itself.

An important class of cube complexes studied in geometric group theory and combinatorics
is the class of CAT(0) cube complexes. In this case, being CAT(0) is equivalent to the
unicity of geodesics in the `2 metric; see [7] for this and other properties of CAT(0) spaces.
Gromov [12] gave a beautiful combinatorial characterization of CAT(0) cube complexes as
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simply connected cube complexes satisfying the following condition: if three (k + 2)-cubes
pairwise intersect in a (k+ 1)-cube and all three intersect in a k-cube, then they are included
in a (k + 3)-cube. A cube complex X satisfying this combinatorial condition is called a
nonpositively curved (NPC) complex. As a corollary of Gromov’s result, for any NPC complex
X, its universal cover X̃ is CAT(0).

There is a well-known bijection between median graphs and CAT(0) cube complexes [9, 21].
Each median graph G gives rise to a cube complex X(G) obtained by replacing all hypercubes
of G by Euclidean unit cubes. Endowed with the intrisic `2-metric, X(G) is a CAT(0) space.
Conversely, the 1-skeleton of any CAT(0) cube complex is a median graph. In fact, a graph
G is median if and only if its cube complex is simply connected and G satisfies the 3-cube
condition [9]: if three squares of G pairwise intersect in an edge and all three intersect in a
vertex, then they belong to a 3-cube.

This link between event domains, median graphs, and CAT(0) cube complexes allows a
more geometric and combinatorial approach to several questions on event structures (and to
work only with CAT(0) cube complexes viewed as event domains). For example, this allowed
[10] to disprove the so-called nice labeling conjecture of Rozoy and Thiagarajan [22] asserting
that any event structure of finite degree admits a finite nice labeling.

4 Directed NPC Complexes

Since we can define event structures from their domains, universal covers of NPC complexes
represent a rich source of event structures. To obtain regular event structures, it is natural
to consider universal covers of finite NPC complexes. Moreover, since domains of event
structures are directed, it is natural to consider universal covers of NPC complexes whose
edges are directed. However, the resulting directed universal covers are not in general domains
of event structures. In particular, the domains corresponding to pointed median graphs
given by Theorem 6 cannot be obtained in this way. In order to overcome this difficulty, we
introduce directed median graphs and directed NPC complexes. Using these notions, one
can naturally define regular event structures starting from finite directed NPC complexes.

A directed median graph is a pair (G, o), where G is a median graph and o is an orientation
of the edges of G in a such a way that opposite edges of squares of G have the same direction.
By transitivity of Θ, all edges from the same parallelism class Θi of G have the same direction.
Since each Θi partitions G into two parts, o defines a partial order ≺o on the vertex-set of G.
For a vertex v of G, let Fo(v,G) = {x ∈ V : v ≺o x} be the principal filter of v in the partial
order (V (G),≺o).

The following lemma shows that choosing an arbitrary vertex in a directed median graph
as a basepoint, one can define the domain of an event structure.

I Lemma 7. For any vertex v of a directed median graph (G, o), the following holds:
1. Fo(v,G) induces a convex subgraph of G;
2. the restriction of the partial order ≺o on Fo(v,G) coincides with the restriction of the

canonical basepoint order ≤v on Fo(v,G);
3. Fo(v,G) with ≺o is the domain of an event structure;
4. for any vertex u ∈ Fo(v,G), the principal filter Fo(u,G) is included in Fo(v,G) and
Fo(u,G) coincides with the principal filter of u with respect to the canonical basepoint
order ≤v on Fo(v,G).

A directed NPC complex is a pair (Y, o), where Y is a NPC complex and o is an orientation
of the edges of Y in a such a way that the opposite edges of the same square of Y have the

ICALP 2017
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same direction. The orientation o of the edges of Y induces in a natural way an orientation õ
of the edges of its universal cover Ỹ , so that (Ỹ , õ) is a directed NPC complex and (Ỹ (1), õ)
is a directed median graph. We now formulate the crucial regularity property of directed
median graphs (Ỹ (1), õ) when (Y, o) is finite.

I Lemma 8. If (Y, o) is a finite directed NPC complex, then (Ỹ (1), õ) is a directed median
graph with at most |V (Y )| isomorphism types of principal filters.

Combining Lemmas 7 and 8, we obtain the following result.

I Proposition 9. Let (Y, o) be a finite directed NPC complex. Then for any vertex ṽ of the
universal cover Ỹ of Y , the principal filter Fõ(ṽ, Ỹ (1)) with the partial order ≺õ is the domain
of a regular event structure with at most |V (Y )| different isomorphism types of futures.

A square complex X is a combinatorial 2-complex whose 2-cells are attached by closed
combinatorial paths of length 4. Thus, one can consider each 2-cell as a square attached
to the 1-skeleton X(1) of X. A square complex X is a V H-complex (vertical-horizontal
complex) if the 1-cells (edges) of X are partitioned into two sets V and H called vertical
and horizontal edges respectively, and the edges in each square alternate between edges in
V and H. Notice that if X is a V H-complex, then X satisfies the Gromov’s nonpositive
curvature condition since no three squares may pairwise intersect on three edges with a
common vertex. A V H-complex X is a complete square complex (CSC) [32] if any vertical
edge and any horizontal edge incident to a common vertex belong to a common square of X.
By [32, Theorem 3.8], if X is a complete square complex, then the universal cover X̃ of X is
isomorphic to the Cartesian product of two trees. By a plane Π in X̃ we will mean a convex
subcomplex of X̃ isometric to R2 tiled by the grid Z2 into unit squares.

5 Wise’s event domain W̃ṽ

In this section, we construct the domain W̃ṽ of a regular event structure (with bounded
\-cliques) that does not admit a regular nice labelling. To do so, we start with a directed
colored CSC X introduced by Wise [32]. In the following, we consider directed colored
V H-complexes, in which each edge has an orientation and a color. Such complexes will be
denoted by bold letters, like X. Sometimes, we need to forget the colors and the orientations
of the edges of these complexes. For a complex X, we denote by X the complex obtained by
forgetting the colors and the orientations of the edges of X (X is called the support of X),
and we denote by (X, o) the directed complex obtained by forgetting the colors of X.

5.1 Wise’s square complex X and its universal cover X̃
The complex X consists of six squares as indicated in Figure 1 (reproducing Figure 3 of [32]).
Each square has two vertical and two horizontal edges. The horizontal edges are oriented
from left to right and vertical edges from bottom to top. Denote this orientation of edges
by o. The vertical edges of squares are colored white, grey, and black and denoted a, b, and
c, respectively. The horizontal edges of squares are colored by single or double arrow, and
denoted x and y, respectively. The six squares are glued together by identifying edges of the
same color and respecting the directions to obtain the square complex X. Note that X has a
unique vertex, five edges, and six squares. It can be directly checked that X is a complete
square complex, and consequently (X, o) is a directed NPC complex. Let HX denote the
subcomplex of X consisting of the 2 horizontal edges and let VX denote the subcomplex of
X consisting of the 3 vertical edges.
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Figure 1 The 6 squares defining the complex X.

The universal cover H̃X of HX is the 4-regular infinite tree F4. Its edges inherit the
orientations from their images in HX : each vertex of H̃X has two incoming and two outgoing
arcs. Analogously, the universal cover H̃V of HV is the 6-regular infinite tree F6 where each
vertex has three incoming and three outgoing arcs. Let ṽ1 be any vertex of H̃X . Then the
principal filter of ṽ1 is the infinite binary tree T2 rooted at ṽ1: all its vertices except ṽ1 have
one incoming and two outgoing arcs, while ṽ1 has two outgoing arcs and no incoming arc.
Analogously, the principal filter of any vertex ṽ2 in the ordered set H̃V is the infinite ternary
tree T3 rooted at ṽ2.

Let X̃ be the universal cover of X and let p : X̃→ X be a covering map. Let X̃ denote
the support of X̃. Since X is a CSC, by [32, Theorem 3.8], X̃ is the Cartesian product
F4×F6 of the trees F4 and F6. The edges of X̃ are colored and oriented as their images in X,
and are also classified as horizontal or vertical edges. The squares of X̃ are oriented as their
images in X, thus two opposite edges of the same square of X̃ have the same direction. This
implies that all classes of parallel edges of X̃ are oriented in the same direction. Denote this
orientation of the edges of X̃ by õ. The 1-skeleton X̃(1) of X̃ together with õ is a directed
median graph. Let ṽ = (ṽ1, ṽ2) be any vertex of X̃, where ṽ1 and ṽ2 are the coordinates of ṽ
in the trees F4 and F6. Then the principal filter Fõ(ṽ, X̃(1)) of ṽ is the Cartesian product of
the principal filters of ṽ1 in F4 and of ṽ2 in F6, i.e., is isomorphic to T2 × T3.

By Lemma 7, the orientation of the edges of Fõ(ṽ, X̃(1)) corresponds to the canonical
basepoint orientation of Fõ(ṽ, X̃(1)) with ṽ as the basepoint. Moreover, by Proposition 9,
Fõ(ṽ, X̃(1)) is the domain of a regular event structure with one isomorphism type of futures.

5.2 Aperiodicity of X̃
We recall here the main properties of X̃ established in [32, Section 5]. Let ṽ = (ṽ1, ṽ2) be
an arbitrary vertex of X̃, where ṽ1 and ṽ2 are defined as before. From the definition of
the covering map, the loop of X colored y gives rise to a bi-infinite horizontal path Py of
X̃(1) passing via ṽ and whose all edges are colored y and are directed from left to right.
Analogously, there exists a bi-infinite vertical path Pc of X̃(1) passing via ṽ and whose all
edges are colored c and are directed from bottom to top.

The projection of Py on the horizontal factor F4 is a bi-infinite path Ph of F4 passing via
ṽ1. Analogously, the projection of Pc on the vertical factor F6 is a bi-infinite path P v of F6
passing via ṽ2. Consequently, the convex hull conv(Py ∪ Pc) of Py ∪ Pc in the graph X̃(1)

is isomorphic to the Cartesian product of Ph × P v of the paths Ph and P v. Therefore the
subcomplex of X̃ spanned by conv(Py ∪Pc) is a plane Πyc tiled into squares (recall that each
square is of one of 6 types and its sides are colored by the letters a, b, c, x, y), see Figure 2.

In our counterexample we will use the following result of [32] that was used to show that
the plane Πyc is not tiled periodically by the preimages of the squares of X. Denote by P+

y

the (directed) subpath of Py having ṽ as the origin (this is a one-infinite horizontal path).
Analogously, let P+

c be the (vertical) subpath of Pc having ṽ as the origin. The convex hull
of P+

y ∪ P+
c is a quarter of the plane Πyc, which we denote by Π++

yc . Any shortest path in
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ṽ

c3

M5(3)

y5

Figure 2 Part of the plane Π++
yc appearing in X̃.

X̃(1) from ṽ to a vertex ũ ∈ Π++
yc can be viewed as a word in the alphabet A = {a, b, c, x, y}.

For an integer n ≥ 0, denote by yn the horizontal subpath of P+
y beginning at ṽ and having

length n. Analogously, for an integer m ≥ 0, denote by cm the vertical subpath of P+
c

beginning at ṽ and having length m. Let Mn(m) denote the horizontal path of Π++
yc of length

n beginning at the endpoint of the vertical path cm. Mn(m) determines a word which is the
label of the side opposite to yn in the rectangle which is the convex hull of yn and cm (see
Figure 2). Let Mn(m) also denote this corresponding word.

I Proposition 10 ([32, Proposition 5.9]). For each n, the words {Mn(m) : 0 ≤ m ≤ 2n − 1}
are all distinct, and thus, every positive word in x and y of length n is Mn(m) for some m.

5.3 The square complex W and its universal cover W̃

Let βX denote the first barycentric subdivision of X: each square C of X is subdivided
into four squares C1, C2, C3, C4 by adding a middle vertex to each edge of C and connecting
it to the center of C by an edge. This way each edge e of C is subdivided into two edges
e1, e2, which inherit the orientation and the color of e. The four edges connecting the middle
vertices of the edges of C to the center of C are oriented from left to right and from bottom
to top (see the middle figure of Figure 3). Denote the resulting orientation by o′. This way,
(βX, o′) is a directed and colored square complex. Again, denote by βX the support of βX.
The universal cover β̃X of βX is the Cartesian product βF4 × βF6 of the trees βF4 and
βF6, where βF4 is the first barycentric subdivision of F4 and βF6 is the first barycentric
subdivision of F6. Additionally, (β̃X, õ′) is a directed CAT(0) square complex. We assign a
type to each vertex of β̃X: the preimage of the unique vertex of X is of type 0 and is called
a 0-vertex, the preimages of the middles of edges of X are of type 1 and are called 1-vertices,
and the preimages of centers of squares of X are of type 2 and are called 2-vertices.

To encode the colors of the edges of X, we introduce our central object, the square complex
W (whose edges are no longer colored). Let A = {a, b, c, x, y} and let r : A→ {1, 2, 3, 4, 5}
be a bijective map. The complex W is obtained from βX by adding to each 1-vertex z of
βX a path Rz of length r(α) if z is the middle of an edge colored α ∈ A in X. The path Rz
has one end at z (called the root of Rz) and z is the unique common vertex of Rz and βX
(we call such added paths Rz tips). Denote by o∗ the orientation of the edges of W defined
as follows: the edges of βX are oriented as in (βX, o) and the edges of tips are oriented away
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Figure 3 A square of X and the corresponding subcomplexes in (βX, o′) and (W, o∗).

from their roots (see the rightmost figure of Figure 3 for the encoding of the last square of
Figure 1). As a result, we obtain a finite directed NPC square complex (W, o∗).

Consider the universal cover W̃ of W . It can be viewed as the complex β̃X with a path
of length r(α) added to each 1-vertex which encodes an edge of X̃ of color α ∈ A. We say
that the vertices of W̃ lying only on tips are of type 3 and they are called 3-vertices. Let õ∗
denote the orientation of the edges of W̃ induced by the orientation o∗ of W . Then (W̃ , õ∗)
is a directed CAT(0) square complex. Since W is finite, the directed median graph (W̃ (1), õ∗)
has a finite number of isomorphisms types of principal filters Fõ∗(z̃, W̃ (1)).

Let ṽ be any 0-vertex of W̃ . Denote by W̃ṽ the principal filter Fõ∗(ṽ, W̃ (1)) of vertex ṽ
in (W̃ (1),≺õ∗). By Proposition 9, W̃ṽ together with the partial order ≺õ∗ is the domain of a
regular event structure, which we call Wise’s event domain. Since vertices of different types
of W̃ are incident to a different number of outgoing squares, any isomorphism between two
filters of (W̃ṽ,≺õ∗) preserves the types of vertices. We summarize all this in the following:

I Proposition 11. (W̃ṽ,≺õ∗) is the domain of a regular event structure. Any isomorphism
between any two filters of (W̃ṽ,≺õ∗) preserves the types of vertices.

5.4 (W̃ṽ, ≺õ∗) does not have a regular nice labeling
In this subsection we prove that the event structure associated to Wise’s event domain is a
counterexample to Thiagarajan’s conjecture (Theorem 12) and to the conjecture of Badouel
et al. [2] (Theorem 12 and Proposition 13).

I Theorem 12. (W̃ṽ,≺õ∗) does not admit a regular nice labeling.

Proof. Since W̃ṽ is the principal filter of a 0-vertex ṽ, W̃ṽ contains all vertices of X̃ located
in the quarter of plane Π++

yc of X̃, in particular it contains the vertices of the paths P+
c and

P+
y . Notice also that W̃ṽ contains the barycenters and the tips corresponding to the edges of

Π++
yc . Suppose by way of contradiction that W̃ṽ has a regular nice labeling λ. Since W̃ṽ has

only a finite number of isomorphism types of labeled filters, the vertical path P+
c contains

two 0-vertices, z̃′ and z̃′′, which have isomorphic labeled principal filters. Let z̃′ be the end
of the vertical subpath ck of P+

c and z̃′′ be the end of the vertical subpath cm of P+
c , and

suppose without loss of generality that k < m. Let n > 0 be a positive integer such that
m ≤ 2n − 1. Consider the horizontal convex paths Mn(k) and Mn(m) of Π++

yc of length
n beginning at the vertices z̃′ and z̃′′, respectively. For any 0 ≤ i ≤ n, denote by z̃k,i the
ith vertex of Mn(k) (in particular, z̃k,0 = z̃′). Analogously, denote by z̃m,i the ith vertex
of Mn(m) (in particular, z̃m,0 = z̃′′). In W̃ṽ, the paths Mn(k) and Mn(m) give rise to two
convex horizontal paths M∗n(k) and M∗n(m) obtained from Mn(k) and Mn(m) by subdividing
their edges. Denote by ũk,i the unique common neighbor of z̃k,i and z̃k,i+1, 0 ≤ i < n, in
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M∗n(k) (and in W̃ (1)). Analogously, denote by ũm,i the unique common neighbor of z̃m,i and
z̃m,i+1, 0 ≤ i < n. The paths M∗n(k) and M∗n(m) belong to the principal filters Fõ∗(z̃′, W̃ (1))
and Fõ∗(z̃′′, W̃ (1)), respectively.

By Proposition 10, the words Mn(k) and Mn(m) are different. Let f be an isomorphism
between the filters Fõ∗(z̃k,0, W̃ (1)) and Fõ∗(z̃m,0, W̃ (1)). Since the words Mn(k) and Mn(m)
are different, from the choice of the lengths of tips in the complexes W and W̃ it follows
that f cannot map the path M∗n(k) to the path M∗n(m) by a vertical translation, i.e., there
exists an index 0 ≤ j < n such that f(z̃k,j+1) 6= z̃m,j+1; let i be the smallest such index.
Set z̃ := f(z̃k,i+1) and ũ := f(ũk,i). Since f preserves the types of vertices, z̃ is a 0-vertex
and ũ is a 1-vertex. Since f maps a convex path M∗n(k) to a convex path, ũ is the unique
common neighbor of z̃m,i and z̃. Since each 1-vertex is the barycenter of a unique edge
of X̃ and z̃ 6= z̃m,i+1, we deduce that ũ 6= ũm,i. The edge z̃k,iũk,i is directed from z̃k,i
to ũk,i. Analogously the edges z̃m,iũm,i and z̃m,iũ are directed from z̃m,i to ũm,i and ũ,
respectively. Since z̃k,iũk,i and z̃m,iũm,i are parallel edges, they define the same event and
therefore λ(z̃k,iũk,i) = λ(z̃m,iũm,i). On the other hand, since f maps the edge z̃k,iũk,i to
the edge z̃m,iũ and the map f preserves the labels, we have λ(z̃k,iũk,i) = λ(z̃m,iũ). As a
result, z̃m,i has two outgoing edges, z̃m,iũm,i and z̃m,iũ, having the same label, contrary to
the assumption that λ is a nice labeling. This contradiction shows that (W̃ṽ,≺õ∗) does not
admit a regular nice labeling. This concludes the proof of the theorem. J

I Proposition 13. Wise’s event domain (W̃ṽ,≺õ∗) has bounded \-cliques.

6 Conclusions and open questions

In this paper, we presented an example of a regular event domain W̃ṽ with bounded degree
and bounded \-cliques which does not admit a regular nice labeling. Consequently, the
domain W̃ṽ is not recognizable and the prime event structure whose domain is W̃ṽ is not a
regular trace event structure. This provides a counterexample to Conjecture 1 of Thiagarajan
and Conjecture 2 of Badouel, Darondeau, and Raoult.

The event domain W̃ṽ is a 2-dimensional CAT(0) cube complex. The proof that our
example W̃ṽ does not admit a regular nice labeling strongly uses the fact that the universal
cover X̃ of Wise’s complex X [32] contains a particular aperiodic tiled plane (that is called
antitorus by Wise). We think that the relationship between the existence of aperiodic planes
and nonexistence of regular labelings is more general. As observed by Kari and Papasoglu [14],
any 4-way deterministic tile-set gives rise to a CAT(0) VH-complex that is the universal cover
of a finite NPC complex. In [14], they presented a 4-way deterministic aperiodic tile-set TKP ,
i.e., all tilings of R2 using tiles from TKP are aperiodic. Based on this result, Lukkarila [15]
proved that for 4-way deterministic tile-sets the tiling problem is undecidable. We conjecture
that one can use this result to show that deciding if a regular event domain admits a regular
nice labeling is undecidable. As a first step in this direction, our proof can be adapted to
show that any 4-way deterministic aperiodic tile-set T (in particular, TKP ) also provides a
counterexample to Conjectures 1 and 2.

Even if Conjecture 1 does not hold in general, it would be interesting to exhibit classes
of event structures for which this conjecture is true. Badouel et al. [2] showed that both
conjectures hold for context-free domains. Context-free graphs are particular Gromov-
hyperbolic graphs. An interesting challenge would be to establish Conjecture 1 for Gromov-
hyperbolic domains. A positive answer would settle the previous undecidability question.
As we noticed already, Conjecture 1 was positively solved by Nielsen and Thiagarajan [20]
for conflict-free event structures. A possible way to extend their result is to consider this
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conjecture for confusion-free domains introduced by Nielsen et al. [18]. From geometric
and combinatorial points of view, context-free and conflict-free domains have quite different
structural properties and give rise to different kinds of CAT(0) cube complexes. For instance,
in context-free domains (and more generally, hyperbolic domains), isometric square-grids are
bounded while conflict-free domains can contain arbitrarily large square-grids.

Acknowledgements. We are grateful to P. S. Thiagarajan for some email exchanges on
Conjecture 1 and paper [20] and to our colleague R. Morin for several useful discussions.
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