
Definability by Horn Formulas and Linear Time on
Cellular Automata∗

Nicolas Bacquey1, Etienne Grandjean2, and Frédéric Olive3

1 INRIA Lille, Université de Lille, CRIStAL, Villeneuve d’Ascq, France
nicolas.bacquey@inria.fr

2 Normandie Université, ENSICAEN, CNRS, GREYC, Caen, France
etienne.grandjean@unicaen.fr

3 Aix Marseille Université, CNRS, LIF UMR 7279, Marseille, France
frederic.olive@lif.univ-mrs.fr

Abstract
We establish an exact logical characterization of linear time complexity of cellular automata of
dimension d, for any fixed d: a set of pictures of dimension d belongs to this complexity class
iff it is definable in existential second-order logic restricted to monotonic Horn formulas with
built-in successor function and d+1 first-order variables. This logical characterization is optimal
modulo an open problem in parallel complexity. Furthermore, its proof provides a systematic
method for transforming an inductive formula defining some problem into a cellular automaton
that computes it in linear time.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes, F.4.1 Mathematical Logic, F.4.3 Formal Languages

Keywords and phrases Picture languages, linear time, cellular automata of any dimension, local
induction, descriptive complexity, second-order logic, Horn formulas, logic programming

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.99

1 Introduction

Descriptive complexity provides machine-independent views of complexity classes. Typically,
Fagin’s Theorem [5] characterizes NP as the class of problems definable in existential second-
order logic (ESO). Similarly, Immerman-Vardi’s Theorem [15] and Grädel’s Theorem [8, 9]
characterize the class P by first-order logic plus least fixed-point, and second-order logic
restricted to Horn formulas, respectively. The link between computational and descriptive
complexity can be made as tight as possible, i.e. linear time or time O(nd), for a fixed
integer d, can be exactly characterized [20, 14, 17, 11]. Two of the present authors have
proved in [12, 13] that a problem is recognized in linear time on a non-deterministic cellular
automaton of dimension d iff it is definable in ESO logic with built-in successor and d+ 1
first-order variables. Is there such a natural characterization in logic for the more interesting
deterministic case? This question motivates the present paper.

A number of algorithmic problems (linear context-free language recognizability, product of
integers, product of matrices, sorting. . .) are computable in linear time on cellular automata
of appropriate dimension. For each such problem, the literature describes the algorithm
of the cellular automaton in an informal way [2, 16]. In parallel computational models,

∗ This work was partially supported by ANR AGGREG.

EA
T

C
S

© Nicolas Bacquey and Etienne Grandjean and Frédéric Olive;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 99; pp. 99:1–99:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.99
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

99:2 Horn Formulas and Linear Time on Cellular Automata

algorithms are often difficult to design. However, the problems they solve can often be simply
defined inductively. For instance, the product of two integers in binary notation is inductively
defined by the classical Horner rule.

The first contribution of this paper is the observation that those inductive processes are
naturally formalized by Horn formulas [9]. As our second and main contribution, we notice
that for every concrete problem defined by a Horn formula with d+ 1 first-order variables
(d ≥ 1), this inductive computation by Horn rules has a precise geometrical characterization:
It can be modeled as the displacement of a d-dimensional hyperplane H along some fixed line
D in a space of dimension d+ 1. Provided we interpret the line D as a temporal axis, the
parallel displacement of H with respect to D coincides with a computation of a d-dimensional
cellular automaton. The converse is obvious: a d-dimensional cellular automaton computation
can be regarded as the parallel displacement of a d-dimensional hyperplane – its set of cells –
along the time axis.

In the next section, a logic is designed which captures these inductive behaviors (see
Def. 14). Roughly speaking, it is obtained from the logic ESO-HORN taylored by Grädel to
characterize P, by restricting both the number of first-order variables and the arity of second-
order predicate symbols. Besides, it includes an additional restriction – the ‘monotonicity
condition’ – that reflects the geometrical consideration above-mentioned. We denote this
logic by mon-ESO-HORNd(∀d+1, arity d+1).

Now we can quote the main result of the paper (Thm. 15): a set L of d-pictures can be
decided in linear time by a deterministic cellular automaton – written L ∈ DLINd

ca – if, and
only if, it can be expressed in mon-ESO-HORNd(∀d+1, arity d+1). For short:

DLINd
ca = mon-ESO-HORNd(∀d+1, arity d+1). (1)

A noticeable interest of this result is the constructive method of its proof. In order
to design a cellular automaton that computes a problem in linear time, one has to define
inductively the problem with a monotonic Horn formula. The normalized form of the formula
is automatically obtained: this is the program of the cellular automaton1.

The paper is structured as follows: The next section collects the preliminary definitions
and gives a precise statement of our main result. In Sec. 3, we establish the left-to-right
inclusion of the identity displayed in (1). The rest of the paper is devoted to the converse
inclusion, whose proof is far more involved. In Sec. 4 we build a monotonic Horn formula
expressing the language of palindromes (a “toy” example) and deduce from it a cellular
automaton that recognizes this language in linear time. Sec. 5 generalizes this construction to
any problem defined in mon-ESO-HORNd(∀d+1, arity d+1), thus completing the proof of (1).
In Sec. 6, we conclude by arguing for the optimality of our result.

2 Preliminaries

2.1 Cellular automata, picture languages, linear time
We use the standard terminology of cellular automata as presented in [10].

I Definition 1. A cellular automaton of dimension d (d-CA or CA, for short) is a quadruple
A = (d,Q,N , δ), where d ∈ N is the dimension of the automaton, Q is a finite set whose
elements are called states , N is a finite subset of Zd called the neighborhood of the
automaton, and δ : QN → Q is the local transition function of the automaton.

1 For lack of space, this paper gives only one example of this method on a “toy” problem.

N. Bacquey and E. Grandjean, and F. Olive 99:3

A d-CA acts on a grid of dimension d:

I Definition 2. A d-dimensional configuration C over the set of states Q is a mapping
from Zd to Q. The elements of Zd will be referred to as cells .

I Definition 3. Given a cellular automaton A = (d,Q,N , δ), a configuration C and a
cell c ∈ Zd, we call neighborhood of c in C the mapping NC(c) : N → Q defined by
NC(c)(v) = C(c+ v).

From the local transition function δ of A = (d,Q,N , δ), we can define the global transition
function of the automaton ∆ : QZd → QZd obtained by applying the local rule on each cell,
that means ∆(C)(c) = δ(NC(c)) = δ((C(c+ v))v∈N), for each cell c.

One identifies the CA A with its global rule: A(C) = ∆(C) is the image of a configuration
C by the action of A. Moreover, At(C) is the configuration resulting from applying t times
the global rule of A from the initial configuration C.

I Definition 4. For a given cellular automaton: a state q is permanent if a cell in state q
remains in this state regardless of the states of its neighbors; a state q is quiescent if a cell
in state q remains in this state if all its neighbors are also in state q.

The natural inputs of cellular automata of dimension d are d-pictures:

I Definition 5. Let Σ be a finite alphabet. For integers d, n ≥ 1, a picture of dimension
d (d-picture) and side n over Σ is a mapping p : J1, nKd → Σ. We denote by Σ(d) the
set of d-pictures over Σ. Any subset of Σ(d) is called a d-picture language over Σ.

I Remark. d-picture languages can capture a wide variety of decision problems if the
alphabet Σ is sufficiently expressive. For instance, the product problem of boolean square
matrices is a 2-picture problem over the three-part alphabet Σ = {0, 1}3 that consists of
square pictures M such that the projection of M over the last part of the alphabet is equal
to the product of its projections over the first two parts.

I Definition 6. Given a picture p : J1, nKd → Σ, we define the picture configuration
associated with p with permanent or quiescent state2 q0 6∈ Σ as the function Cp,q0 : Zd →
Σ ∪ {q0} such that Cp,q0(x) = p(x) if x ∈ J1, nKd and Cp,q0(x) = q0 otherwise.

I Definition 7. Given a d-picture language L ⊆ Σd, we say that a cellular automaton
A = (d,Q,N , δ) such that Σ ⊆ Q with permanent states qa and qr (accepting and rejecting
states) recognizes L with permanent state (quiescent state, respectively) q0 ∈ Q\(Σ∪{qa, qr})
in time τ : N → N (for short, τ(n)) if for any picture p : J1, nKd → Σ, starting from the
configuration Cp,q0 at time 0, the state of cell n = (n, . . . , n) of A, called the reference cell, is
qa or qr at time τ(n) with Aτ(n)(Cp,q0)(n) = qa if p ∈ L and Aτ(n)(Cp,q0)(n) = qr if p 6∈ L.

I Definition 8. For d ≥ 1, we call DLINd
ca the class of d-picture problems L for which

there exist a d-CA A with quiescent state q0 and a function τ(n) = O(n) such that L can be
recognized by A in time τ(n). Such a problem is said to be recognizable in linear time .

The class DLINd
ca is very robust: it is closed under many changes: neighborhoods, precise

time/space bounds, input presentation, etc. The proof of the first part of our main result

2 The condition that each cell outside the input domain J1, nKd remains in a permanent state (resp.
quiescent state) q0 means that the computation space is exactly the set of input cells (resp. is not
bounded).

ICALP 2017

99:4 Horn Formulas and Linear Time on Cellular Automata

will use the following restrictive characterization which is a consequence of a general linear
acceleration theorem3 (see e.g. [10, 19]).

I Lemma 9 ([10]). DLINd
ca is the class of d-picture problems that can be recognized in time

n− 1 by a d-CA of neighborhood N2 = {−2,−1, 0, 1, 2}d with permanent state q0.

2.2 Picture structures and monotonic Horn formulas
The local nature of cellular automata acting on pictures is captured by logical formulas
acting on first-order structures, the so-called picture structures, that represent these pictures.
Before defining picture structures, let us detail their signatures. Given a dimension d ≥ 1
and k alphabets Σ1, . . . ,Σk, we denote by sg(d; Σ1, . . . ,Σk) the signature below:

sg(d; Σ1, . . . ,Σk) = {(Q1
s)s∈Σ1 , . . . , (Qks)s∈Σk

,min,max, suc, pred}.

Here, each Qis is a d-ary relation symbol, min and max are unary relation symbols, and suc
and pred are unary function symbols.

I Definition 10. Let p1, . . . , pk be pictures of respective alphabets Σ1, . . . ,Σk. We assume
that the pi’s have the same dimension d and the same side n. The picture structure of the
k-tuple (p1, . . . , pk) is the structure of signature sg(d; Σ1, . . . ,Σk) defined as follows:

S(p1, . . . , pk) = 〈J1, nK, (Q1
s)s∈Σ1 , . . . , (Qks)s∈Σk

,min,max, suc, pred〉.

Symbols of sg(d; Σ1, . . . ,Σk) are interpreted on S(p1, . . . , pk) as follows, where we denote the
same way a symbol and its interpretation:

each Qis is the set of cells of pi labelled by s. Formally: Qis = {a ∈ J1, nKd : pi(a) = s};
min and max are the singleton sets {1} and {n}, respectively;
suc and pred are the successor and predecessor functions: that is suc(n) = n and
suc(a) = a+ 1 for a ∈ J1, n− 1K; pred(1) = 1 and pred(a) = a− 1 for a ∈ J2, nK.

In the following, we will freely use the natural notation x+ i , for any fixed integer i ∈ Z.
It abbreviates suci(x) if i > 0, and pred−i(x) if i < 0. For i = 0, it represents x.

We will use the usual definitions and notations in logic (see [4, 18, 9]). All formulas
considered hereafter belong to existential second-order logic. More precisely, we shall focus
on the following logic:

I Definition 11. ESOd(∀d+1, arity d+1) is the class of formulas of the form ∃R∀xψ, where
R = (R1, . . . , Rr) is a tuple of (d+ 1)-ary relation symbols, x = (x0, . . . , xd) is a (d+ 1)-tuple
of first-order variables, and ψ is a quantifier-free first-order formula of signature sg(d; Σ)∪R
for some tuple of alphabets Σ = (Σ1, . . . ,Σk).

Such a formula involves two sorts of predicate symbols: those of sg(d; Σ) are called input
predicates and those of R are called guessed predicates .

It is proved in [13] that the above logic exactly characterizes NLINd
ca, the non-deterministic

counterpart of DLINd
ca. The ‘inclusion’ DLINd

ca ⊆ ESOd(∀d+1, arityd+1) immediately fol-
lows, but the converse inclusion is quite unlikely, since it entails DLINd

ca = NLINd
ca, which

in turn implies P = NP. Nevertheless, this engages us in looking for a logic characterizing
DLINd

ca inside the logic ESOd(∀d+1, arityd+1). A first restriction of this logic is naturally
suggested by the Grädel’s characterization of P already mentioned in the introduction:

3 For such a result, we need to increase the set of states of the automaton.

N. Bacquey and E. Grandjean, and F. Olive 99:5

I Definition 12. ESO-HORNd(∀d+1, arity d+1) brings together formulas ∃R∀xψ among
ESOd(∀d+1, arity d+1) whose quantifier-free part ψ is a conjunction of Horn clauses of the
form4 α1 ∧ . . . ∧ αm → α0 such that:

each premise α1, . . . , αm is
either a guessed atom R(x0 + i0, . . . , xd + id) with R ∈ R and i0, . . . , id ∈ Z,
or an input literal I(t1 + i1, . . . , tq + iq) or ¬I(t1 + i1, . . . , tq + iq), with I ∈ sg(d; Σ),
t1, . . . , tq ∈ x, and i0, . . . , iq ∈ Z ;

the conclusion literal α0 is either a ‘constant’ – the boolean ⊥ or an input literal – or a
guessed atom5 of the restricted form R(x0, . . . , xd) with R ∈ R.

We will see that this new logic still contains DLINd
ca but that here again the converse

inclusion is unlikely, as argued in Sec. 6. Whence the necessity of a further restriction of the
logic, detailed in Def. 14. For now, let us give some motivation for this restriction.

The first-order part of an ESO-HORNd(∀d+1, arityd+1)-formula can be viewed as a
program whose execution, on a given picture structure taken as input, computes the guessed
predicates from the input ones. Consider for instance the Horn clause R(x − 2, y − 1) ∧
R′(x+ 1, y− 2)→ R(x, y) built on guessed predicates R and R′. It establishes a dependence
between the values of the guessed predicates (taken as a whole) at place (x, y) and their
values at place (x− 2, y − 1), on one hand, and at place (x+ 1, y − 2), on the other hand.
This notion is formalized by the definition below.

I Definition 13. Let Φ = ∃R∀x0, . . . , xdψ be in ESO-HORNd(∀d+1, arityd+1). A nonzero
tuple (i0, . . . , id) ∈ Zd+1 is an induction vector of Φ if there exists a Horn clause C in ψ
and two guessed predicates R,R′ in R such that C includes R(x0, . . . , xd) as its conclusion
and R′(x0 + i0, . . . , xd + id) among its hypotheses. The set of induction vectors of Φ is called
its induction system .

The logic involved in the characterization of DLINd
ca that constitutes the core of this

paper is defined as follows:

I Definition 14. A formula Φ ∈ ESO-HORNd(∀d+1, arity d+1) with induction system S is
monotonic and we write Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1) if there exist a0, . . . , ad ∈ Z
such that each induction vector (v0, . . . , vd) ∈ S fulfils a0v0 + · · ·+ advd < 0. This condition
is called the monotonicity condition .

In other words, there exists a hyperplane a0x0 + · · · + adxd = 0, called a reference
hyperplane of S, such that each vector (v0, . . . , vd) ∈ S belongs to the same strict half-space
determined by this hyperplane, that means a0v0 + · · · + advd < 0. One also says that
S ⊂ Zd+1 satisfies the monotonicity condition w.r.t. the reference hyperplane.

We are now in a position to state formally the main result of the paper:

I Theorem 15. For d ≥ 1, DLINd
ca = mon-ESO-HORNd(∀d+1, arity d+1).

The two ‘inclusions’ underlying the above characterization are proved in Sec. 3 and 5.

4 We will always assume that conjunction has priority over implication.
5 Alternatively, in Horn formulas, ‘guessed’ predicates and ‘guessed’ atoms can be called more intuitively
‘computed’ predicates and ‘computed’ atoms.

ICALP 2017

99:6 Horn Formulas and Linear Time on Cellular Automata

3 DLINca ⊆ mon-ESO-HORN

I Proposition 16. For d ≥ 1, DLINd
ca ⊆ mon-ESO-HORNd(∀d+1, arity d+1).

Proof. Let L ⊆ Σ(d) be a d-picture language in DLINd
ca. By Lemma 9, there exists a CA A =

(d,Q,N2, δ) of neighborhood N2 = {−2,−1, 0, 1, 2}d that recognizes L in time τ(n) = n− 1
with permanent state q0. Let J1, nK denote the interval of the n instants of the computation
of A on a d-picture of side n; in particular, the initial and final instants are numbered 1 and
n, respectively. We are going to construct a formula Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1)
that defines L, i.e., that expresses that the computation of A on a d-picture p accepts it. It is
of the form Φ ≡ ∃(Rs)s∈Q∀t∀cψ where c denotes the d-tuple of variables (c1, . . . , cd) and, for
s ∈ Q, the intended meaning of the guessed atom Rs(t, c) is the following: at the instant t,
the cell c is in the state s. For simplicity of notation, let us assume d = 1. Also assume
n ≥ 5. The quantifier-free part ψ of Φ is the conjunction of three kinds of Horn clauses:
1. the initialization clauses: for each s ∈ Σ, the clause min(t) ∧Qs(c)→ Rs(t, c);
2. five kinds of computation clauses that compute the state at instant t > 1 of any cell c

according to its possible neighborhoods for N2 = {−2,−1, 0, 1, 2} :
(i) c = 1; (ii) c = 2; (iii) general case c ∈ J3, n− 2K; (iv) c = n− 1; (v) c = n.

Let us consider the general case: for any 5-tuple of states (s−2, s−1, s0, s1, s2) ∈ (Q −
{q0, qa, qr})5, the clause(

Rs−2(t− 1, c− 2) ∧Rs−1(t− 1, c− 1) ∧
Rs0(t− 1, c) ∧Rs1(t− 1, c+ 1) ∧Rs2(t− 1, c+ 2)

)
→ Rδ(s−2,s−1,s0,s1,s2)(t, c)

computes the state at any instant t > 1 of any cell c in the interval J3, n− 2K, which can
be tested by the use of ¬min() and ¬max() in the premises;

3. the accepting clause Rqr
(t, c)→⊥, which says that the computation does not reject, and

hence accepts, since by hypothesis each computation of A either accepts or rejects.

By construction, Φ belongs to ESO-HORNd(∀d+1, arity d+1) and the induction system
is {−1} × {−2,−1, 0, 1, 2}d, which has a reference hyperplane of equation t = 0. Hence,
Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1), which completes the proof. J

4 From the formula to the automaton: the example of palindromes

As the proof of the inclusion mon-ESO-HORNd(∀d+1, arity d+1) ⊆ DLINd
ca we will give in

Sec. 5 is much more elaborate than its converse, we first give in this section its main ideas
which are essentially of geometrical nature by now presenting the inductive definition of a
“toy” problem by a monotonic Horn formula from which we will derive a cellular automaton
that recognizes the problem.

Let Palindrome(Σ) denote the language of palindromes over a fixed alphabet Σ.

4.1 A monotonic Horn formula defining the language of palindromes
Let us prove that Palindrome(Σ) is definable in mon-ESO-HORN1(∀2, arity 2). In addition
to the set of input unary predicates Input = {min,max, (Qs)s∈Σ} involved in the picture
structure that represents a word w = w1w2 . . . wn ∈ Σ∗, we need to consider three guessed
binary predicates symbols R=, R< and RnoPal. The first one is enforced to contain the
equality relation. It is used to inductively map the second one on the usual strict linear order
over J1, nK. This is done with the clauses θ1, . . . , θ5 below:

N. Bacquey and E. Grandjean, and F. Olive 99:7

θ1 = min(x) ∧min(y)→ R=(x, y);
θ2 = ¬min(x) ∧ ¬min(y) ∧R=(x− 1, y − 1)→ R=(x, y);
θ3 = ¬max(x) ∧R=(x+ 1, y)→ R<(x, y);
θ4 = ¬max(x) ∧R<(x+ 1, y)→ R<(x, y);
θ5 = R<(x, x)→ ⊥.

The (set of) clauses θ6 and θ7 below inductively define RnoPal as the set of couples (x, y) ∈
J1, nK2 that fulfill: x < y and the factor wx . . . wy of the input word w is not a palindrome.
Then the clause θ8 forces w to be a palindrome:

θ6 = R<(x, y) ∧Qs(x) ∧Qs′(y)→ RnoPal(x, y), for all s 6= s′ in Σ;
θ7 = R<(x, y) ∧RnoPal(x+ 1, y − 1)→ RnoPal(x, y);
θ8 = min(x) ∧max(y) ∧RnoPal(x, y)→ ⊥.

In conclusion, Palindrome(Σ) is defined by the following formula Φpal, over the structure
S(w) = 〈J1, nK, (Qs)s∈Σ,min,max, suc, pred〉 associated with an input word w = w1 . . . wn:

Φpal ≡ ∃R=, R<, RnoPal∀x, y
∧
i≤8

θi.

Moreover, Φpal belongs to ESO-HORN1(∀2, arity 2) and has S = {(−1,−1), (1, 0), (1,−1)} as
its induction system (see Def. 13) Clearly, the system S satisfies the monotonicity condition
of Def. 14 with the line of equation −x+ 2y = 0 as its reference hyperplane. It follows:

I Proposition 17. Palindrome(Σ) ∈ mon-ESO-HORN1(∀2, arity 2).

4.2 From Φpal to Apal

It remains to transform the formula Φpal above into a one-dimensional cellular automaton
Apal that recognizes the language Palindrome(Σ). For sake of simplicity, we first ignore
the input literals and only take account of guessed atoms in the Horn clauses θi. Notice
that in each clause whose conclusion is a guessed atom R(x, y), R ∈ {R=, R<, RnoPal}, the
guessed atoms occurring as premises have one of the following forms:

R′(x, y), R′(x+ 1, y), R′(x+ 1, y − 1), R′(x− 1, y − 1).

Intuitively, if one regards the set Dt = {(x, y) ∈ J1, nK2 | −x + 2y = t} as the line of
cells of a one-dimensional CA at instant t, then the conjunction of the above clauses θi can
be regarded as the transition function of such a CA (see Fig. 1). More formally, in order
to introduce the time parameter t, we eliminate one of the variables, x for example, and
we regard the other variable, y, as the space variable c. That is, one makes the change of
variables6 : t = −x+ 2y ; c = y.

Let us now explain how the automaton Apal to be constructed can take account of the
input literals. For each point (x, y) ∈ J1, nK2, we call state(x, y) the tuple of boolean values
of all input and output atoms on x and y. That is,

state(x, y) =

 min(x), min(y), max(x), max(y),
(Qs(x))s∈Σ, (Qs(y))s∈Σ,

R=(x, y), R<(x, y), RnoPal(x, y)

 ,

where the values R=(x, y), R<(x, y), RnoPal(x, y), are deduced by the Horn formula.

6 There is an analogy between our method and the so-called loop-skewing or polytope/polyhedron method
in compilation and parallel algorithms [6, 1, 7].

ICALP 2017

99:8 Horn Formulas and Linear Time on Cellular Automata

y

x

Dt

Figure 1 Induction system for
guessed atoms before the change of
variables.

t

c

Dt

Figure 2 Induction system after the change of vari-
ables for guessed atoms (left) and input atoms (right).

We will now discuss the information transit in Apal ; the initialization and termination of
the computation will be discussed later. By the change of variables (x, y) 7→ (t = −x+2y, c =
y) whose converse is the function (t, c) 7→ (x = −t+ 2c, y = c), each input atom of the form
I(x) becomes I(−t+ 2c) and each input atom of the form I(y) becomes I(c). The CA we
construct has to memorize in each cell c at instant t the boolean values I(c) and I(−t+ 2c),
for I ∈ Input. This can be realized as follows:
(a) For each I(c) (former I(y)): the CA conserves on cell c the boolean value I(c) from an

instant t− 1 to the next instant t;
(b) For each I(−t+ 2c) (former I(x)): because of the identity −t+ 2c = −(t− 2) + 2(c− 1),

whence I(−t+ 2c) ≡ I(−(t− 2) + 2(c− 1)), the CA only has to move to each cell c at
instant t the boolean value I(−(t− 2) + 2(c− 1)) that is present at instant t− 2 on the
cell c− 1.
All in all, the state of each point P = (t, c) = (−x+ 2y, y) is determined by the states of

the following points (as shown on Fig. 2):
P1 = (−(x− 1) + 2(y− 1), y− 1) = (t− 1, c− 1), P2 = (−(x+ 1) + 2y, y) = (t− 1, c) and
P3 = (−(x+ 1) + 2(y − 1), y − 1) = (t− 3, c− 1), because of guessed atoms, and
P2 = (t− 1, c) and P4 = (t− 2, c− 1) because of the above items (a) and (b), respectively,
for input atoms.

Hence, the state of a cell c at instant t is determined by the states of: (i) cell c− 1 at
instant t− 1; (ii) cell c at instant t− 1; (iii) cell c− 1 at instant t− 3; (iv) cell c− 1 at
instant t− 2. Figures 1 and 2 below summarize the effects of the change of variables on the
induction system.7

It seems that we have achieved the design of an automaton of neighborhood {−1, 0} that
recognizes the language Palindrome(Σ) in linear time since t = −x+ 2y and x, y ∈ J1, nK
imply −n+ 2 ≤ t ≤ 2n− 1. However, it remains to describe both the initialization and the
end of the computation.

The result and the initialization of the computation

The result of the computation is accept or reject according to whether S(w) does or does
not satisfy the formula Φpal, where S(w) is the structure 〈J1, nK, (Qs)s∈Σ,min,max, suc, pred〉

7 At first glance, Conditions (iii) and (iv) seem to contradict the requirement that the state of any cell c
of a CA at instant t should be determined by the only states of its neighbour cells at the previous
instant t − 1. However, we can overcome the problem by using the ability of a cell to memorize at any
instant t its states at instants t − 1 and t − 2 with a finite number of states.

N. Bacquey and E. Grandjean, and F. Olive 99:9

associated with the input word w = w1 . . . wn. As this is testified by the clause θ8 =
min(x)∧max(y)∧RnoPal(x, y)→ ⊥, on the point of coordinates (x = 1, y = n) which become
after the change of variables (t = −x+ 2y = 2n− 1, c = y = n), the acceptance/rejection
can be read on the state of cell c = n at the instant t = 2n− 1 so that the final state qa or
qr is obtained at the following instant 2n.

The initialization of the computation requires some care in connection with the items (a)
and (b) of the previous paragraph, about the input bits:
(1) Initializing each I(c) (former I(y)): The state of each cell c ∈ J1, nK at the instant

just before −n+ 2, i.e. at instant −n+ 1, should store the boolean value I(c), for each
I ∈ Input.

(2) Initializing each I(−t+ 2c) (former I(x)): Because of the correspondence x = −t+ 2c
or, equivalently, c = (x+ t)/2, for all x ∈ J1, nK, the boolean value I(x) should be stored
in the state of the cell c = (x+ t)/2 at the maximal instant t < −n+ 2 such that (x+ t)/2
is an integer ; that is the cell c = (x − n)/2 at instant −n if x − n ≡ 0 (mod 2) and
c = (x− n+ 1)/2 at instant −n+ 1 if x− n ≡ 1 (mod 2): see Fig. 3.

The two configurations at the successive instants −n and −n+ 1 described in items (1)
and (2) are called initialization configurations. By construction, the space of both configur-
ations – their informative cells, i.e. those in non-quiescent states – is included in the interval
J−dn/2e+ 1, nK.

According to our conventions, the initial configuration of the automaton should be the
configuration Cw,q0 associated with the input word w, as defined in Def. 6. However, one can
design a routine which, starting from configuration Cw,q0 (with quiescent state q0), computes
the two initialization configurations by using classical techniques of signals in CA’s (such
as seen in [3]) as shown on Fig. 4. Once each cell contains the right input information,
the proper computation can begin. This start will be triggered by a synchronization of all
cells of the interval J−dn/2e+ 1, n+ 1K at time −n+ 1. The subject of synchronization on
cellular automata has been extensively studied (see [21]), here we merely assert that this
process can be performed in parallel with no time increase. By a careful examination of this
figure, we precisely observe that this precomputation is performed on the interval of cells
J−dn/2e+ 1, n+ 1K during the time interval J−3n,−n+ 1K.8

We have now achieved the design of a cellular automaton Apal that recognizes in linear
time the language Palindrome(Σ) from the monotonic Horn formula Φpal that defines it.

5 mon-ESO-HORN ⊆ DLINca

The main problem we have to deal with in the general case as in the previous example is the
integration of the input to the computation of the CA to be constructed. For that purpose,
we will need the following technical lemma whose proof is easy and left to the reader:

I Lemma 18. Let S ⊂ Zd+1 be an induction system satisfying the monotonicity condition
w.r.t. some reference hyperplane. Then, S has another reference hyperplane of equation
a0x0 + · · ·+ adxd = 0 where each coefficient ai (i ∈ J0, dK) is a non-zero integer.

8 Notice that our numbering of instants is not canonical. It is only a convenient time scale for describing
our algorithm. In particular, the initial instant of the (pre)-computation of the upper part of Fig. 4 is
−2n when n is even and −2n − 1 when n is odd, and the initial instant of the two signals of the lower
part of Fig. 4 is −3n. We let the reader imagine the variants of Fig. 3 and Fig. 4 for the odd case.

ICALP 2017

99:10 Horn Formulas and Linear Time on Cellular Automata

t

c

−n2 + 1 1 n

−n
−n+ 1

1

2n− 1

I(1)

I(2)

I(3)

I(4)

I(5)

I(6)

I(1)I(2)I(3)I(4)I(5)I(6)

Figure 3 Initial positions and translation vectors
for I(x) = I(−t+2c) (in red) and I(y) = I(c) (in blue)
when n is even (here n = 6). The gray parallelogram
is where the induction actually happens. The result
of the computation lies at the upper right cell.

t

c
−n2 + 1 1 n

1 2 3 4 5 6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

t

c
−n2 + 1 1 n+ 1

Figure 4 The linear precomputation of
I(x) can be done by stacking the informa-
tion of the cells in the odd columns, then
packing it to the left against a “wall” at
c = − n

2 + 1 (n even). The bottom figure
shows how the wall can be constructed in
linear time with two signals of slope − 1

3
(resp. −1) starting in cell 1 (resp. n + 1) at
instant −3n.

We are now ready to prove the most difficult inclusion of Thm. 15:

I Proposition 19. For each d ≥ 1, mon-ESO-HORNd(∀d+1, arity d+1) ⊆ DLINd
ca.

Proof. Let L be a d-picture language defined by a formula Φ ≡ ∃R1 . . . ∃Rr∀x0 . . . ∀xd ψ in
mon-ESO-HORNd(∀d+1, arity d+1) with an induction system S and a reference hyperplane
a0x0 + a1x1 + · · · + adxd = 0, with coefficients ai ∈ Z∗ for all i ∈ J0, dK, as justified by
Lemma 18. For simplicity of notation, assume all the coefficients ai are positive.

First, for sake of simplicity, let us ignore the input literals and take account of the only
guessed atoms Ri(x0 + i0, . . . , xd + id) in the Horn clauses. Intuitively, if one regards the
hyperplane Ht = {(x0, x1, . . . , xd) ∈ J1, nKd+1 | a0x0 + a1x1 + · · ·+ adxd = t} as the set of
cells of a d-dimensional CA at instant t, then the conjunction of Horn clauses ψ can be

N. Bacquey and E. Grandjean, and F. Olive 99:11

regarded as the transition function of such a CA. More formally, in order to introduce the
time parameter t, we eliminate one of the variables, x0 for example, and we regard the other
variables, x1, . . . , xd, as the space variables, i.e. the respective d coordinates c1, . . . , cd of a
cell. More precisely, one makes the following change of variables:(

t = a0x0 + · · ·+ adxd,

c1 = x1, . . . , cd = xd

)
, whose converse is

(
x0 = (t− a1c1 − · · · − adcd)/a0,

x1 = c1, . . . , xd = cd

)
.

As in Section 4.2, we associate with each point x = (x0, . . . , xd) ∈ J1, nKd+1, the tuple
state(x) of boolean values of all input and guessed atoms on x. That is,

state(x) =
(

(I(u))I∈Input
u(x

, (R(x))R∈Guess

)
.

Here, we denote by Input (resp. Guess) the set of input (resp. guessed) predicates occurring
in the formula. Furthermore, u ∈ x means that u is any variable among x0, . . . , xd, while
u (x means that u is any m-tuple built from those variables, where m ≤ d is the arity
of I. Besides, the values of the guessed litterals R(x), R ∈ Guess, are deduced by the Horn
formula ∀xψ.

If one ignores the input literals, the state of each point

P = (t, c1, . . . , cd) =

 d∑
j=0

ajxj , x1, . . . , xd

is determined by the states of the points

Pv =

 d∑
j=0

aj(xj + vj), x1 + v1, . . . , xd + vd

 =

t+
d∑
j=0

ajvj , c1 + v1, . . . , cd + vd

for each vector v = (v0, . . . , vd) of the induction system S. In other words the state of the
cell (c1, . . . , cd) at instant t is determined by the states of the cells (c1 + v1, . . . , cd + vd) at
the respective previous instants t+

∑d
j=0 ajvj for the vectors v = (v0, . . . , vd) ∈ S. (Recall

that
∑d
j=0 ajvj < 0, by hypothesis.)

Let us now explain how the CA we construct can take account of the input atoms, i.e.
let us describe how the CA moves the input bits. The crucial point is that at least one of
the d+ 1 variables x0, . . . , xd does not occur in each input atom because the arity of each
input predicate is at most d. This missing variable is used as a ‘transport variable’ of the
values of the concerned input atom. As a generic example, let us consider the input atom
I(x0, x2, . . . , xd) where I is an input predicate of arity d and where the variable x1 does not
occur9. After the above-mentioned change of variables, this atom becomes

I(1
a0

(t− a1c1 · · · − adcd), c2, . . . , cd).

Because of the identity (t − a1) − a1(c1 − 1) − a2c2 · · · − adcd = t − a1c1 − a2c2 · · · − adcd
the automaton only has to move to each cell (c1, c2, . . . , cd) at instant t the boolean value

I(1
a0

((t− a1)− a1(c1 − 1)− a2c2 · · · − adcd), c2, . . . , cd)

9 As we have seen in previous examples the case where one variable among x2, . . . , xd does not occur
in an input atom is similar; the case where x0 does not occur or the case where the arity of the input
predicate is less than d are easier to deal with as we have also seen.

ICALP 2017

99:12 Horn Formulas and Linear Time on Cellular Automata

which is stored at instant t− a1 in the state of cell (c1 − 1, c2, . . . , cd). In terms of cellular
automaton, the values of the input atom I(x0, x2, . . . , xd) are moved/transmitted by linear
parallel “signals” which cover all the inductive space J1, nKd+1.

Time and initialization of the computation: Since the d+ 1 original variables x0, . . . , xd
lie in J1, nK, the domain of the time variable t = a0x0 + · · · + adxd is JA,AnK, where
A = a0 + · · · + ad . As a consequence, the equation of the cell hyperplane at the initial
instant (resp. final instant) in the space-time diagram is t = A (resp. t = An)10.

The initialization of the input values (input “signals”) before the instant t = A is the most
delicate/technical part of the computation. It is sufficient to describe the initialization of the
values of the input “signals” for our generic example11 of input atom α ≡ I(x0, x2, . . . , xd)
or, equivalently, α ≡ I(1

a0
(t− a1c1− · · · − adcd) , c2, . . . , cd), for which c1 (that is the missing

variable x1 of α) is the “transport” variable. To give the reader the geometric intuition of the
following construction in the general case we invite her to consult Fig. 3 and 4 of Sec. 4.2 in
the particular case of atom α ≡ I(x) ≡ I(−t+ 2c) of the formula that defines Palindrome.

Because of the correspondence t = a0x0 + a1c1 + a2x2 · · · + adxd or, equivalently,
c1 = (t−a0x0−a2x2 · · ·−adxd)/a1, with c2 = x2, . . . , cd = xd, for all (x0, x2, . . . , xd) ∈ J1, nKd,
the boolean value I(x0, x2, . . . , xd) should be stored – for the initialization of its input “sig-
nal” – in the state of the cell (c1, x2, . . . , xd) such that c1 = (t0−a0x0−a2x2 · · ·−adxd)/a1 at
the maximal instant t0 < A (depending on the tuple (x0, x2, . . . , xd)) such that the quotient
(t0 − a0x0 − a2x2 · · · − adxd)/a1 is an integer. Let i be the integer in J0, a1 − 1K such that
A− a0x0 − a2x2 · · · − adxd ≡ −i (mod a1). It is easy to verify that t0 = A− a1 + i. So, the
boolean value I(x0, x2, . . . , xd) should be stored/initialized at the instant t0 = A− a1 + i in
(the state of) the cell (c1, x2, . . . , xd) where c1 = (A − a1 + i − a0x0 − a2x2 · · · − adxd)/a1:
see Fig. 3.

Note that for the atom α ≡ I(x0, x2, . . . , xd), there are a1 distinct “initialization” config-
urations in the respective a1 hyperplanes Ht0 , where t0 = A − a1 + i with i ∈ J0, a1 − 1K,
according to the possible values of the function f(x0, x2, . . . , xd) = A−a0x0−a2x2 · · ·−adxd
modulo a1. Furthermore, one can verify that, by construction, the space of the “initialization”
configurations – their informative cells, in non-quiescent states – is included in a hypercube
of the form J−bn, bnKd, for some constant integer b > 0.

Pre-computation and end of computation: The initial configuration of a d-CA that recog-
nizes the d-picture language L should be the picture configuration Cp,q0 where p is the input
picture. Therefore, there should be a pre-computation starting from Cp,q0 that computes the
“initialization” configurations of the input atoms of Φ. By the classical technique of signals
in CAs (see [3]) we have exemplified above in the case of Palindrome (see Fig. 4), this can
be done in linear space and linear time.

Similarly, the result of the computation should be given by the accept/reject state, qa or
qr, in the reference cell n = (n, . . . , n). This is realized in linear time by gathering in the
reference cell the possible contradictions deduced in cells for Horn clauses.

For lack of space, we have omitted to deal with loops in Horn clauses: the possible
presence of guessed atoms of the form R(t, c), i.e. without predecessor/successor functions,
both as conclusions and as hypotheses of clauses of monotonic Horn formulas seemingly

10 In the sequel, A always denote the sum a0 + · · · + ad. Also, recall that each ai is positive.
11Here again, all the other examples have either exactly the same treatment or a simpler one.

N. Bacquey and E. Grandjean, and F. Olive 99:13

contradicts the “strict monotonicity” of the induction. We leave the reader to cope with this
point. This achieves the proof of Prop. 19 and Thm. 15. J

6 Optimality of our main result

It is natural to ask whether the monotonicity condition can be removed or weakened in our
main result. This is unlikely because it would imply (as the reader can convince herself) the
following time-space trade-off which would be a breakthrough in computational complexity:

I Proposition 20. If we had DLINd
ca = ESO-HORNd(∀d+1, arity d+1) or the weaker equality

DLINd
ca = weak-mon-ESO-HORNd(∀d+1, arity d+1) for a given d > 1, then any set of words

recognizable by a 1-CA in time nd on n cells would be recognizable by a d-CA in time O(n)
on O(nd) cells.

Here, weak-mon-ESO-HORNd(∀d+1, arity d+1) denotes the variant of the class
mon-ESO-HORNd(∀d+1, arity d+1) where the strict inequality a0x0 + · · ·+ adxd < 0 of the
monotonicity condition is replaced by the non-strict inequality a0x0 + · · ·+ adxd ≤ 0.

References
1 Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-

matic polyhedral parallelizer and locality optimizer. In Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008, pages 101–113, 2008. doi:10.1145/1375581.1375595.

2 Walter Bucher, II Culik, et al. On real time and linear time cellular automata. RAIRO,
Informatique théorique, 18(4):307–325, 1984.

3 Marianne Delorme and Jacques Mazoyer. Signals on cellular automata. In Andrew Adam-
atzky, editor, Collision-Based Computing, pages 231–275. Springer London, London, 2002.
doi:10.1007/978-1-4471-0129-1_9.

4 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.
5 R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R.M.

Karp, editor, Complexity of Computation, SIAM-AMS Proceedings, pages 43–73, 1974.
6 Paul Feautrier. Some efficient solutions to the affine scheduling problem. part II. mul-

tidimensional time. International Journal of Parallel Programming, 21(6):389–420, 1992.
doi:10.1007/BF01379404.

7 Paul Feautrier and Christian Lengauer. Polyhedron model. In Encyclopedia of Parallel
Computing, pages 1581–1592. 2011. doi:10.1007/978-0-387-09766-4_502.

8 E. Grädel. Capturing complexity classes by fragments of second order logic. In Proceedings
of the Sixth Annual Structure in Complexity Theory Conference, Chicago, Illinois, USA,
June 30 – July 3, 1991, pages 341–352, 1991. doi:10.1109/SCT.1991.160279.

9 E. Grädel, Ph.G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M.Y. Vardi, Y. Venema, and
S. Weinstein. Finite Model Theory and Its Applications. Texts in Theoretical Computer
Science. Springer, 2007.

10 A. Grandjean and V. Poupet. A Linear Acceleration Theorem for 2D Cellular Automata
on All Complete Neighborhoods. In I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani,
and D. Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 115:1–115:12, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2016.115.

11 E. Grandjean and F. Olive. Graph properties checkable in linear time in the number of
vertices. J. Comput. Syst. Sci., 68(3):546–597, 2004. doi:10.1016/j.jcss.2003.09.002.

ICALP 2017

http://dx.doi.org/10.1145/1375581.1375595
http://dx.doi.org/10.1007/978-1-4471-0129-1_9
http://dx.doi.org/10.1007/BF01379404
http://dx.doi.org/10.1007/978-0-387-09766-4_502
http://dx.doi.org/10.1109/SCT.1991.160279
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.115
http://dx.doi.org/10.1016/j.jcss.2003.09.002

99:14 Horn Formulas and Linear Time on Cellular Automata

12 E. Grandjean and F. Olive. Descriptive complexity for pictures languages. In P. Cégielski
and A. Durand, editors, Computer Science Logic (CSL’12) – 26th International Work-
shop/21st Annual Conference of the EACSL, volume 16 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 274–288, Dagstuhl, Germany, 2012. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2012.274.

13 E. Grandjean and F. Olive. A logical approach to locality in pictures languages. J. Comput.
Syst. Sci., 82(6):959–1006, 2016. doi:10.1016/j.jcss.2016.01.005.

14 E. Grandjean and T. Schwentick. Machine-independent characterizations and complete
problems for deterministic linear time. SIAM J. Comput., 32(1):196–230, 2002. doi:10.
1137/S0097539799360240.

15 N. Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
16 J. Kari. Basic concepts of cellular automata. In G. Rozenberg, T. Bäck, and J.N. Kok,

editors, Handbook of Natural Computing, volume 1, pages 3–24. Springer, 2012.
17 C. Lautemann, N. Schweikardt, and T. Schwentick. A logical characterisation of linear

time on nondeterministic turing machines. In STACS 99, 16th Annual Symposium on
Theoretical Aspects of Computer Science, Trier, Germany, March 4-6, 1999, Proceedings,
pages 143–152, 1999. doi:10.1007/3-540-49116-3_13.

18 L. Libkin. Elements of Finite Model Theory. Springer, 2004.
19 Jacques Mazoyer and Nicolas Reimen. A linear speed-up theorem for cellular automata.

Theoretical Computer Science, 101(1):59–98, 1992.
20 T. Schwentick. Descriptive complexity, lower bounds and linear time. In Computer

Science Logic, 12th International Workshop, CSL’98, Annual Conference of the EACSL,
Brno, Czech Republic, August 24-28, 1998, Proceedings, pages 9–28, 1998. doi:10.1007/
10703163_2.

21 Hiroshi Umeo. Firing squad synchronization problem in cellular automata. In Robert A.
Meyers, editor, Encyclopedia of Complexity and Systems Science, pages 3537–3574. Springer
New York, New York, NY, 2009. doi:10.1007/978-0-387-30440-3_211.

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.274
http://dx.doi.org/10.1016/j.jcss.2016.01.005
http://dx.doi.org/10.1137/S0097539799360240
http://dx.doi.org/10.1137/S0097539799360240
http://dx.doi.org/10.1007/3-540-49116-3_13
http://dx.doi.org/10.1007/10703163_2
http://dx.doi.org/10.1007/10703163_2
http://dx.doi.org/10.1007/978-0-387-30440-3_211

	Introduction
	Preliminaries
	Cellular automata, picture languages, linear time
	Picture structures and monotonic Horn formulas

	DLIN-ca subseteq mon-ESO-HORN
	From the formula to the automaton: the example of palindromes
	A monotonic Horn formula defining the language of palindromes
	From Phi-pal to A-pal

	mon-ESO-HORN substeq DLIN-ca
	Optimality of our main result

