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Abstract
In this paper we consider the decremental single-source shortest paths (SSSP) problem, where
given a graph G and a source node s the goal is to maintain shortest distances between s and
all other nodes in G under a sequence of online adversarial edge deletions. In their seminal work,
Even and Shiloach [JACM 1981] presented an exact solution to the problem in unweighted graphs
with only O(mn) total update time over all edge deletions. Their classic algorithm was the state
of the art for the decremental SSSP problem for three decades, even when approximate shortest
paths are allowed.

The first improvement over the Even-Shiloach algorithm was given by Bernstein and Roditty
[SODA 2011], who for the case of an unweighted and undirected graph presented a (1 + ε)-
approximate algorithm with constant query time and a total update time ofO(n2+o(1)). This work
triggered a series of new results, culminating in a recent breakthrough of Henzinger, Krinninger
and Nanongkai [FOCS 14], who presented a (1+ε)-approximate algorithm for undirected weighted
graphs whose total update time is near linear: O(m1+o(1) log(W )), where W is the ratio of the
heaviest to the lightest edge weight in the graph. In this paper they posed as a major open
problem the question of derandomizing their result.

Until very recently, all known improvements over the Even-Shiloach algorithm were ran-
domized and required the assumption of a non-adaptive adversary. In STOC 2016, Bernstein
and Chechik showed the first deterministic algorithm to go beyond O(mn) total update time:
the algorithm is also (1 + ε)-approximate, and has total update time Õ(n2). In SODA 2017,
the same authors presented an algorithm with total update time Õ(mn3/4). However, both
algorithms are restricted to undirected, unweighted graphs. We present the first deterministic
algorithm for weighted undirected graphs to go beyond the O(mn) bound. The total update time
is Õ(n2 log(W )).
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1 Introduction

The objective of dynamic graph algorithms is to handle an online sequence of update
operations while maintaining a desirable functionality on the graph, e.g., the ability to answer
shortest path queries. An update operation may involve a deletion or insertion of an edge or
a node, or a change in an edge’s weight. In case the algorithm can handle only deletions and
weight increases it is called decremental, if it can handle only insertions and weight decreases
it is called incremental, and if it can handle both it is called fully dynamic.
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44:2 Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

In this paper we consider the problem of (approximate) single source shortest paths
(SSSP) in unweighted undirected graphs, in the decremental setting. Specifically, given
an undirected graph G with positive weights and a source node s, our algorithm needs to
preform the following operations:
1. Delete(e) – delete the edge e from the graph
2. Increase-Weight(e) – increase the weight of e
3. Distance(v) – return the distance between s and v, i.e., dist(s, v), in the current graph G.

Fully dynamic shortest paths has a very clear motivation, as computing shortest paths in
a graph is one of the fundamental problems of graph algorithms, and many shortest path
applications must deal with a graph that is changing over time. The incremental setting
is somewhat more restricted, but is applicable to any setting in which the network is only
expanding. The decremental setting is often very important from a theoretical perspective,
as decremental shortest paths (and decremental single source shortest paths especially) are
used as a building block in a very large variety of fully dynamic shortest paths algorithms;
see e.g. [16, 17, 3, 2, 20, 1] to name just a few. Decremental shortest paths can also have
applications to non-dynamic graph problems; see e.g. Madry’s paper on efficiently computing
multicommodity flows [18].

We say that an algorithm has an approximation guarantee of α if its output to the query
Distance(v) is never smaller than the actual shortest distance and is not more than α times
the shortest distance. Dynamic algorithms are typically judged by two parameters: the time
it takes the algorithm to adapt to an update (the Delete or Increase-Weight operation), and
the time to process a query (the Distance operation). Typically one tries to keep the query
time small (polylog or constant), while getting the update time as low as possible. All the
algorithms discussed in this paper have constant query time, unless noted otherwise. In the
decremental setting, which is the focus of this paper, one usually considers the aggregate
sum of update times over the entire sequence of deletions, which is referred to as the total
update time.

Related Work

The most naive solution to dynamic SSSP is to simply invoke a static SSSP algorithm after
every deletion, which requires Õ(m) time, using e.g. Dijkstra’s algorithm. (The Õ notation
suppresses polylogarithmic factors.) For unweighted graphs, since there can be a total of m
deletions, the total update time for the naive implementation is thus Ω(m2).

For fully dynamic SSSP, nothing better than the trivial O(m) time per update is known.
That is, we do not know how to do better than reconstructing from scratch after every edge
update. For this reason, researchers have turned to the decremental (or incremental) case in
search of a better solution. The first improvement stems all the way back to 1981, when Even
and Shiloach [8] showed how to achieve total update time O(mn) in unweighted undirected
graphs. A similar result was independently found by Dinitz [7]. This was later generalized
to directed graphs by Henzinger and King [9]. This O(mn) total update time bound is still
the state of art, and there are conditional lower bounds [19, 15] showing that it is in fact
optimal up to log factors. (The reductions are to boolean matrix multiplication and the
online matrix-vector conjecture respectively).

These lower bounds motivated the study of the approximate version of this problem.
In 2011, Bernstein and Roditty [6] presented the first algorithm to go beyond the O(mn)
bound of Even and Shiloach [8]: they presented a (1 + ε)-approximate decremental SSSP
algorithm for undirected unweighted graphs with O(n2+O(1/

√
logn)) = O(n2+o(1)) total
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update time. Henzinger, Krinninger and Nanongkai [13] later improved the total update
time to O(n1.8+o(1) + m1+o(1)), and soon after the same authors [11] achieved a close to
optimal total update time of O(m1+o(1) logW ) in undirected weighted graphs, where W is
the largest weight in the graph (assuming the minimum edge weight is 1). The same authors
also showed that one can go beyond O(mn) total update time bound in directed graphs (with
a (1 + ε) approximation) [12, 14], although the state of art is still only a small improvement:
total update time O(mn0.9+o(1) logW ).

However, every single one of these improvements over the O(mn) bound relies on ran-
domization, and has to make the additional assumption of a non-adaptive adversary. In
particular, they all assume that the updates of the adversary are completely independent
from the shortest paths or distances returned to the user, i.e. that the updates are fixed in
advance. This makes these algorithms unsuitable for many settings, and also prevents us
from using them as a black box data structure. For this reason, it is highly desirable to have
deterministic algorithms for the problem.

Very recently, in STOC 2016, Bernstein and Chechik presented the first deterministic
algorithm to go beyond O(mn) total update time, again with a (1 + ε) approximation. The
total update time is Õ(n2) [4]. They followed this up with a second deterministic algorithm [5]
that has total update time Õ(n1.5√m) = Õ(mn3/4). Both algorithms rely on the same basic
technique, so this is currently the only know technique for deterministically breaking through
the O(mn) barrier. However, both results above were limited to undirected, unweighted
graphs. In this paper, we show that this core technique can also be applied to weighted
graphs.

Our Results

I Theorem 1. Let G be an undirected graph with positive edge weights subject to a sequence
of edge deletions and weight increases, let s be a fixed source, and let W be the ratio
between the largest and smallest edge weights in the graph. there exists a deterministic
algorithm that maintains (1 + ε)-approximate distances from s to every vertex in total update
time O(m log2(n) log(nW ) + n2 log(n) log(nW )ε−2). The query time is O(1). (Like most
decremental shortest paths algorithms, our result can very easily be extended with the same
update time to the incremental case, where the update sequence contains edge insertions and
weight increases.)

(Technical Note: In weighted graphs the number of updates can be very large – i.e. if
each update just increases some edge weight by some small ε – and so in addition to the
total update time above, the algorithm necessarily requires an additional O(1) per update.
This O(1) factor is present in all dynamic algorithms, and is typically omitted.)

Our algorithm does not match the randomized state of the art of Õ(m1+o(1) log(W )) [11],
but it is optimal up to log factors for dense graphs, and is the first deterministic algorithm to
go beyond the O(mn) barrier in weighted graphs. The algorithm is also much simpler than
the randomized algorithm for weighted graphs, and it does not incur the extra no(1) factor
present in the randomized algorithms. Thus, our algorithm is in fact faster than all existing
randomized algorithms for the problem in dense weighted graphs where m = Ω(n2−1/

√
log(n)).

As a final remark, we note that all previous deterministic algorithms to go beyond the
O(mn) bound [4, 5] have the strange drawback that there is no obvious way to return an
approximate path, only a distance. Our algorithm unfortunately shares this drawback. The
reason is that whereas in other dynamic shortest path algorithms the distance returned
corresponds to some path in the graph, our distance involves an additive error that is bounded
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44:4 Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

through a structural claim about the non-existence of certain paths, but does not itself
correspond to an actual path (see Lemma 4.4 in [4], Lemma 5.3 in [5], and Lemma 5 in our
paper.)

Preliminaries

In our model, an undirected weighted graph is subject to deletions and weight increases.
All weights in the original graph are positive. Let G = (V,E) always refer to the current
versions of the graph. Let m refer to the number of edges in the original graph, and n to
the number of vertices. Let w(u, v) refer to the weight of edge (u, v). Let us assume for
simplicity that the minimum weighted in the original graph is at least 1, and note that since
edge weights only increase, this will be true of all version of the graph. Let W be the largest
edge weight to ever appear in the graph. For any pair of vertices u, v, let π(u, v) be the
shortest u − v path in G (ties can be broken arbitrarily), and let dist(u, v) be the length
of π(u, v). Let s be the fixed source from which our algorithm must maintain approximate
distances, and let ε refer to our approximation parameter; when the adversary queries the
distance to a vertex v, the algorithm’s guarantee is to return a distance dist′(v) such that
dist(s, v) ≤ dist′(s, v) ≤ (1 +O(ε))dist(s, v). Note that the (1 +O(ε)) approximation factor
can always be reduced to (1 + ε) without affecting the asymptotic running time by simply
starting with a suitably smaller ε′.

Given any two sets S, T we define the set difference S \ T to contain all elements s such
that s ∈ S but s /∈ T . We will measure the update time of the dynamic subroutines used by
our algorithm in terms of their total update time over the entire sequence of edge changes.
Note that although edges in the main graph G are only being deleted, there may be edge
insertions into the auxiliary graphs used by the algorithm.

2 High Level Overview

Our algorithm extends the techniques in the STOC 2016 paper of Bernstein and Chechik
[4] from unweighted to weighted graphs. We now briefly summarize their approach for
unweighted graphs, aiming in this overview for total update time Õ(n2.5) instead of Õ(n2).
We start with the well known fact that the classic Even and Shiloach algorithm has total
update time O(n2.5) [8] if we only care about distances less than

√
n. So the hard case is

long distances in a dense graph. The key observation of [4] is that these two problematic
poles cannot coexist. In particular, Bernstein and Chechik showed that any shortest path
contains at most 3

√
n vertices of degree more than

√
n. The basic reason is that if we look at

every third high-degree vertex on the shortest path, then these vertices must have mutually
disjoint neighborhoods, since otherwise there would be a shorter path between them of
length 2; the claim then follows because each high-degree vertex has at least

√
n neighbors,

and there are only n vertices in total. Thus, Bernstein and Chechik show that the total
contribution of high-degree vertices to the shortest path is small. They then argue that this
allows us to effectively “ignore” all vertices of degree ≥

√
n, at the cost of an additive error

of only O(
√
n). (we do not go into details of this ignoring here.) This completed their result

because for distances less than O(
√
nε−1) the classic Even and Shiloach has total update

time O(n2.5ε−1), whereas for longer distances we can afford the O(
√
n) additive error from

ignoring high degree vertices (it is subsumed into the (1 + ε) multiplicative error), so the
resulting graph only O(n1.5) edges.

This technique has no easy extension to weighted graphs via scaling. To see this, say
there were two edge weights, 1 and

√
n, and that every vertex had very few incident edges
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of weight 1, but
√
n edges of weight

√
n. Then it is easy to see that distances in the graph

could still be as large as n (as opposed to
√
n in the unweighted case). But we cannot scale

weights down, or use some sort of hop-distance technique found elsewhere in the literature,
because although the heavy edges are the ones that cause the graph to be dense, the shortest
path could still contain many edges of weight 1. There is thus no way in a weighted graph to
ignore high-degree vertices.

To overcome this, we switch focus to a notion of degree that considers edge weights. In
particular, note that in the example above, although the graph was dense, the total number
of edges of weight 1 was small. The first step in our result is to formalize this observation,
and show that although we cannot simply ignore vertices of high degree, for any vertex v we
can ignore its low-weight incident edges if there are many of them. The proof of this is similar
to the proof that we can afford to ignore dense vertices in unweighted graphs, but because
we have to deal with many edge different weights at once, the analysis is more sophisticated.

The problem is that on its own ignoring large neighborhoods of low-weight edges doesn’t
help: the result is a graph that is guaranteed to only have a small number of low-weight
edges (and a medium number of medium-weight edges), but the graph can still be very
dense with high-weight edges. To overcome this, we develop a variation on the standard
Even and Shiloach algorithm [8] which is more efficient at dealing with heavy edges but
incurs a (1 + ε) approximation. The basic intuition is as follows, though the details are
somewhat complex. The classic algorithm guarantees that we only touch an edge (u, v) when
the distance dist(s, u) or dist(s, v) increases. But if (u, v) has high weight, and dist(s, u)
only increases by 1, then the distance increase is insignificant with respect to the total weight
on (u, v), and so we can afford to ignore it. The number of times we touch edge (u, v) thus
ends up being proportional to ε−1/w(u, v).

All in all, our algorithm is based on the framework of Bernstein and Chechik for unweighted
graphs [4], but requires significant modifications both to the high-level orientation (we need
a new notion of sparsity that depends on edge weights), as well as to the technical details.
The basic approach introduced in [4] of ignoring certain classes of dense vertices has proved
quite versatile and powerful (see the two very different applications of it in [4] and [5]),
and is currently the only known approach for going beyond O(mn) deterministically, so our
extension to weighted graphs might be useful in further applications of this approach. Also,
our extension of the classic Even and Shiloach algorithm is presented in extreme generality,
and might prove useful in other dynamic shortest path problems where one has a graph that
has more edges of high weight than of low weight.

3 The Threshold Graph

In our algorithm, each vertex will have a weight cutoff, denoted cut-off(v), and will end up
“ignoring” the edges below that cutoff. As described in the high-level overview above, the
required degree to ignore edges goes up as the edge weights go up.

I Definition 2. Let the level of edge (u, v) be level(u, v) = blog(w(u, v))c. For any vertex
v, let I(v) contain all edges incident to v (I for incident), and let Ii(v) contain all edges
incident to v of level i or less. Now, for any positive threshold τ (not necessarily integral),
and any vertex v, we define cut-offτ (v) to be the maximum index i such that Ii(v) contains
at least τ2i edges; if no such index exists, cut-offτ(v) is set to 0. We say that an edge (u, v)
is τ -heavy if level(u, v) ≤ cut-offτ (u) OR level(u, v) ≤ cut-offτ (v); we say that it is τ -light
otherwise. Let heavy(τ) be the set of all τ -heavy edges in G, and let light(τ) be the set of
all τ -light edges in G. Let G[heavy(τ)] be the graph (V,heavy(τ)). Note that the levels,
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cut-offs, heaviness, and lightness are always defined with respect to the main graph G, never
with respect to auxiliary graphs. Since τ is usually clear from context, we often just write
cut-off(v), heavy, and light.

I Definition 3. Given a graph G = (V,E) with |V | = n and |E| = m, and a positive
threshold τ , define the threshold graph Gτ = (Vτ , Eτ ) as follows

Vτ contains every vertex v ∈ V .
Vτ also contains an additional vertex c for each connected component C in the graph
G[heavy(τ)] = (V,heavy(τ))
Eτ contains all edges in light(τ), with their original weights.
For every vertex v ∈ V , Eτ contains an edge from v to c of weight 1/2, where c is the
component vertex in Vτ \ V that corresponds to the component C in G[heavy(τ)] that
contains v.

For any pair of vertices s, t ∈ V define πτ (s, t) to be the shortest path from s to t in Gτ , and
define distτ (s, t) to be the weight of this path.

I Lemma 4. For any i, Gτ contains at most n edges of weight 1/2 that are not in E (one
per vertex in V ), as well at most O(n · τ · 2i) edges at level i.

Proof. An edge (u, v) ∈ E of level i is only in Eτ if (u, v) is τ -light, i.e. if cut-off(u) < i

AND cut-off(v) < i. But a vertex with cut-off less than i has by definition less than 2iτ
incident edges of level i. J

The following Lemma is the weighted analogue of Lemma 4.4 in [4], but the most direct
extension of that proof to the weighted case would analyze each of the log(W ) edge levels
separately, and thus multiply the error by log(W ), eventually leading to a log3(W ) factor in
the total running time of the algorithm. To avoid this extra error, we need a somewhat more
sophisticated analysis than in Lemma 4.4 of [4]

I Lemma 5. For any graph G = (V,E), any positive integer threshold τ , and any pair of
vertices s, t ∈ V :

distτ (s, t) ≤ dist(s, t) < distτ (s, t) + 14n
τ

.

Proof. It is not hard to see that we have distτ (s, t) ≤ dist(s, t). Simply consider the shortest
s− t path π(s, t) ∈ G. All the edges in π(s, t)

⋂
light(τ) are also in Gτ . Otherwise, for any

τ -heavy edge (u, v) on π(s, t), recall that the weight w(u, v) in G is always at least 1, and
note that because edge (u, v) is τ -heavy, the vertices u and v must be in the same connected
component in G[heavy(τ)], and so there is a path of length 1 from u to v in Gτ : the edge of
weight 1/2 from u to the component vertex c, and then a second edge from c to v.

We now prove that dist(s, t) ≤ distτ (s, t) + 14n
τ . Let πτ (s, t) be the shortest s− t path in

Gτ . Consider the edge set E∗ ⊆ E which contains all the τ -light edges of πτ (s, t) (these edges
are also in E), and all τ -heavy edges in E. That is, E∗ = heavy(τ)

⋃
(light(τ)

⋂
πτ (s, t)).

Let G∗ = (V,E∗). We first observe that there exists an s − t path in G∗. We construct
this path by following πτ (s, t). πτ (s, t) contains τ -light edges, which are by definition in
G∗, as well as subpaths of length 2 of the form (v, c) ◦ (c, w), where v and w are in the
same connected component C in G[heavy(τ)]. But since v and w are in the same connected
component, there is a path of only heavy edges connecting them, and all heavy edges are
in G∗.



A. Bernstein 44:7

Now, let π∗(s, t) be the shortest s− t path in G∗. Let dist∗(s, t) be the length of π∗(s, t).
Since G∗ is a subgraph of G, we know that dist(s, t) ≤ dist∗(s, t). We now show that

dist∗(s, t) < distτ (s, t) + 14n
τ

(1)

which will complete the proof of the lemma.
We prove Equation 1 by showing that all the heavy edges on π∗(s, t) have total weight at

most 14n
τ : since all the light edges on π∗(s, t) are by definition also on πτ (s, t), this proves

the equation.
Let V ∗H be the set of vertices on π∗(s, t) that are incident to at least one heavy edge on

π∗(s, t). Now, for any vertex v ∈ V ∗H , let ball(v) contain v and all vertices u ∈ V , such that
there is an edge (u, v) with level(u, v) ≤ cut-off(v). Note that by definition of cut-off(v),
we have |ball(v)| ≥ 2cut-off(v)τ .

Now, let P be an ordering of the vertices in π∗(s, t) in non-increasing order of cut-off: so
if i < j then cut-off(P [i]) ≥ cut-off(P [j]). We will now construct a set IV of independent
vertices in V ∗H as follows. We start with IV empty. Now, go through the vertices in V ∗H
according to their order in P (so in non-increasing order of cut-off), and for each v do the
following: if ball(v) is disjoint from ball(u) for every u ∈ IV, add v to IV. Clearly if v
and w are independent then ball(v) and ball(w) are disjoint. But then recalling that for
any v, |ball(v)| ≥ 2cut-off(v)τ , and that the total number of vertices in the graph is n, we
have∑

v∈IV
2cut-off(v) ≤ n/τ (2)

We will end up showing that each independent vertex v is “responsible” for at most 14 ·
2cut-off(v) weight from heavy edges on π∗(s, t), which will complete our proof. We say
that a non-independent vertex u belongs to independent vertex v if cut-off(v) ≥ cut-off(u)
and ball(u) and ball(v) are non-disjoint. By our independence construction, every non-
independent vertex u belongs to one or more independent vertices.

I Claim 6. If v is independent, and u belongs to v, then the distance from v to u along
π∗(s, t) is at most 4 · 2cut-off(v).

Proof. Say, for contradiction, that this was not the case. Then, since u belongs to v,
there must be some vertex z ∈ ball(v)

⋂
ball(u). But by definition of ball we have

level(v, z) ≤ cut-off(v) and level(u, z) ≤ cut-off(u) ≤ cut-off(v), so by definition of level
there is a path from u to v through z of weight at most 4 · 2cut-off(v), which contradicts
π∗(s, t) being the shortest path in G∗. J

Now, given any τ -heavy edge (x, y), let the dominant endpoint of (x, y) be the endpoint
that comes earlier in P : so in particular, if x is dominant then cut-off(x) ≥ cut-off(y). We
say that a τ -heavy edge (x, y) belongs to independent vertex v if the dominant endpoint
of (x, y) belongs to v. Note that every τ -heavy edge in π∗(s, t) belongs to at least one
independent vertex. We now show that if v is independent, then the total weight of τ -heavy
edges that belong to v is at most 14 · 2cut-off(v). Otherwise (for contradiction), at least
half that weight would come before or after v, so w.l.o.g, let us say that there is at least
7 · 2cut-off(v) weight of edges that belong to v and come after v on π∗(s, t) – i.e., are closer
to t than v is. Let us consider the τ -heavy edge (x, y) that belongs to v and is closest to t,
and say that y is closer to t than x. Note that the distance from v to y along π∗(s, t) is at
least 7 · 2cut-off(v), so by Claim 6, y cannot belong to v. Thus, since edge (x, y) belongs to
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v, x must be the dominant endpoint and belong to v. But if x belongs to v and dominates y
then cut-off(y) ≤ cut-off(x) ≤ cut-off(v), and the only way edge (x, y) could be τ -heavy
is if level(x, y) ≤ cut-off(v), so w(x, y) ≤ 2 · 2cut-off(v), so the distance from v to x along
π∗(s, t) is still at least 7 ·2cut-off(v)−2 ·2cut-off(v) = 5 ·2cut-off(v), which again contradicts
Claim 6. Thus, the total weight of heavy edges on π∗(s, t) is at most 14

∑
v∈IV 2cut-off(v),

which combined with Equation 2 proves Equation 1, which proves the lemma. J

Maintaining the threshold graph Gτ as G changes is easy, because the only hard part
is maintaining the connected components C in G[heavy(τ)], and dynamic connectivity in
undirected graphs is a well-studied problem that admits deterministic O(log2(n)) update
time. The details are very similar to those for unweighted graphs (see Lemmas 4.5 and 4.6
in [4]), so we omit the proofs of the following two lemmas.

I Lemma 7. Given a graph G subject to a decremental update sequence, and a positive
integer threshold τ , we can maintain the graph Gτ in total time O(m log2(n)). Moreover,
the total number of edges of weight 1/2 ever inserted into the graph is O(n log(n)), and the
total number of edges (u, v) that have level(u, v) = i when inserted is at most nτ2i.

I Lemma 8. Given a graph G subject to a decremental update sequence, a positive integer
threshold τ , and a pair of vertices u, v in G, the distance distτ (u, v) in Gτ never decreases
as the graph G changes.

4 An Extension of the Even and Shiloach Algorithm

In the paper of Bernstein and Chechik for unweighted graphs [4], the threshold graph ended
up being sparse, and so it was easy to efficiently compute distances within it using the
standard Even and Shiloach algorithm with total update time O(mn) [8]. In our paper,
however, the threshold graph is only sparse with respect to low-weight edges; that is, because
heaviness and lightness is defined in terms of edge weights, the threshold graph can have
many edge of high weight. We now present a modification of the Even and Shiloach algorithm
that can deal more efficiently with edges of high weight, which makes it perfectly suited
to our threshold graph, which has mostly high-weight edges. Like the standard Even and
Shiloach algorithm, our extension runs up to a certain depth bound d.

I Definition 9. Given any number d, the function boundd(x) is equal to x if x ≤ d, and to
∞ otherwise.

Note that to apply to the threshold-graph Gτ , the algorithm must be able to handle
insertions, as long as they do not change distances. (See Lemmas 7, 8). To this end we need
the following definition:

I Definition 10. Let G = (V,E) be a graph with positive weights ≥ 1, subject a dynamic
update sequence of insertions, deletions, and weight-increases. In such a context, let A
contain the set of ALL edges (u, v) to appear in G at any point during the update sequence
(A for all): if an edge (u, v) is deleted and then inserted again, we consider this as two
separate edges in A. For every edge (u, v) ∈ A, let wo(u, v) (o for original) be the weight
of (u, v) when it first appears in A (this might be in the original graph itself), and let
levelo(u, v) = blog(wo(u, v))c.

I Lemma 11. Let G = (V,E) be an undirected graph with positive integer edge weights, s
a fixed source, and d ≥ 1 a depth bound. Say that G is subject to a dynamic sequence of
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edge insertions, deletions, and weight increases, with the property that distances in G never
decrease as a result of an update. Then, there exists an algorithm WSES(G, s, d) (stands
for weight-sensitive Even and Shiloach) that maintains approximate distances dist′(s, v)
with dist(s, v) ≤ dist′(s, v) ≤ boundd(dist(s, v))(1 + ε), and has total update time O(nd+∑

(u,v)∈A
d

εwo(u,v) ).

Proof. Throughout the proof of this lemma, we will often rely on the following function:

I Definition 12. Given any positive real numbers β and x, let roundβ(x) be the smallest
number y > x that is an integer multiple of β.

Our algorithm WSES follows the basic procedure of the classic Even and Shiloach
algorithm [8] (denoted ES), with a few modifications. For this reason we can describe
many of the guarantees of ES without looking under the hood for exactly how they are
implemented, since we keep exactly the same implementation. We only modify the classic
algorithm in a few key points. Recall the definition of A and wo(u, v) from Definition 10.
Since weights only increase, we always have w(u, v) ≥ wo(u, v).

The ES algorithm maintains for each vertex v a distance label δ(v) with the property
that dist(s, v) = δ(v). In particular, it maintains the invariant that δ(s) = 0, and that if
(u, v) ∈ E, then δ(v) ≤ δ(u) + w(u, v). Our algorithm will also maintain a label δ(v) for
every v, but since we only need an approximation, we guarantee a weaker invariant:

I Invariant 13 (Approximation). We always have δ(s) = 0. If p is the parent of v in the tree
then δ(v) ≥ δ(p) + w(p, v). Also, for all (u, v) ∈ E, δ(v) ≤ δ(u) + w(u, v) + εwo(u, v).

Approximation Analysis: We now show that as long as the Approximation Invariant is
preserved, we always have dist(s, v) ≤ δ(v) ≤ (1+ε)dist(s, v). The fact that δ(v) ≥ dist(s, v)
follows trivially for the same reason as in classic ES. To prove the other side, consider
the shortest path π(s, v) in G. Let the vertices in π(s, v) be s0, s1, ..., sq = v. We show by
induction that δ(si) ≤ (1 + ε)dist(s, si). The claim is trivially true for i = 0 because δ(s) = 0
at all times. Now, say the claim is true for si, and note that dist(s, si+1) = dist(s, si) +
w(si, si+1). Now, by the Approximation Invariant, we have δ(si+1) ≤ δ(si) + w(si, si+1) +
εwo(si, si+1) ≤ δ(si) + (1 + ε)w(si, si+1) (the last step follows from w(u, v) ≥ wo(u, v)).
But then by the induction hypothesis we have δ(si+1) ≤ (1 + ε)(dist(s, si) + w(si, si+1)) =
(1 + ε)dist(s, si+1).

We must now show how to efficiently maintain the Approximation Invariant. The classic
ES algorithm does O(1) time per update for basic setup, and otherwise all the work comes
from charging constant time operations to various edges (u, v) and vertices v. The update
time invariant in classic ES is as follows: we only charge vertex v when δ(v) increases, and we
only charge edge (u, v) when δ(u) or δ(v) increases. Since weights are positive integers, every
δ(u) must increase by at least 1, and since we only go up to distance d, each δ(v) increases at
most d times, which yields O(md). To improve upon this, our algorithm maintains a slightly
different update time invariant

I Invariant 14 (Update-Time). A vertex v is only charged when δ(v) increases. An edge
(u, v) is only charged when either roundεwo(u,v)(δ(u)) or roundεwo(u,v)(δ(v)) increases.

Since for any β, roundβ(δ(v)) can increase at most d/β before it exceeds d, it is clear
that the Update-Time Invariant guarantees the total update bound of the lemma.
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Maintaining the Two Invariants: Now, let us recall how the standard ES algorithm works.
This algorithm only handles deletions, so that is what we focus on first: we later show
how to extend our algorithm to handle weight-increases and insertions that do not change
distances. We will emphasize the parts of classic ES that we will later change in our modified
algorithm. First off, each vertex v always maintains label information about its neighbors: so
in particular, for each edge (u, v), vertex v stores a copy δv(u) = δ(u) (first-difference).
The algorithm maintains a shortest path tree T from the root s. We say an edge (u, v) is a
tree edge if (u, v) ∈ T , and a non-tree edge if (u, v) ∈ E \ T . Whenever a non-tree edge is
deleted, shortest distances do not change, so the algorithm does not have to do much. Now,
consider the deletion of a tree edge (u, v) where u is the parent of v in T . The algorithm
checks in constant time, by cleverly storing local label information δv(z), if v has another
edge to a vertex z with δ(v) = δv(z) + w(z, v). If yes, v can be reconnected without a label
increase, the edge (z, v) is added to the tree and all distance labels remain the same so we
are done. If not, label δ(v) must increase, which in turn affects of the children of v, so The
algorithm then examines all the children of v and checks if they can be attached to the tree
without increasing their distance in a similar manner. (second-difference) Some vertices
will fail to be reattached with the same label, so the algorithm keeps a list of all vertices that
need to be re-attached at a higher label. Each time the algorithm discovers that a label δ(v)
must increase, it increases it by 1 (which is the most optimistic new label it can get) and
returns it to the needs-reattachment list in at attempt to reattach v with this higher label.
The algorithm examines the vertices in the list in an increasing order of their label. Note
that the label of a vertex may be increased many times as a result of an update. Whenever
the label δ(v) of a vertex v changes, the algorithm must adjust δu(v) for every edge (u, v) in
the graph. (third-difference.)

Note that the algorithm above fails to satisfy the Update-Time Invariant, because although
a vertex v is only charged when δ(v) increases (otherwise the search stops at v and can be
charged to the edge that led to v), edge (u, v) is charged whenever δ(u) or δ(v) increase
even just by 1. In particular, the invariant is not preserved because of the work in second-
difference and third-difference. The changes we implement are simple. We start with
first-difference: each vertex v will still store local label information δv(u), but now it
might be slightly inaccurate. In particular, we always have

I Invariant 15 (Local-Information). δ(u) ≤ δv(u) ≤ roundεwo(u,v)(δ(u)).

A vertex v will now choose its parent based on the slightly inaccurate local labels δu(v)
instead of the true label δ(u). Let p(v) be the parent of v in the tree.

I Invariant 16 (Parent-Choice). p(v) = argmaxu∈neighbors(v){δv(u) +w(u, v)} and δ(v) =
δv(p(v)) + w(p(v), v).

The Parent-Choice and Local-Information invariants combined clearly guarantee the
Approximation Invariant. We must now show how to maintain these efficiently. This leads
us to third-difference: when δ(v) changes, we only update δu(v) for every vertex u when
roundεwo(u,v)(δ(v)) increases. This ensures that we satisfy the Update-Time Invariant for
this step of the algorithm, while still ensuring that all local information adheres to the
Local-Information Invariant. We omit the full details, but it very easy to maintain a data
structure for each vertex v, that returns in O(1) time per edge all edges (u, v) for which
roundεwo(u,v)(δ(v)) increased. This is because wo(u, v) is completely fixed for each edge,
while δ(v) only rises from 1 to d, so we only need d slots per vertex (slot i corresponding to
δ(v) going up from i to i+ 1), and O(1) time per edge affected in each slot.
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The last violation of the Update-Time Invariant was in second-difference. When δ(v)
changes, instead of processing all children u, we only need to process those for which δu(v)
changes. But in our modified algorithm this only occurs when roundεwo(u,v)(δ(v)) increases,
in keeping with the Update-Time Invariant.

We have thus shown how to modify classical ES in a way that maintains the Approximation
Invariant and the Update-Time Invariant while processing deletions. Increase-Weight(u, v) is
processed in the same way: if (u, v) was not a tree edge we do nothing, and otherwise if u
was the parent of v, then some invariants will be violated for v, and we fix these in exactly
the same way as for a deletion.

We now turn to processing insertions. In classical ES, it is trivial to process an insertion
of (u, v) that does decrease distances because the distance labels do not change, so we
just spend O(1) time fixing update δv(u) and δu(v). In our algorithm, however, a strange
difficulty arises: because our labels are approximate, even if the insertion of (u, v) does
not decrease distances, it might nonetheless violate the Approximation Invariant: say that
dist(u) = dist(v) = 1000 but δ(v) = 1000(1 + ε) while δ(u) = 1000 and we insert and edge
of weight 1. In this case we cannot afford to decrease δ(v) because our update time analysis
relied on non-decreasing labels. But note that although v now violates the Approximation
Invariant, δ(v) is still a (1+ ε) approximation to dist(s, v), because dist(s, v) never decreases.
We thus rely on the idea used in the “Monotone” ES tree of Henzinger et al. [10]: we
simply never decrease distance labels. More formally, our distance labels will satisfy the
following relaxed Approximation Invariant: after every update, for every vertex v, either
δ(v) satisfies the standard Approximation Invariant, or δ(v) = δold(v), where δold(v) was
the distance label before the update. By an induction on time, it is easy to see that with
this relaxed Approximation Invariant, we still always have that δ(v) ≤ (1 + ε)dist(s, v). If
δ(v) satisfies the approximation invariant, the proof is the same as in the Approximation
Analysis above. Otherwise, we have δ(v) = δold(v), in which case by our time induction we
have δold(v) ≤ (1 + ε)distold(s, v), and since our updates are guaranteed not to decrease
distances, we have distold(s, v) ≤ dist(s, v) and we are done. J

5 The decremental SSSP algorithm

We now put together all our ingredients to proving the main Theorem 1.

I Lemma 17. For any threshold τ , and depth bound d = nε−1τ−1, we can maintain
approximate distances dist′τ (s, v) in total time O(m log2(n)+n2 log(n)ε−2), with the property
that dist′τ (s, v) ≤ (1 + ε)boundd(distτ (s, v)) + dε

Proof. First we use Lemma 7 to maintain the threshold graph Gτ in O(m log2(n)) total
update time. Then, setting β = dε

2n , for each edge (u, v) ∈ Gτ , we round the edge weight
w(u, v) up to the nearest multiple of β. It is easy to see that since every shortest path
in the graph contains at most n edges, this weight change incurs an additive error of at
most nβ = dε/2. Since all edge weights are now multiple of β, we can divide all edge
weights by factor of β without changing shortest paths, which results in a scaled graph
Gsτ with integral weights for which we have to maintain shortest distances up to depth
ds = d/β = 2nε−1. We now run WSES(Gsτ , s, ds) in the scaled graph, and then scale
the resulting distances back up by β. Since WSES is a (1 + ε) approximation, we get:
dist′τ (s, v) ≤ (1 + ε)boundd(distτ (s, v) + dε/2) ≤ (1 + ε)boundddistτ (s, v) + dε.

Recall that the total update time of WSES(Gsτ , s, ds) is O(nds +
∑

(u,v)∈A
ds

εwo(u,v) ). We
know that O(nds) = O(n2ε−1). Now, Gsτ contains two types of edges: edges between a vertex
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v ∈ V and a component vertex c ∈ Vτ \ C, and τ -light edges from the original graph. By
Lemma 7, the total number of component edges ever inserted is O(n log(n)), and because
of our scaling they all have weight at least 1, so their total contribution to the sum is at
most n log(n)ε−1 · ds = O(n2 log(n)ε−2). For edges of the original graph, let us look at the
contribution of all edges (u, v) with levelo(u, v) = i. By Lemmas 4 and 7, the total number
of such edges is at most O(nτ2i). Each such edge has wo(u, v) ≥ 2i, which has been scaled
down by β in Gsτ , and so contributes dsβ

ε2i = d
ε2i to the sum. Thus in total we have that each

level i contributes a total of O(nτdε−1) = O(n2ε−2).
We complete the proof by arguing that there are only log(n) contributing levels. For

simplicity, let us look at the graph Gτ before scaling. First off, edges of weight more than d =
nε−1/τ can be ignored, since we do not care about distances greater than d (we are working
with boundd). Secondly, from the definition of cut-off(v), an edge (u, v) of weight less than
1/(2τ) will always be heavy and so never appear in Gτ : if 2τw(u, v) ≤ 2level(u,v)τ < 1, then
cut-off(u) and cut-off(v) are always at least as large as level(u, v), so (u, v) will remain
heavy. Thus, the only edges that appear in our graph have weight between 1/(2τ) and n/(ετ),
which corresponds to log(n/ε) = O(log(n)) different levels of edge weights. J

I Lemma 18. For any distance bound d, with total update time O(m log2(n) + n2 log(n)ε−2)
we can maintain approximate distances distd(s, v) to all vertices v such that
dist(s, v) ≤ distd(s, v) ≤ boundd(dist(s, v)) + 15εd

Proof. Set τ = n/(εd). By Lemma 17, in total update time O(m log2(n) + n2 log(n)ε−2) we
can maintain values dist′τ (s, v) with distτ (s, v) ≤ dist′τ (s, v) ≤ (1 + ε)boundd(distτ (s, v)) +
εd. Now, By Lemma 5 we have dist(s, v) − 14n/τ ≤ distτ (s, v) ≤ dist(s, v). Plugging
in our value τ = n/(εd) we get dist(s, v) − 14εd ≤ distτ (s, v) ≤ dist(s, v). Thus, we
have dist(s, v) − 14εd ≤ dist′τ (s, v) ≤ boundd(dist(s, v)) + εd. If we return distd(s, v) =
dist′τ (s, v) + 14εd, we get the bound in the lemma. J

It is now easy to prove our main Theorem 1. Observe that the maximum distance we could
possibly see is nW . Thus, for each i = 0, 1, 2, 3...dlog(nW )e, we use Lemma 18 to maintain
δi(v) = dist2i(s, v). By Lemma 18, the total update time is the desiredO(m log2(n) log(nW )+
n2 log(n) log(nW )ε−2). We then output as our final answer: dist′(v) = mini{δi(v)}. Since
for each i we have δi ≥ dist(v), we have dist′(v) ≥ dist(s, v). We now need to show that
dist′(v) ≤ (1 + O(ε))dist(s, v). It is not hard to see that for i = dlog(dist(s, v))e, we end
up with δi(v) ≤ dist(s, v) + 30εdist(s, v), as desired.

6 Conclusions

In this paper we presented the first deterministic decremental SSSP algorithm for weighted
undirected graphs that goes beyond the Even-Shiloach bound of O(mn) total update time.
Previously such a result was only known for unweighted undirected graphs. The two main
open questions are further improving this total update time, and going beyond O(mn)
deterministically for directed graphs. Finally, we recall from the introduction that all existing
deterministic o(mn) results including ours are only able to return approximate shortest
distances, not the paths themselves.
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