
Additive Spanners and Distance Oracles in
Quadratic Time
Mathias Bæk Tejs Knudsen∗

University of Copenhagen, Copenhagen, Denmark
mathias@tejs.dk

Abstract
Let G be an unweighted, undirected graph. An additive k-spanner of G is a subgraph H that
approximates all distances between pairs of nodes up to an additive error of +k, that is, it
satisfies dH(u, v) ≤ dG(u, v) + k for all nodes u, v, where d is the shortest path distance. We give
a deterministic algorithm that constructs an additive O(1)-spanner with O

(
n4/3) edges in O(n2)

time. This should be compared with the randomized Monte Carlo algorithm by Woodruff [ICALP
2010] giving an additive 6-spanner with O

(
n4/3 log3 n

)
edges in expected time O

(
n2 log2 n

)
.

An (α, β)-approximate distance oracle for G is a data structure that supports the following
distance queries between pairs of nodes in G. Given two nodes u, v it can in constant time
compute a distance estimate d̃ that satisfies d ≤ d̃ ≤ αd + β where d is the distance between
u and v in G. Sommer [ICALP 2016] gave a randomized Monte Carlo (2, 1)-distance oracle
of size O

(
n5/3 poly logn

)
in expected time O

(
n2 poly logn

)
. As an application of the additive

O(1)-spanner we improve the construction by Sommer [ICALP 2016] and give a Las Vegas (2, 1)-
distance oracle of size O

(
n5/3) in time O

(
n2). This also implies an algorithm that in O

(
n2) time

gives approximate distance for all pairs of nodes in G improving on the O
(
n2 logn

)
algorithm by

Baswana and Kavitha [SICOMP 2010].

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases graph algorithms, data structures, additive spanners, distance oracles

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.64

1 Introduction

Let G = (V,E) be an unweighted, undirected graph on n nodes and m edges. A subgraph H
of G is an additive k-spanner if the following holds for every pair u, v of nodes in G:

dH(u, v) ≤ dG(u, v) + k ,

where dH(u, v) and dG(u, v) is the distance between u and v in H and G respectively. This
paper will only consider additive spanners and not multiplicative or mixed spanners, so we
will simply say that H is a k-spanner when we mean that H is an additive k-spanner.

In this paper we consider algorithms constructing k-spanners, and there are therefore
three interesting parameters: The distortion k, the running time of the algorithm, and the
size of the spanner created. Elkin and Peleg [19] showed how to construct 2-spanners with
O
(
n3/2) edges in O

(
n5/2) time, and Baswana et al [9] gave an algorithm that constructs

6-spanners with O
(
n4/3) edges in O(n2/3m

)
time.

∗ Research partly supported by Advanced Grant DFF-0602-02499B from the Danish Council for Inde-
pendent Research under the Sapere Aude research career programme and by the FNU project AlgoDisc
– Discrete Mathematics, Algorithms, and Data Structures.

EA
T

C
S

© Mathias Bæk Tejs Knudsen;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 64; pp. 64:1–64:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64:2 Additive Spanners and Distance Oracles in Quadratic Time

Table 1 A summary of the performance of selected algorithms that creates a k-spanner H from a
graph on n nodes. It shows the additive distortion, k, and an upper bound on the number of edges
in H as well as the running time of the algorithm that constructs H.

k Number of Edges Running Time Comment Reference
2 O

(
n3/2) O

(
n5/2) Deterministic [19]

2 O
(
n3/2 log1/2 n

)
O
(
n2 log2 n

)
Deterministic [18]

2 O
(
n3/2) O

(
n2) Deterministic Theorem 5

6 O
(
n4/3) O

(
n2/3m

)
Deterministic [9]

6 O
(
n4/3 log3 n

)
O
(
n2 log2 n

)
Randomized Monte Carlo [33]

8 O
(
n4/3) O

(
n2) Deterministic Theorem 9

The running time of these algorithms can be improved if we allow the k-spanners
to be larger by a poly logn factor. Dor, Halperin and Zwick [18] showed that we can
construct 2-spanners with O

(
n3/2 log1/2 n

)
edges in O

(
n2 log2 n

)
time, and Woodruff [33]

gave an algorithm to construct 6-spanners with O
(
n4/3 log3 n

)
edges in O

(
n2 log2 n

)
time.

The construction of Woodruff is furthermore randomized Monte Carlo. These results are
summarized in Table 1.

These improvements to the running time fit into the following paradigm. For a fixed
k the authors find algorithms that produce spanners that are almost as small as the best
known construction of k-spanners and have near-quadratic running time. We reverse this
way of looking at the problem. We are now trying to find algorithms that yield k-spanners
that are exactly as small as the best known constructions for any k = O(1), i.e. O(n4/3), and
at the same time we want the algorithm to run as fast as possible. All known algorithms for
creating O(1)-spanners that have close to optimal size run in time Ω(n2). 1 So a natural
question is to ask if there exists a k = O(1) and an algorithm that constructs a k-spanner
with O

(
n4/3) edges in O(n2) time. In fact Sommer [28] mentioned at his talk at ICALP 2016

that the main obstacle towards getting a better running time for constructing the distance
oracle he presented is the lack of such an algorithm. In his case the distortion k = O(1) is
only factored into the running time and not the distortion of oracle. Therefore, it does not
matter what k is as long as it is constant.

We show that it possible to attain this goal by giving an algorithm that constructs
8-spanners deterministically with O

(
n4/3) edges in O(n2) time. Comparing this with the

algorithm by Woodruff [33] this gets rid of the log3 n factor on the number of edges and a
factor of log2 n in the running time. Furthermore, the algorithm is deterministic and not
randomized Monte Carlo. The price of these improvements is that the distortion is larger
than 6. We note that there are no lower bounds ruling out the possibility of a 4-spanner with
O
(
n4/3) edges. For the application to the distance oracle by Sommer [28], the distortion

is unimportant as long as it is constant. We also show how to construct 2-spanners with
O
(
n3/2) edges in O(n2) time. For a comparison to previous work see Table 1.

Related work. Elkin and Peleg [19] showed that2 any graph on n nodes has a 2-spanner
with O(n3/2) edges, Chechik [15] showed that it has a 4-spanner with O

(
n7/5 log1/5 n

)
edges,

and Baswana et al [9] showed that it has a 6-spanner with O(n4/3) edges. These results are

1 For instance the algorithm by Baswana et al [9] gives a 6-spanner with O
(
n4/3

)
edges and is therefore

only interesting when m = Ω
(
n4/3

)
, in which case the running time is Θ

(
n2/3m

)
= Ω
(
n2
)
.

2 Aingworth et al [5] earlier showed the same result up to logarithmic factors on the size of the spanner.

M.B.T. Knudsen 64:3

Table 2 For a given k an upper bound of f(n) is a proof that any graph on n nodes has a
k-spanner with no more than f(n) edges. A lower bound of g(n) is a proof that there exists a graph
on n nodes for which any k-spanner must have at least g(n) edges.

k Upper Bound Lower Bound Reference
2 & 3 O

(
n3/2) Ω

(
n3/2) [19]/[31]

4 & 5 O
(
n7/5 log1/5 n

)
Ω
(
n4/3) [15]/[11]

≥ 6 O
(
n4/3) n4/3−o(1) [9]/[1]

complemented by a negative result of Abboud and Bodwin [1]. A consequence of their result
is that for any k = O(1) there exists a graph on n nodes such that any k-spanner of this
graph has at least n4/3−o(1) edges.

Another negative result comes from Erdős’s girth conjecture [20]. It states that for any
constant k there exists graphs with n nodes and Ω

(
n1+1/k

)
edges where the girth is 2k + 2.

This conjecture has been proved for k = 2, 3, 5 [31, 11]. In particular if the conjecture
is true this implies that there exists graphs for which any (2k − 1)-spanner must have at
least Ω

(
n1+1/k

)
edges. Woodruff [32] proved that whether the conjecture is true or not,

there exists a graph on n nodes such that any (2k − 1)-spanner of the graph has at least
Ω
(
k−1n1+1/k

)
edges.

There are also upper and lower bounds when we allow the distortion k to depend on n,
see [14, 13, 15, 22]. In this paper, however, we are only interested in the case where k = O(1).
The upper and lower bounds for k = O(1) are summarized in Table 2.

Techniques. Previous algorithms that construct k-spanners in Õ
(
n2) time all relied on

constructing a hitting set for some set of neighbourhoods. In [18] this is done deterministically
via a dominating set algorithm, and in [33] this is done via sampling. This approach will
inherently come with the cost of a poly logn factor. Furthermore, in the construction of
6-spanners by Woodruff [33] the number of neighbourhoods that need to be hit is so large
that it seems impossible with current techniques to modify the algorithm to be Las Vegas.
To avoid this we instead use a clustering approach described in Section 2. The algorithm in
Theorem 9 is obtained using this clustering and a careful modification of the path-buying
algorithm of [9].

Approximate Distance Oracles and All Pairs Almost Shortest Paths. Given an undirected
an unweighted graph G an (α, β)-approximate distance oracle for G is a data structure that
supports the following query. Given two nodes u, v it can compute a distance estimate d̃
that satisfies d ≤ d̃ ≤ αd + β where d is the distance between u and v in G. For work on
approximate distance oracles see e.g. [2, 3, 4, 6, 7, 8, 10, 12, 16, 17, 23, 24, 26, 27, 29, 30, 34].
Sommer [28] gave a randomized Monte Carlo (2, 1)-distance oracle that can be constructed
in O

(
n2 poly logn

)
time, has size O

(
n5/3 poly logn

)
and can answer queries in O(1) time.

We improve the construction time and the size to O
(
n2) and O(n5/3) respectively, and our

construction is randomized Las Vegas. As a corollary we can compute an estimate d̃(u, v)
for all pairs of nodes in G satisfying dG(u, v) ≤ d̃(u, v) ≤ 2dG(u, v) + 1 in time O

(
n2). This

improves upon the O
(
n2 logn

)
algorithm by Baswana and Kavitha [8].

Preliminaries. For a graph G and two nodes u, v we denote the distance from u to v in G by
dG(u, v). All graphs considered in this paper are unweighted, and unless otherwise specified
they are undirected as well. For an undirected graph G and a node u the neighbourhood of
u is the set of nodes adjacent to u and is denoted by ΓG(u).

ICALP 2017

64:4 Additive Spanners and Distance Oracles in Quadratic Time

Overview. In Section 2 we introduce the clustering we use when constructing the spanners.
In Section 3 we show how to create an 8-spanner with O

(
n4/3) edges in O

(
n2) time and

thereby prove Theorem 9. In Section 4 we provide the details on how to give an improved
(2, 1)-distance oracle.

2 Clustering

Our construction of additive spanners uses clustering techniques, and we present our clustering
framework below. Let G = (V,E) be a graph with n vertices and m edges. We let t be a
parameter that can depend on our needs. For a sequence u1, . . . , u` of nodes we define the
clusters Ci, i ∈ {1, . . . , `} by

Ci = (ΓG(ui) ∪ {ui}) \ (C1 ∪ . . . ∪ Ci−1) .

Furthermore we also define graphs G0, G1, . . . , G` in the following way. We let G0 = G, and
for i > 0 we let Gi be the subgraph of G defined in the following way. The nodes of Gi are
the same as the nodes of G. An edge (u, v) from G is contained in Gi unless both endpoints
u and v are are contained in C1 ∪ . . . ∪ Ci. From each node ui we let Ti be a BFS tree in
Gi−1 rooted at ui.

I Definition 1. A sequence u1, . . . , u` is called a t-clustering if the following requirements
are satisfied.

The node ui maximizes the size of (ΓG(ui) ∪ {ui}) \ (C1 ∪ . . . ∪ Ci−1).
Every cluster Ci contains at least t nodes.
For every node v we have |(ΓG(v) ∪ {v}) \ (C1 ∪ . . . ∪ C`)| < t.

We say that a node v is clustered if v ∈ C1 ∪ . . .∪C` and unclustered otherwise. We note
that since every cluster Ci contains at least t nodes and the clusters are disjoint we have
` ≤ n

t .

I Lemma 2. Let u1, . . . , u` be a t-clustering of a graph G = (V,E). For every i = 1, 2, . . . , `
the number of edges in Gi−1 is at most n |Ci|. The number of edges in G` is less than nt.

Proof. The set of edges in Gi−1 can be written as

{{u, v} | u ∈ V, v ∈ (ΓG(u)) \ (C1 ∪ . . . ∪ Ci−1)} .

Therefore, the number of edges in Gi−1 is bounded by∑
v∈V

|(ΓG(v)) \ (C1 ∪ . . . ∪ Ci−1)| . (1)

Since every term in (1) is bounded by |Ci|, we conclude that the number of edges in Gi is at
most n |Ci|.

In the same manner we see that the number of edges in G` is bounded by the sum∑
v∈V |(ΓG(v)) \ (C1 ∪ . . . ∪ C`)|, which is clearly less than nt. J

I Lemma 3. Let u1, . . . , u` be a t-clustering of G = (V,E) and let u, v ∈ V be a pair of nodes.
Assume that some shortest path from u to v in G is not contained in G` from Lemma 2.
Then there exists an index i ∈ {1, 2, . . . , `} such that

dTi
(ui, u) + dTi

(ui, v) ≤ dG(u, v) + 2 .

M.B.T. Knudsen 64:5

Proof. Consider a shortest path p from u to v that is not contained in G` and let w be a
clustered node on p such that w ∈ Ci. We choose w such that i is smallest possible. By
choosing i smallest possible p is contained in Gi−1. Furthermore since the distance from w

to ui is at most 1 we see that

dGi−1(ui, u) + dGi−1(ui, v) ≤ dGi−1(w, u) + dGi−1(w, v) + 2 = dG(u, v) + 2 .

Since Ti is a is shortest path tree in Gi−1 the conclusion follows. J

I Lemma 4. Given a graph G and a parameter t > 0 we can construct a t-clustering
u1, . . . , u`, the corresponding BFS trees T1, . . . , T` and G` in O(n2) time.

Proof. The algorithm will work by finding the nodes u1, . . . , u` consecutively, i.e. first u1,
then u2 and so on. The algorithm will maintain a graph G′. In the beginning of the algorithm
we have G′ = G0, and after we add ui we will alter G′ such that G′ = Gi. The total cost of
altering all G′ will be O(m) = O(n2).

We find ui by looking at all nodes in G′ = Gi−1 and count the number of neighbours not
in C1 ∪ . . . ∪ Ci−1. Since Gi−1 has at most n |Ci| edges this takes O(n |Ci|) time. Then the
algorithm finds a BFS tree from ui in Gi−1 in O(n |Ci|) time. Hence the total time used by
the algorithm is:

O

(
m+

∑̀
i=1

n |Ci|

)
= O(n2) . J

3 Constructing O(1)-Spanners

In this section we present our construction of an 8-spanner with O
(
n4/3) edges in O(n2)

time. As a warmup we show how we can use the clustering from Section 2 to give a 2-spanner
with O

(
n3/2) edges in O(n2) time.

I Theorem 5. There exists an algorithm that given a graph G with n nodes constructs a
2-spanner of G with ≤ 2n3/2 edges in O

(
n2) time.

Proof. Let t =
√
n and construct a t-clustering u1, . . . , u` with Lemma 4. Let H = T1 ∪

. . . ∪ T` ∪G`. The number of edges in H is at most n`+ nt ≤ 2n
√
n by Lemma 2 and the

fact that ` ≤ n
t .

Now we just need to prove that H is a 2-spanner. Let u, v be arbitrary nodes and let p
be a shortest path from u to v in G. We wish to prove that

dH(u, v) ≤ dG(u, v) + 2 . (2)

If p is contained in G` then (2) is obviously true. Otherwise there exists an index i such that
dTi

(u, v) ≤ dG(u, v) + 2 by Lemma 3, and (2) is true since Ti ⊂ H. J

Next we turn to showing how to create an 8-spanner H with O
(
n4/3) edges in O(n2)

time. The idea is the following. We start by creating a t-clustering u1, . . . , u` with t = n1/3

and ` ≤ n2/3. Using the BFS trees T1, . . . , T` along with Lemma 3 we can then get an
additive 2-approximation of dG(ui, uj) for all pairs of indices i, j, which we will call δi,j . The
calculation of the BFS trees in O

(
n2) time relies on an idea similar to one in [5]. The BFS

trees also gives us a path from ui to uj that is at most 2 longer than the shortest path. If we
add all these shortest paths to our spanner along with G` and the neighbours in Ci of each

ICALP 2017

64:6 Additive Spanners and Distance Oracles in Quadratic Time

ui we will get a 6-spanner. Unfortunately, adding a path could require adding up to Ω(`)
edges, and since there are `2 pairs we can only guarantee that the spanner has O

(
`3) edges,

which is O
(
n2) if ` ≈ n2/3. (We only need to add edges on the path that are not already

in G`) Instead we use an argument similar to the path-buying argument from [9] and the
construction from [21]. We add the path from ui to uj unless we can guarantee that there is
an additive 2-approximation of this path in the spanner already. We do this by maintaining
an upper bound ∆i,j on the distance from ui to uj in the spanner H. We then argue that if
we add a path with k edges not already in the spanner, then there are Ω(k) pairs ui′ , uj′ for
which the upper bound ∆i′,j′ is improved. Then, this will imply that at most O

(
`2) edges

are added giving an upper bound of O
(
n4/3) on the number of edges in H.

After this informal discussion of the construction we turn to the details. The algorithm is
given a graph G = (V,E) with n nodes and m edges, and will return a spanner H = (V, F).
Initially F = ∅ and we will add edges to H so that H becomes a 8-spanner of G. The
algorithm starts by creating a t-clustering u1, . . . , u` with t = n1/3 using Lemma 4 in O

(
n2)

time. Since ` ≤ n
t we have ` ≤ n2/3. Then we add edges from ui to all nodes in Ci \ {ui} to

H for all i ∈ {1, 2, . . . , `}. We add at most n edges this way. Then we add all edges from G`

to H. This adds at most nt = n4/3 edges to H.
We give each node u ∈ V a color c(u) ∈ {0, 1, 2, . . . , `}. If u is unclustered then u has

color c(u) = 0. Otherwise c(u) = i where i is the unique index such that u ∈ Ci. For each
pair of indices i, j ∈ {1, 2, . . . , `} we define δi,j by:

δi,j = min
k∈{1,2,...,`}

{dTk
(uk, ui) + dTk

(uk, uj)} . (3)

We first note that for a choice of i, j we can calculate the right hand side of (3) in O(`) time
since we are taking the minimum over ` different values. So in O

(
`3) time the algorithm

calculates δi,j for all pairs of indices i, j. Since ` ≤ n2/3 this is within the O
(
n2) time bound.

As a consequence of Lemma 3 we get that δi,j is a good approximation of dG(ui, uj), more
precisely:

dG(ui, uj) ≤ δi,j ≤ dG(ui, uj) + 2 . (4)

We now define T ′i to be the tree obtained from Ti by contracting each edge in G`. Since an
edge is contained in G` iff at least one of its endpoints is unclustered we can construct T ′i
from Ti in O(n) time. The algorithm does so for all i ∈ {1, 2, . . . , `} in O(n`) = O

(
n5/3)

time. We note that the shortest path between two nodes u, v in T ′i contains exactly the edges
on the shortest path between u, v in Ti excluding the edges that are contained in G`.

The algorithm initializes ∆i,j =∞ for all pairs of indices i, j with i 6= j and let ∆i,i = 0 for
all i. We will maintain that ∆i,j is an upper bound on dH(ui, uj) throughout the algorithm.
Now the algorithm goes through all pairs ui, uj and adds a path of length at most 2 longer
than a shortest path between the nodes if needed. Specifically, we do the following:

Let L be an upper bound on the number of nodes of the path p from ui to uj in T ′k on
line 6. Then Algorithm 1 can implemented in O

(
`3 + `2L

)
time. Hence we just need to

prove that L = O(`) in order to conclude that it can be implemented in O
(
`3) = O

(
n2) time.

This follows from the fact that p is an almost shortest path and the following reasoning. If p
contained > C` nodes for some sufficiently large constant C it would contain more than C
nodes of the same color. Since nodes of the same color have distance at most 2 in G this
would imply that there was a much shorter path from u to v in G contradicting (4) if C was
chosen large enough. The details with C = 5 are given in the following lemma:

I Lemma 6. The path p contains no nodes of color 0, and at most 5 nodes of each color
6= 0.

M.B.T. Knudsen 64:7

Algorithm 1
1 For each pair of indices i, j ∈ {1, 2, . . . , `}:
2 For all k ∈ {1, 2, . . . , `}:
3 Set ∆i,j := min {∆i,j ,∆i,k + ∆k,j}.
4 If ∆i,j > δi,j + 2 do:
5 Find a k ∈ {1, 2, . . . , `} such that dTk (uk, ui) + dTk (uk, uj) = δi,j .
6 Find the path p from ui to uj in T ′k .
7 Add all edges from p to H.
8 Write p = (w0, w1, w2, . . . , ws−1).
9 For all x ∈ {0, 1, 2, ..., s− 1}:

10 Set y := dTk (ui, wx).
11 Set ∆i,c(wx) := min

{
∆i,c(wx), y + 1

}
12 Set ∆c(wx),j := min

{
∆c(wx),j , (δi,j − y) + 1

}

Proof. Obviously p does not contain a node with color 0, since all its incident edges would
be contained in G` and hence not in T ′k. Now assume for the sake of contradiction that p
contains 6 nodes of some color r 6= 0. When traversing p from ui to uj let α and β be the
first and the last node of color r respectively. The distance from α to β when following p
must be at least 5 by assumption. On the other hand α and β have distance at most 2 in
G. So there exists a path in G from ui to uj that is at least 3 edges shorter than p. This
contradicts (4). Hence the assumption was wrong and p contains at most 5 nodes of each
color 6= 0. J

Since there are ` different colors 6= 0 the path p contains at most 5` nodes and the running
time of Algorithm 1 is O

(
n2). So now we just need to prove that H is an 8-spanner and

that H has at most O
(
n4/3) edges. We start by proving that H is an 8-spanner. Here we

will utilize that the ∆i,j is an upper bound on the distance from ui to uj in H. Furthermore,
Algorithm 1 guarantees that ∆i,j ≤ δi,j + 2. Together with (4) this gives that

dH(ui, uj) ≤ dG(ui, uj) + 4 . (5)

I Lemma 7. The subgraph H of G is an additive 8-spanner of G.

Proof. Assume for the sake of contradiction that H is not an additive 8-spanner and let u, v
be a pair of nodes with shortest possible distance in G such that:

dH(u, v) > dG(u, v) + 8 . (6)

Say that dG(u, v) = D and let p = (w0, w1, . . . , wD) be a shortest path from u to v in G

where w0 = u and wD = v. Since the pair (u, v) has the smallest possible distance in G such
that (6) holds and dG(w1, v) = D − 1 we have dH(w1, v) ≤ (D − 1) + 8. In particular the
edge (u,w1) is not in H as it would contradict (6). Hence u cannot be unclustered, as all the
edges incident to an unclustered node is contained in G` and therefore H. With the same
reasoning we conclude that v is clustered. Let the colors of u and v be i and j respectively.
The distances from u and v to ui and uj respectively are at most 1. Combining this insight
with (5) we get:

dH(u, v) ≤ dH(ui, uj) + 2 ≤ dG(ui, uj) + 6 ≤ dG(u, v) + 8 .

But this contradicts the assumption (6). Hence the assumption was wrong and H is an
additive 8-spanner of G. J

ICALP 2017

64:8 Additive Spanners and Distance Oracles in Quadratic Time

Lastly, we need to prove that H contains no more than O
(
n4/3) edges. Informally, we

argue the following way. Whenever the s−1 edges of p are added to H on line 7 of Algorithm
1 there are Ω(s) different colors on p. For each color r on p we then argue that either ∆i,r

or ∆r,j are made smaller on line 11 or 12 of Algorithm 1. Lastly, we argue that ∆i,j can
only be updated O(1) times, and since there are `2 ≤ n4/3 variables ∆i,j this implies that
Algorithm 1 only adds O

(
n4/3) edges to H. This intuition is formalized in Lemma 8 bellow:

I Lemma 8. Algorithm 1 adds no more than 25`2 edges to H.

Proof. Say that the algorithm adds the edges from the path p = (w0, w1, . . . , ws−1) on line
7 of Algorithm 1 where w0 = ui, ws−1 = uj . First we note that since dG(ui, uj) ≥ δi,j − 2 by
(4) we have that dG(ui, wx) ≥ y− 2 for every x ∈ {0, 1, . . . , s− 1}, where we consider y to be
a function of x defined by y = dTk

(ui, wx) as on line 10. Now fix x and let r = c(wx). Then
there is an edge between wx and ur and therefore dG(ui, ur) ≥ y−3, i.e. y+1 ≤ dG(ui, ur)+4.
So if Algorithm 1 decreases ∆i,r on line 11 we have ∆i,r ≤ dG(ui, ur) + 4 after it is decreased.
Since ∆i,r is an upper bound on dH(ui, ur) and therefore also an upper bound on dG(ui, ur)
we see that ∆i,r can be decreased at most 5 times for each choice of i, r. By symmetry we
see that we can also decrease ∆r,j on line 12 at most 5 times. Since there are `2 pairs of
indices the algorithm can change the values of ∆i,r or ∆r,j on line 11 and 12 of Algorithm 1
at most 5`2 times.

Let r be a color on p. After the execution of lines 9-12 we have

∆i,r + ∆r,j ≤ δi,j + 2 .

Due to the execution of lines 2 and 3 this was not the case before. Hence either ∆i,r or ∆r,j

were updated. By Lemma 6 there are at least s
5 colors on p, so if the algorithm adds A edges

in total it makes at least A
5 updates of upper bounds ∆i,r or ∆r,j . Since there can be at

most 5`2 such updates we conclude that A
5 ≤ 5`2 and that Algorithm 1 adds no more than

25`2 edges. J

To summarize, the algorithm presented in this section runs in O
(
n2) time and gives

an additive 8-spanner with no more than 26n4/3 + n = O
(
n4/3) edges. We have made no

attempt to optimize the constant in the O-notation. Hence we get:

I Theorem 9. There exists an algorithm that given a graph G with n nodes constructs an
8-spanner of G with O

(
n4/3) edges in O

(
n2) time.

4 Distance Oracles

In the following we show how to modify the construction by Sommer [28] to obtain a
(2, 1)-distance oracle of size O

(
n5/3) that can be constructed in expected O

(
n2) time.

Let G be a given graph, and H an 8-spanner of G constructed by Theorem 9. H is
constructed in O

(
n2) time and has O

(
n4/3) edges. During the construction we use only

O
(
n5/3) space.
Let u1, u2, . . . , u` be a n1/3-clustering of G. Using Lemma 4 we obtain T1, . . . , T` and G`

in O
(
n2) time. For each node v we define four portals p1(v), p2(v), p3(v), p4(v). We define

p1(v) = ui, where ui is chosen such that the distance between v and ui in Ti is minimized.
In case of ties we choose the node ui with the lowest index i. The node pj+1(v) for j = 1, 2, 3
is chosen depending on pj(v). If pj(v) = u1 we let pj+1(v) = u1. Otherwise pj(v) = ui for
some index i. We let pj+1(v) = ui′ where ui′ is chosen among u1, u2, . . . , ui−1 such that the

M.B.T. Knudsen 64:9

distance between ui′ and v in Ti′ is minimized. In case of ties we choose the node ui′ with
the lowest index i′. The portals for all nodes can be found in O

(
n5/3) time.

We will use the following lemma by Pǎtraşcu and Roditty [23] to construct a (2, 1)-distance
oracle for G`, that uses space O

(
n5/3).

I Lemma 10 ([23]). For any unweighted, undirected graph, there exists a distance oracle
of size O

(
n5/3) that, given any nodes u and v at distance d, returns a distance of at most

2d+ 1 in constant time. The distance oracle can be constructed in expected time O
(
mn2/3).

In the proof in [23] they only claim a running time of O
(
mn2/3 + n7/3), however, this can

be fixed to give the correct running time of O
(
mn2/3) [25]. By [23, Claim 9] it is easy to see

how to get a running time of O
(
mn2/3 + n2) which suffice for our purposes.

We are now ready to define the distance oracle. For each i = 1, 2, . . . , ` we store
the distances dTi

(ui, v) and dH(ui, v) for all nodes v. The distances dH(ui, v) can be
calculated using a BFS in time O

(
`n4/3) = O

(
n2). For each node v we store its portals

pj(v), j = 1, 2, 3, 4. We augment this distance oracle with the Pǎtraşcu-Roditty distance
oracle from Lemma 10 for G`.

We now show how to use the distance oracle to obtain approximate distances for a
query u, v. We let δP R(u, v) be the approximate distance in G` returned by the Pǎtraşcu-
Roditty distance oracle. We define δj(u, v) in the following way. Let pj(u) = ui. Then
δj(u, v) = dTi

(ui, u) + min {dTi
(ui, v), dH(ui, v)}. The distance returned by the distance

oracle is the minimum of δP R(u, v), δj(u, v) and δj(v, u) for j = 1, 2, 3, 4.
We will now argue that if the the distance between u and v is d, then the distance oracle

returns a distance between d and 2d+ 1. The distance returned is obviously at least d, so we
just need to show that it is at most 2d+ 1. Consider a shortest path between u and v in
G. If there is at most one node on the shortest path which is incident to a node ui in the
clustering then the shortest path is contained in G`, and therefore:

δP R(u, v) ≤ 2dG`
(u, v) + 1 = 2d+ 1 .

So assume that there exists an edge on the shortest path not in G`. Let i be the smallest
index such that there is an edge (z, t) on the shortest path with z, t ∈ C1 ∪ . . . ∪ Ci. Say
that z is closer to u than to v in G. Assume that z ∈ Ci and t ∈ Ci′ for some index i′ ≤ i

(the case where z ∈ Ci′ and t ∈ Ci is handled symmetrically). Since the shortest path is
contained in Gi−1 and Gi′−1 we have that

dTi
(ui, u) + dTi′ (ui′ , v) ≤ (dG(u, z) + 1) + (dG(t, v) + 1) = d+ 1 ,

and therefore:

min {dTi
(ui, u), dTi

(ui, v)} ≤ d+ 1
2 .

Assume that dTi(ui, u) ≤ d+1
2 . The other case is handled similarly. Say that pj(u) = ukj

for j = 1, 2, 3, 4. First assume that kj > i for all j = 1, 2, 3, 4. Then we conclude that
dTk1

(p1(u), u) ≤ dTi
(ui, u)− 4. The distance returned by the distance oracle is at most

δ1(u, v) ≤ dTk1
(p1(u), u) + dH(p1(u), v)

≤ dTk1
(p1(u), u) + dG(p1(u), v) + 8

≤ 2dTk1
(p1(u), u) + dG(u, v) + 8

≤ 2(dTi(ui, u)− 4) + d+ 8 ≤ 2d+ 1 .

ICALP 2017

64:10 Additive Spanners and Distance Oracles in Quadratic Time

Now assume that kj ≤ i for some j ∈ {1, 2, 3, 4} and let j be the smallest index such that
kj ≤ i. By definition we have that dTkj

(pj(u), u) ≤ dTi
(ui, u). Furthermore the shortest path

is contained in Gkj−1 and therefore dTkj
(pj(u), v) ≤ dTkj

(pj(u), u) + dG(u, v). The distance
returned is at most

δj(u, v) ≤ dTkj
(pj(u), u) + dTkj

(pj(u), v)

≤ 2dTkj
(pj(u), u) + d

≤ 2dTi
(ui, u) + d ≤ 2d+ 1 .

We conclude that the distance returned by the distance oracle is always between d and 2d+ 1.
The result is summarized in Theorem 11.

I Theorem 11. For any unweighted, undirected graph, there exists a distance oracle of size
O
(
n5/3) that, given any nodes u and v at distance d, returns a distance of at most 2d+ 1 in

constant time. The distance oracle can be constructed in expected time O
(
n2).

Acknowledgements. The author would like to thank Christian Sommer for helpful discus-
sions on the application of the 8-spanner to his construction of distance oracles.

References

1 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. In Proc. 48th
ACM Symposium on Theory of Computing (STOC), pages 351–361, 2016.

2 Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes
with affine stretch. In Distributed Computing – 25th International Symposium, DISC 2011,
Rome, Italy, September 20-22, 2011. Proceedings, pages 404–415, 2011. doi:10.1007/
978-3-642-24100-0_39.

3 Rachit Agarwal. The space-stretch-time tradeoff in distance oracles. In Algorithms – ESA
2014 – 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Pro-
ceedings, pages 49–60, 2014. doi:10.1007/978-3-662-44777-2_5.

4 Rachit Agarwal and Philip Brighten Godfrey. Brief announcement: a simple stretch 2
distance oracle. In ACM Symposium on Principles of Distributed Computing, PODC’13,
Montreal, QC, Canada, July 22-24, 2013, pages 110–112, 2013. doi:10.1145/2484239.
2484277.

5 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estima-
tion of diameter and shortest paths (without matrix multiplication). SIAM J. Comput.,
28(4):1167–1181, 1999. See also SODA’96.

6 Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant Upadhyay. Distance oracles for
unweighted graphs: Breaking the quadratic barrier with constant additive error. In Auto-
mata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reyk-
javik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Com-
plexity, and Games, pages 609–621, 2008. doi:10.1007/978-3-540-70575-8_50.

7 Surender Baswana, Vishrut Goyal, and Sandeep Sen. All-pairs nearly 2-approximate
shortest paths in I time. Theor. Comput. Sci., 410(1):84–93, 2009. doi:10.1016/j.tcs.
2008.10.018.

8 Surender Baswana and Telikepalli Kavitha. Faster algorithms for all-pairs approximate
shortest paths in undirected graphs. SIAM Journal on Computing, 39(7):2865–2896, 2010.

9 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners
and (alpha, beta)-spanners. ACM Trans. Algorithms, 7(1):5, 2010. See also SODA’05.

http://dx.doi.org/10.1007/978-3-642-24100-0_39
http://dx.doi.org/10.1007/978-3-642-24100-0_39
http://dx.doi.org/10.1007/978-3-662-44777-2_5
http://dx.doi.org/10.1145/2484239.2484277
http://dx.doi.org/10.1145/2484239.2484277
http://dx.doi.org/10.1007/978-3-540-70575-8_50
http://dx.doi.org/10.1016/j.tcs.2008.10.018
http://dx.doi.org/10.1016/j.tcs.2008.10.018

M.B.T. Knudsen 64:11

10 Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted graphs
in expected o(n2) time. ACM Transactions on Algorithms (TALG), 2(4):557–577, 2006.

11 Clark T. Benson. Minimal regular graphs of girth eight and twelve. Canad. J. Math,
18(1):94, 1966.

12 Piotr Berman and Shiva Prasad Kasiviswanathan. Faster approximation of distances in
graphs. In Workshop on Algorithms and Data Structures, pages 541–552. Springer, 2007.

13 Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive
spanners. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 855–872,
2016. doi:10.1137/1.9781611974331.ch61.

14 Gregory Bodwin and Virginia Vassilevska Williams. Very sparse additive spanners and
emulators. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 377–382, 2015. doi:
10.1145/2688073.2688103.

15 Shiri Chechik. New additive spanners. In Proc. 24th ACM/SIAM Symposium on Discrete
Algorithms (SODA), pages 498–512, 2013. doi:10.1137/1.9781611973105.36.

16 Shiri Chechik. Approximate distance oracles with constant query time. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing, pages 654–663. ACM, 2014.

17 Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages 1–10. ACM,
2015.

18 Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM Journal
on Computing, 29(5):1740–1759, 2000. See also FOCS’96.

19 Michael Elkin and David Peleg. (1 + ε, β)-spanner constructions for general graphs. SIAM
Journal on Computing, 33(3):608–631, 2004. See also STOC’01.

20 Paul Erdős. Extremal problems in graph theory. In “Theory of Graphs and its Applications,”
Proc. Sympos. Smolenice. Citeseer, 1964.

21 Mathias Bæk Tejs Knudsen. Additive spanners: A simple construction. In Proc. 14th
Scandinavian Workshop on Algorithm Theory (SWAT), pages 277–281, 2014.

22 Seth Pettie. Low distortion spanners. ACM Trans. Algorithms, 6(1):7:1–7:22, 2009. doi:
10.1145/1644015.1644022.

23 Mihai Pǎtraşcu and Liam Roditty. Distance oracles beyond the thorup–zwick bound. SIAM
Journal on Computing, 43(1):300–311, 2014.

24 Mihai Pǎtraşcu, Liam Roditty, and Mikkel Thorup. A new infinity of distance oracles
for sparse graphs. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual
Symposium on, pages 738–747. IEEE, 2012.

25 Liam Roditty. personal communication.
26 Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate

distance oracles and spanners. In International Colloquium on Automata, Languages, and
Programming, pages 261–272. Springer, 2005.

27 Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys
(CSUR), 46(4):45, 2014.

28 Christian Sommer. All-pairs approximate shortest paths and distance oracle preprocessing.
In LIPIcs – Leibniz International Proceedings in Informatics, volume 55. Schloss Dagstuhl
– Leibniz-Zentrum fuer Informatik, 2016.

29 Christian Sommer, Elad Verbin, and Wei Yu. Distance oracles for sparse graphs. In Found-
ations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages
703–712. IEEE, 2009.

30 Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM),
52(1):1–24, 2005.

ICALP 2017

http://dx.doi.org/10.1137/1.9781611974331.ch61
http://dx.doi.org/10.1145/2688073.2688103
http://dx.doi.org/10.1145/2688073.2688103
http://dx.doi.org/10.1137/1.9781611973105.36
http://dx.doi.org/10.1145/1644015.1644022
http://dx.doi.org/10.1145/1644015.1644022

64:12 Additive Spanners and Distance Oracles in Quadratic Time

31 Rephael Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. Journal of Combinatorial
Theory, Series B, 52(1):113–116, 1991.

32 David P. Woodruff. Lower bounds for additive spanners, emulators, and more. In Proc.
47th IEEE Symposium on Foundations of Computer Science (FOCS), pages 389–398, 2006.

33 David P. Woodruff. Additive spanners in nearly quadratic time. In Proc. 37th International
Colloquium on Automata, Languages and Programming (ICALP), pages 463–474, 2010.

34 Christian Wulff-Nilsen. Approximate distance oracles with improved preprocessing time.
In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 202–208. Society for Industrial and Applied Mathematics, 2012.

	Introduction
	Clustering
	Constructing O(1)-Spanners
	Distance Oracles

