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Abstract
In the reordering buffer management problem a sequence of requests arrive online in a finite
metric space, and have to be processed by a single server. This server is equipped with a request
buffer of size k and can decide at each point in time, which request from its buffer to serve next.
Servicing of a request is simply done by moving the server to the location of the request. The
goal is to process all requests while minimizing the total distance that the server is travelling
inside the metric space.

In this paper we present a deterministic algorithm for the reordering buffer management
problem that achieves a competitive ratio of O(log ∆ + min{logn, log k}) in a finite metric space
of n points and aspect ratio ∆. This is the first algorithm that works for general metric spaces
and has just a logarithmic dependency on the relevant parameters. The guarantee is memory-
robust, i.e., the competitive ratio decreases only slightly when the buffer-size of the optimum is
increased to h = (1 + ε)k. For memory robust guarantees our bounds are close to optimal.
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1 Introduction

In the reordering buffer management problem a sequence of requests arrive online in a finite
metric space, and have to be processed by a single server. This server is equipped with a
request buffer and can decide at each point in time, which request from its buffer to serve
next. Servicing of a request is simply done by moving the server to the location of the request.
The goal is to process all requests while minimizing the total distance that the server is
traveling inside the metric space.

This simple, abstract model can be used for modeling context switching costs that occur
in various applications in many different areas ranging from production engineering through
computer graphics to information retrieval [7, 10, 17, 21]. In the online version of the problem
the server does not see future requests but has to make its decision based on past requests
and the requests it currently holds in the request buffer. The worst case ratio between
the cost of the online algorithm and the cost of an optimal offline algorithm is called the
competitive ratio.

We say a guarantee on the competitive ratio for the reordering buffer management problem
is memory robust if the guarantee degrades gracefully as the buffer-size of the optimum
algorithm is increased over the buffer-size of the online algorithm. More precisely, the ratio
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33:2 Reordering Buffer Management in General Metric Spaces

between the cost of the online algorithm with a buffer-size of k, and the cost of an optimum
offline algorithm with a buffer-size of h ≥ k should be at most O(ch/k).

The main result of this paper is a deterministic algorithm for the reordering buffer
management problem that achieves a competitive ratio of O(h(log ∆ + min{logn, log k})/k)
in a finite metric space of n points and aspect ratio ∆. The algorithm is also O(h)-competitive
because any reasonable algorithm achieves this competitive ratio (see Lemma 13 in the
appendix). This is the first algorithm that works for general metric spaces and has just a
logarithmic dependency on the relevant parameters. The algorithm and its analysis are also
very simple.

It has been shown that even on a uniform metric (∆ = 1) the competitive ratio of
an online algorithm (deterministic or randomized) must be Ω(log k) against an optimum
algorithm with buffer-size h ≥ (1 + ε)k [1, 12]. Hence, an O(log k) term in the competitive
ratio is unavoidable for memory robust algorithms.

Biénkowski et al. [9] have shown that for a sub-linear dependency on the buffer-size there
needs to be another term in the competitive ratio apart from k for memory-robust algorithms.
In particular, they give an instance on a line metric with n equidistant points for which
any online algorithm looses a factor of Ω(min{k, logn}) against an optimum algorithm with
slightly larger buffer (h = (1 + ε)k). For this instance the number of points n is equal to the
aspect ratio ∆. So a logarithmic dependency on the aspect ratio seems reasonable.

Englert and Räcke [12] present a deterministic, memory-robust algorithm for tree metrics
of hop-diameter D that obtains a competitive ratio of O(hk (logD + log k)). They then use
the technique of approximating arbitrary metrics by tree-metrics due to Fakcharoenphol,
Rao, and Talwar [14] to obtain a randomized O(hk logn · log h)-competitive algorithm for
general metrics.

As a whole these results are uncomparable to our results. There exist metrics where the
aspect ratio ∆ is very small, but there are a lot of points, resulting in very poor guarantees
from the result by Englert and Räcke. However, if one considers a star with edges of different
length, the aspect ratio could be very high, but the hop-diameter in the tree is just 2, which
makes the guarantee given by the result in [12] stronger than ours. One advantage of our
result is that for general metrics the dependency on our parameters is logarithmic, while
Englert and Räcke have the product of two logarithms. This product cannot easily be
removed as any (memory-robust) algorithm that relies on the FRT-approximation will loose
one logarithm because of FRT, and another because an online solution on a tree will have a
logarithmic competitive ratio.

In Section 5 we deal with the question whether it is possible to trade the dependency on
log ∆ in our competitive ratio for something else, like e.g. logn, which does not depend on
the aspect ratio. Our algorithm is memory restricted in the sense that it makes its decisions
only depending on the content of the buffer, and on the content of an additional memory
that contains k bits. We show, that for such a scenario there exist instances with an aspect
ratio ∆, on which every memory-restricted algorithm with k bits is Ω(

√
log ∆)-competitive.

This extends a lower bound due to Khandekar and Pandit [20] for memoryless algorithms.

1.1 Further Related Work
Most previous work on the reordering buffer management problem considers the case of
uniform metrics. Räcke et al. [22] introduced the problem and developed a deterministic
algorithm with competitive ratio O(log2 k), which was subsequently improved to O(log k) by
Englert and Westermann [13]. The analysis of both these algorithms can be slightly modified
to give a memory-robust guarantee.
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The first paper that used an analysis technique that is not memory-robust (and can
therefore beat the Θ(log k)-guarantee) was due to Avigdor-Elgrabli and Rabani, who presented
a deterministic algorithm with competitive ratio O(log k/ log log k). This in turn was improved
to a guarantee of O(

√
log k) by Adamaszek et al. [2], which is close to optimal due to a lower

bound of Ω(
√

log k/ log log k) shown in the same paper. For randomized algorithms Avigdor-
Elgrabli and Rabani present an O(log log k)-competitive algorithm [6]. This is optimal due
to a corresponding lower bound proved by Adamaszek et al. [2].

For star metric spaces the result by Englert and Westermann [13] obtains a deterministic
competitive ratio of O(log k). The result by Adamaszek et al. [2] gives an O(

√
log k) guarantee

for the case that ∆ = O(poly(k)). A straightforward extension to arbitrary values of ∆ gives
a competitive ratio of O(

√
log k + log ∆). For the randomized case Avigdor-Elgrabli et al. [4]

give an O((log log(k∆))2)-competitive algorithm, i.e., an algorithm with a slight dependency
on the aspect ratio of the metric space.

Gamzu and Segev [15] analyze the reordering buffer problem for n points on a line as this
can be used to model the disc scheduling problem. They present a deterministic algorithm
with a competitive ratio of O(logn).

In the offline case it has been shown that finding an optimal solution to the problem
is NP-hard even on uniform metrics [3, 11]. Avigdor-Elgrabli and Rabani have given a
constant factor approximation [5]. Im and Moseley gave an O(log log(k∆))-approximation
for the star-metric [18] and subsequently improved this to O(log log log(k∆)) [19]. Barman
et al. [8] gave a bicriteria approximation algorithm that achieves an approximation guarantee
of O(logn) when the buffer of the online algorithm is a constant factor larger than the buffer
of the optimum algorithm. This works in general metric spaces.

1.2 The Model
An input sequence σ of requests has to be processed, where each request σi corresponds to
some point in a finite metric space M = (V, d). We use n = |V | to denote the number of
distinct points in M , and ∆ to denote its aspect ratio, i.e., the ratio between the largest
and smallest distance between two points. We assume w.l.o.g. that the minimum non-zero
distance between two points is 1.

A reordering buffer that can store k requests can be used to rearrange the input sequence
into an output sequence σ′ in the following way. Initially, the buffer contains the first k
requests of σ. In every time step t an algorithm has to select a request r from the buffer and
append it to the output sequence, i.e., the algorithm sets σ′t to r. If there are still requests
waiting in the input sequence, the next such request takes r’s place in the buffer; otherwise
this place stays empty. The process is repeated until all requests from σ have been appended
to the output sequence.

An online algorithm ALG has to make its decision based on the requests in the buffer
and on the requests previously seen, but not based on future requests that are still to come.
Suppose an algorithm ALG generates a request sequence σ′ when giving a request sequence
σ as input. The (true) cost ALGtrue(σ) is defined as

ALGtrue(σ) =
`−1∑
i=1

d(σ′i, σ′i+1) ,

where ` is the length of the input sequence. Note that this means that the server may start
its processing at the first request without incurring any cost for traveling to this location.

Throughout the paper we use a slightly different notation w.r.t. the optimum algorithm
OPT for processing σ. Firstly, we assume that OPT has a larger buffer-size h ≥ k. Secondly,
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33:4 Reordering Buffer Management in General Metric Spaces

we denote the (true) cost of this algorithm with OPT(σ) = OPTtrue(σ). The reason
is that for an online algorithm we will introduce an approximate (simplified) version of
ALGtrue(σ), which will be denoted with ALG(σ). Hence, for the online algorithm we need
the differentiation between ALG(σ) and ALGtrue(σ), whereas this is not required for the
optimum algorithm.

2 The Algorithm

A block-oriented algorithm for the reordering buffer management problem serves requests
in blocks. Whenever the buffer gets full, the algorithm identifies a set S of requests from
the buffer and serves these requests. Additional requests that arrive while serving requests
in S are ignored, and will not be considered until all requests in S have been handled. We
call such a set S of requests chosen by the algorithm a block. The process of choosing and
servicing blocks of requests is repeated until the end of the input sequence is reached. The
requests in the buffer at this time form the last block of the algorithm.

For a block-oriented algorithm we can write down the (approximate) cost of the algorithm
just in terms of the sequence S1, S2, S3, . . . of generated blocks. This is done as follows. For
a block Si, we use C(Si) to denote the cost of the block, which is defined as the length of a
shortest path that connects all requests in Si (note that computing C(Si) is NP-hard). For
two blocks Si and Sj , we define the distance d(Si, Sj) between the two blocks, by

d(Si, Sj) = min
ri∈Si,rj∈Sj

d(ri, rj) ,

i.e., the distance of the closest pair (ri, rj) ∈ Si × Sj .
Suppose that for a request sequence σ a block-oriented algorithm generates a sequence

S1, S2, . . . , S` of blocks. We define the cost ALG(σ) of the algorithm by

ALG(σ) =
∑̀
i=1

C(Si) +
`−1∑
i=1

d(Si, Si+1) . (1)

We refer to the first term in Equation 1 as the block cost ALGbc(σ) of the algorithm, and
to the second term as the connection cost ALGcc(σ). The following lemma shows that this
definition of cost is close to the true cost of the algorithm. The fact that we can specify the
cost of the algorithm just in terms of the generated blocks will greatly simplifies our analysis.

I Lemma 1. We can implement any block-oriented algorithm ALG such that ALG(σ) ≤
ALGtrue(σ) ≤ 3 ALG(σ).

Proof. In the following we describe how to serve all requests in a block Si, and how to move
to the next block Si+1. Suppose the server is initially located at a request from Si (for the
first block S1 we can assume this because according to our model the server may start at an
arbitrary location). Since the requests in block Si are known completely before serving its
first request, we can efficiently compute an MST that covers all requests in Si. The cost of
traversing the elements by following the edges of the MST is at most 2C(Si). Let (ri, ri+1)
denote the request pair in Si × Si+1 with minimum distance. We move, from our current
location (after serving the last request from Si) along a shortest path to ri+1. The cost for
this step is at most C(Si) + d(ri, ri+1).

Repeating the above step for all blocks gives a total true cost ALGtrue(σ) of at most
3 ALGbc(σ) + ALGcc(σ) ≤ 3 ALG(σ). J
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In order to complete the description of the algorithm we need to describe how to choose
a good block of requests for service when the buffer becomes full. For this we need a few
definitions. For a set S of requests, and a value δ, 0 ≤ δ ≤ 1 we define the δ-fraction cost
Cδ(S) of S as the minimum cost for servicing a δ-fraction of the elements from S. Formally,

Cδ(S) = min
U⊆S,|U |≥δ·|S|

C(U) .

Our algorithm StableSet is based on the following notion of a large, stable set. Intuitively,
the cost for servicing the elements of a stable set S does not reduce by too much even if a
large fraction of elements from S is removed.

I Definition 2. A set S of requests is (α, β, γ)-stable if the following holds
1. C1−α(S) ≥ β · C(S) (stability constraint),
2. |S| ≥ γk (size constraint).

In Section 4 we prove the following lemma showing that we can efficiently find stable sets
with good parameters.

I Lemma 3. Let V denote a set of k requests covering at most ` ≤ k distinct locations in
a metric space with aspect ratio ∆. There exists a polynomial time algorithm that finds an
(α, β, γ)-stable subset S ⊆ V with α ≥ 1/(1 + log ∆ + log `), β ≥ 1/8, and γ ≥ 1/e.

With these definitions our algorithm StableSet becomes very simple. When the buffer
becomes full, choose a stable subset S from the elements of the buffer according to the
algorithm implicit in Lemma 3. Then service this block of requests according to the algorithm
in Lemma 1. This is repeated until the end of the input sequence is reached. The elements
that still remain in the buffer form the last block of the algorithm.

3 Analysis

In the following we first describe a general approach to obtain a lower bound on the cost
OPT(σ) of the optimal solution. Let X1, . . . , X` denote subsets of requests from the input
sequence. We say that a subset Xi is partially scheduled by OPT at time t, if the first t
requests in OPT’s output sequence contain at least one but not all elements from Xi. The
following claim gives a lower bound on the optimum cost.

I Claim 4. Let X1, . . . , X` denote (not necessarily disjoint) subsets of requests from the
input sequence, and suppose that at each point in time there are at most s subsets Xi that
are partially scheduled by OPT. Then OPT(σ) ≥ 1

s

∑
i C(Xi).

Proof. We associate an interval [start(i), end(i)] with each set Xi, where start(i) denotes
the position of the first element of Xi that appears in OPT’s output sequence, and end(i)
denotes the position of the last such element. Clearly, the cost of OPT for serving elements
that lie between start(i) and end(i) is at least C(Xi).

We can color the intervals with s colors such that intervals with the same color do not
intersect. This holds because the interval graph corresponding to the set of intervals has a
maximum clique size of s. Such interval graphs can be colored with s colors by a Greedy
algorithm. Since sets Xi from the same color class do not interleave in OPT’s output sequence
the cost for serving all elements of a color-class is at least

∑
i∈I C(Xi), where I denotes the

index set of the color-class. As there must exist a color-class with cost at least 1
s

∑
i C(Xi)

the claim follows. J
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33:6 Reordering Buffer Management in General Metric Spaces

3.1 Analyzing Block Cost
The following lemma gives the bound on the block cost induced by an algorithm that uses
stable sets.

I Lemma 5. Let S1, S2, . . . , S` denote the sequence of blocks generated by a block-oriented
algorithm, where all but the last block are (α, β, γ)-stable, where k ≥ 6

αγ . Then ALGbc(σ) ≤( 6h
αβγk + 1

)
·OPT(σ).

Proof. Let z = dαγk/3e. We obtain a set Xi (i < `) by taking Si and removing the first z
and the last z requests from it that appear in OPT’s output sequence. Then the cardinality
of Xi is at least

|Xi| = |Si| − 2z = |Si| − 2dαγk/3e ≥ |Si| − 2αγk/3− 2 ≥ |Si| − αγk ≥ (1− α)|Si| ,

where the second inequality holds for k ≥ 6
αγ , and the final inequality holds due to the size

constraint for block Si. The stability constraint for Si gives us that C(Xi) ≥ βC(Si).
We show that at most (h+ k)/z sets Xi can be partially scheduled by OPT at any given

time. Fix a time t. We define a partially scheduled set Xi to be of Type I if not all of Si
has already appeared in the input sequence, otherwise, we define it to be of Type II. For
sets of Type II, OPT must hold the last z requests of Si (according to the order given by
OPT’s output sequence) in its buffer, as these have already appeared. For sets of Type I,
ALG must hold the first z requests of Si in its buffer, as these have already appeared but
ALG only starts removing elements from Si after all of Si has appeared. This means there
can at most be k/z partially scheduled sets of Type I, and at most h/z partially scheduled
sets of Type II. Applying Claim 4 gives that

OPT(σ) ≥ z

h+ k

`−1∑
i=1

C(Xi) ≥
αβγk

6h

`−1∑
i=1

C(Si) . (2)

Combining the definition of block-cost, Equation 2, and the fact that OPT(σ) ≥ C(S`) gives

ALGbc(σ) =
∑̀
i=1

C(Si) ≥
( 6h
αβγk

+ 1
)
·OPT(σ) ,

as desired. J

3.2 Analyzing Connection Cost
I Lemma 6. Let S1, S2, . . . , S` denote the sequence of blocks generated by a block-oriented
algorithm, where all but the last block have cardinality at least γk. Then ALGcc(σ) ≤( 5h
γk + 1

)
·OPT(σ).

Proof. We use ALG′cc(σ) to denote the connection cost, where we ignore the cost for
connecting the last two blocks S`−1 and S`. For every pair of consecutive blocks Si, Si+1,
i ≤ `− 2 we generate dγke request-pairs by matching dγke requests from Si to dγke requests
from Si+1 in an arbitrary manner. Let Xr

i , i ∈ {1, . . . , `− 2}, r ∈ {1, . . . , dγke} denote the
request pairs generated this way. We have

I Fact 7.
∑
i,r C(Xr

i ) ≥ γk ·ALG′cc(σ).

To see this, observe that for a request-pair Xr
i we have C(Xr

i ) ≥ d(Si, Si+1), as the request
pair connects sets Si and Si+1. Since for every i we have at least γk requests the fact holds.
The following fact allows us to apply Claim 4.
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I Fact 8. At any given time, there exist at most 5h request pairs from sets Xr
i that are

partially scheduled by OPT.

Proof. Fix a time step t. Suppose we have a request pair that is partially scheduled by OPT
at time t. We say that it is of Type I if it has not been scheduled by ALG at all (by time
step t); it is of Type II if ALG has already scheduled both requests of the pair; and it is of
Type III, otherwise.

There can be at most 2h request pairs of Type II, because OPT must hold the second
request of such a pair in its buffer, and any request can belong to at most two pairs. There
can be at most 2k request pairs of Type I, because ALG must hold the first request of such a
pair in its buffer, as this request has already appeared but ALG has not scheduled it. Finally,
observe that there are at most k pairs that are partially scheduled by ALG at any point in
time. Hence, the total number of partially scheduled requests of Type III is at most k.

Altogether there exists at most 3k + 2h ≤ 5h request pairs that are partially scheduled
by OPT. J

Combining Claim 4 with the above fact gives OPT(σ) ≥ 1
5h
∑
i,r C(Xr

i ). Together with
Fact 7 we obtain

ALGcc(σ) ≤ ALG′cc(σ) + OPT(σ) ≤ 1
γk

∑
i,r

C(Xr
i ) + OPT(σ) ≤

(5h
γk

+ 1
)
·OPT(σ) ,

as desired. The first inequality uses the fact that the cost for connecting the two last blocks
is at most OPT(σ). J

3.3 Proof of the Main Result
Combining the analysis of the block cost and the connection cost gives our main theorem.

I Theorem 9. A block-oriented algorithm that only chooses (α, β, γ)-stable blocks is O(hk ·
(αβγ)−1)-competitive, against an optimal algorithm with buffer size h ≥ k. Using the stable
set computation from Lemma 3 gives a competitive ratio of O(h(log ∆+min{logn+log k})/k)
in a metric space of n points and aspect ratio ∆.

Proof. For the case that k ≥ 6
αγ we can simply combine the bounds in Lemma 5 and

Lemma 6. For the case that k ≤ 6
αγ we use the fact that any algorithm is O(h)-competitive

which gives the result since O(h) = O(hk · k) = O(hk (αβγ)−1). J

4 Finding Stable Sets

In this section we present an algorithm for finding stable sets.

I Lemma 3. Let V denote a set of k requests covering at most ` ≤ k distinct locations in
a metric space with aspect ratio ∆. There exists a polynomial time algorithm that finds an
(α, β, γ)-stable subset S ⊆ V with α ≥ 1/(1 + log ∆ + log `), β ≥ 1/8, and γ ≥ 1/e.

Proof. Set β′ := 1/2 and α := 1/(1 + log2 ∆ + log2 `). For a subset S of requests we define
MST1-α(S) to be a minimum spanning tree among at least d(1− α)|S|e requests from S. It
is NP-hard to find such an MST but there is a 2-approximation algorithm that returns a tree
T1−α that spans d(1− α)|S|e requests and has cost cost(T1−α) ≤ 2 cost(MST1-α(S)) [16].

Our algorithm for finding a stable set proceeds as follows. Initially it sets S := V .
Then it (approximately) checks whether S is stable. For this it computes an approximation
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33:8 Reordering Buffer Management in General Metric Spaces

T1−α to MST1-α(S) according to the algorithm by Garg [16]. Then it checks whether
cost(T1−α) ≥ β′ cost(MST(S)). If this is the case the set S is returned. Otherwise the
algorithm sets S := V (T1−α), where V (T1−α) is the vertex set of tree T1−α, and repeats
the process. In the following we prove that the set S returned by the algorithm fulfills the
desired constraints. We start with the stability constraint:

I Fact 10. For each subset U ⊆ S, |U | ≥ (1− α)|S|, we have C(U) ≥ 1
8 · C(S).

Proof. We have

C(U) ≥ cost(MST1-α(S)) ≥ 1
2 cost(T1−α) ≥ β′

2 cost(MST(S)) ≥ 1
8C(S) .

The first step follows because an optimum path for C(U) is also a spanning tree on at least
d(1−α)|S|e vertices. The second step holds because of the approximation guarantee of Garg’s
algorithm. The third step is due to the termination condition of our procedure for finding a
stable set, and the last step holds because an MST is a 2-approximation for C(S). J

It remains to prove the size constraint. For this we require a bound on the number of
iterations.

I Fact 11. The algorithm performs at most rmax ≤ log2(`∆) + 1 unsuccessful iterations.

Proof. In every unsuccessful iteration the cost of the minimum spanning tree over the set
S decreases by factor β′ = 1/2. The cost can be at most `∆ at the start, and if the cost
drops below one, all remaining requests are located at a single vertex, which leads to a stable
set. J

In every unsuccessful iteration the cardinality of the set S decreases by a (1 − α) factor.
Hence, the final cardinality is at least k(1− α)rmax ≥ k/e. This completes the proof of the
lemma. J

5 Lower Bound for Memory Restricted Algorithms

In [20] Khandekar and Pandit defined a memoryless reordering buffer management algorithm
as an algorithm that bases its decisions only on the content of the buffer and not on some
further information that may be stored in its memory. They showed that such algorithms
are severely limited by giving a lower bounds of Ω(k) on the competitive ratio. In terms of
the aspect ratio their lower bound example gives Ω(log ∆/ log log(∆)).

In this section we extend their result and show that an algorithm that only bases its
decision on the buffer-content and on further k bits of memory may experience a competitive
ratio of Ω(

√
log ∆). This means, if the memory used by the algorithm does not depend on

the aspect ratio, the aspect ratio must appear in the competitive ratio in some form (unless,
of course, the competitive ratio is a trivial bound like O(k)).

Since our block-oriented algorithm only needs to mark all requests that belong to the
current block, it can be implemented with k bits of memory. Hence, one reason that the
aspect ratio appears in our competitive ratio is the structure of the algorithm that makes it
memory-restricted.

I Lemma 12. There exists an input sequence with aspect ratio ∆ ≤ (k(k + 1)2m)k, for
which any deterministic reordering buffer management algorithm with m bits of memory has
competitive ratio Ω(k). For m = k this gives a lower bound of Ω(

√
log ∆) on the competitive

ratio.
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Proof. The instance consists of a metric space over k + 1 vertices {v0, . . . , vk}, where the
distance between two distinct vertices vi and vj is d(vi, vj) = λi + λj . The vertices can be
viewed as the leaves of a star, where the vertex vi is connected to the center of the star via
an edge of length λi. λ will be chosen later.

Let ALGt ∈ {v0, . . . , vk} denote the position of the online server in the metric space after
the t-th request has been served. Initially, there is a request at every vertex vi, i 6= 0, and
we assume contrary to the definition of our model in Section 1.2 that the online algorithm
has to start at vertex v0 (i.e., ALG0 = v0). This slight change in the model does not affect
our asymptotic results. The input sequence is chosen adversarily: after serving the request
at ALGt a new request at ALGt−1 appears. This means that whenever the online algorithm
is making a decision on the next request to serve, there is a request located at every vertex
vi different from the current position of the ALG-server.

There are k + 1 possible states of the buffer; one state for every position of the online
server. In addition, the m bits of memory give rise to 2m memory-states. The state of the
algorithm is a combination of the buffer-state and the memory-state. This means in total
there are z := (k + 1)2m different states that the algorithm may be in. Depending on its
state S the algorithm deterministically chooses a vertex vnext, and serves the request located
at this vertex. Then a new request appears at its previous position, and the algorithm is in
some new state S ′.

We model the servicing of our adversarial sequence σ by a deterministic algorithm, as a
path on a state graph G that contains one vertex for every possible state S, and a directed
edge (S,S ′) if S ′ is the successor state to state S. We assign a weight to every edge in G
as follows. If S corresponds to a state where the server is located at vi and S ′ corresponds
to a state with the server at position vj , we assign a length of d(vi, vj) to edge (S,S ′). By
this definition the servicing of the request sequence corresponds to a path P on the state
graph and the length of this path is the cost of the online algorithm. Note that the path will
actually contain a cycle C, and asymptotically the cost of the online algorithm is determined
by the cost for serving the cycle.

Let vimax denote the vertex with largest index that corresponds to some state along the
cycle, let nmax denote the number of states along the cycle that correspond to this position,
and let nC denote the total number of vertices along the cycle. The cost of the online
algorithm for serving the cycle is at least

costALG(C) ≥ 2nmaxλ
imax ,

as it enters and leaves the vertex vimax at least nmax times. An optimum algorithm can serve
the cycle differently. It only holds requests at location vimax in its buffer. All other requests
are served immediately as they arrive. Then it only has to pay for the edge to vimax every
k-th time. Hence, the optimum (average) cost for serving the cycle is at most

costOPT(C) ≤ 2nCλimax−1 + 2nmaxλ
imax/k .

This gives

costALG(C)
costOPT(C) ≥

nmaxλ
imax

nCλimax−1 + nmaxλimax/k
≥ nmax

z/λ+ nmax/k
≥ nmax

1 + nmax
k = Ω(k) .

Here, we use the fact that nC ≤ z (the number of states) for the second inequality, and we
choose λ = kz for the third inequality. The ratio of the costs on the cycle gives an asymptotic
bound on the competitive ratio, as the cycle dominates the cost. With our choice of λ we get
that the aspect ratio ∆ is ∆ ≤ λk = (k(k + 1)2m)k . J
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A Reasonable Algorithms

We define an algorithm for the reordering buffer management problem to be reasonable if at
any point in time it chooses a request r from the buffer as the next request to be served, and
then moves from its current location to r along a shortest path.

I Lemma 13. Any reasonable algorithm for the reordering buffer management problem has
competitive ratio 2(h+ k).

Proof. Suppose a reasonable online algorithm generates an output sequences s1, s2, . . . , s`.
Its cost ALGtrue(σ) is then

∑`−1
i=1 d(si, si+1). We define sets of consecutive requests: Xi :=

{si, si+1}. In the following we prove that at any point in time there can at most be 2(h+ k)
sets Xi that are partially scheduled by OPT. The result then follows by applying Claim 4.

Fix a time t. We order the elements within a request-pair Xj according to the order in
which the elements are scheduled by OPT, and will refer to them as the first and second
request, respectively. Suppose a request pair Xj , j ≤ t is partially scheduled by OPT at
time t. This means that the second request of the pair must stay in OPT’s buffer between
steps t and t + 1 because both requests have already appeared by time t. Note that this
holds even for the case j = t, because the element st+1 that is output by ALG at time t+ 1
must have appeared on or before time t. Any request is only contained in at most two pairs.
Consequently, there can be at most 2h request pairs Xj , j ≤ t, that are partially scheduled
by OPT at time t.

Now, consider a request pair Xj , j > t that is partially scheduled by OPT at time t.
The first request of the pair is scheduled by OPT at time t or before, but ALG schedules
both requests at time t+ 1 or later. Hence, the first request of the pair must be stored by
ALG between steps t and t+ 1. This means we can have at most 2k request pairs Xj , j > t
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that are partially scheduled by OPT at time t. In total we get at most 2(h+ k) partially
scheduled pairs. Applying Claim 4 gives

OPT(σ) ≥ 1
2(h+ k)

∑
i

C(Xi) ,

and, hence, ALGtrue(σ) ≤ 2(h+ k) ·OPT(σ), as desired. J
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