
On the Value of Penalties in Time-Inconsistent
Planning∗†

Susanne Albers1 and Dennis Kraft2

1 Department of Computer Science, Technical University of Munich, Munich,
Germany
albers@in.tum.de

2 Department of Computer Science, Technical University of Munich, Munich,
Germany
kraftd@in.tum.de

Abstract
People tend to behave inconsistently over time due to an inherent present bias. As this may
impair performance, social and economic settings need to be adapted accordingly. Common
tools to reduce the impact of time-inconsistent behavior are penalties and prohibition. Such tools
are called commitment devices. In recent work Kleinberg and Oren [5] connect the design of a
prohibition-based commitment device to a combinatorial problem in which edges are removed
from a task graph G with n nodes. However, this problem is NP-hard to approximate within a
ratio less than

√
n/3 [2]. To address this issue, we propose a penalty-based commitment device

that does not delete edges, but raises their cost. The benefits of our approach are twofold. On the
conceptual side, we show that penalties are up to 1/β times more efficient than prohibition, where
β ∈ (0, 1] parameterizes the present bias. On the computational side, we improve approximability
by presenting a 2-approximation algorithm for allocating penalties. To complement this result,
we prove that optimal penalties are NP-hard to approximate within a ratio of 1.08192.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases approximation algorithms, behavioral economics, commitment devices,
computational complexity, time-inconsistent preferences

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.10

1 Introduction

Most people make long term plans. They intend to eat healthy, save money, prepare for
exams, exercise regularly and so on. Curiously, the same people often change their plans
at a later point in time. They indulge in fast food, squander their money, fail to study and
skip workouts. Although change may be necessary due to unforeseen events, people often
change their plans even if the circumstances stay the same. This type of time-inconsistent
behavior is a well-known phenomenon in behavioral economics and might impair a person’s
performance in social or economic domains [1, 8].

A sensible explanation for time-inconsistent behavior is that people are present biased
and assign disproportionately greater value to the present than to the future. Consider, for
instance, a scenario in which a student named Alice attends a course over several weeks.
To pass the course, Alice either needs to solve a homework exercise each week or give a

∗ The full version can be found at arXiv:1702.01677 [cs.DS], https://arxiv.org/abs/1702.01677.
† Work supported by the ERC, Grant Agreement No. 691672.

EA
T

C
S

© Susanne Albers and Dennis Kraft;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 10; pp. 10:1–10:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.10
https://arxiv.org/abs/1702.01677
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 On the Value of Penalties in Time-Inconsistent Planning

presentation once. The presentation incurs a onetime effort of 3, whereas each homework
exercise incurs an effort of 1. Furthermore, we assume that Alice immediately fails if she
misses a homework assignment before she has given a presentation. If the course lasts for
more than 3 weeks, she clearly minimizes her effort by giving a presentation in the first week.
Paradoxically, if Alice is present biased, she may solve all homework exercises instead. The
reason for this is the following:

Suppose Alice perceives present effort accurately, but discounts future effort by a factor
of β = 1/3. In the first week Alice must decide between solving the homework exercise or
giving a presentation. Remember that she automatically fails if she does neither of the two.
Clearly, the homework incurs less immediate effort than the presentation. Furthermore, Alice
can still give a presentation later on. Her perceived effort for doing the homework this week
and giving the presentation the week after is 1 + β3 = 2. To Alice this plan appears more
convenient than giving the presentation right away. Consequently, she does the homework.
However, come next week she changes this plan and postpones the presentation once more.
Her reasoning is the same as in the first week. Due to her time-inconsistent behavior, Alice
continues to postpone the presentation and ends up doing all the homework assignments.

Previous Work. Time-inconsistent behavior has been studied extensively in behavioral eco-
nomics. For an introduction to the topic refer for example to [1]. Alice’s scenario demonstrates
how time-inconsistency arises whenever people are present biased. Alice evaluates her prefer-
ences based on a well-established discounting model called quasi-hyperbolic-discounting [7].
As her story shows, quasi-hyperbolic-discounting tempts people to make poor decisions. To
prevent poor decisions, social and economic settings need to be adapted accordingly. De-
pending on the domain, such adaptations might be implemented by governments, companies,
teachers or people themselves. We call these entities designers and their motivation can be
benevolent or self-serving. In either case, the designer’s objective is to commit people to a
certain goal. Their tools are called commitment devices and may include rewards, penalty
fees and strict prohibition [3, 9].

Until recently, the study of time-inconsistent behavior lacked a unifying and expressive
framework. However, groundbreaking work by Kleinberg and Oren closed this gap by reducing
the behavior of a quasi-hyperbolic-discounting person to a simple planning problem in task
graphs [5]. Their framework has helped to identify various structural properties of social and
economic settings that affect the performance of present biased individuals [5, 10]. It has also
been extended to people whose present bias varies over time [4] as well as people who are
aware of their present bias and act accordingly [6]. We will formally introduce the framework
in Section 2. A significant part of Kleinberg and Oren’s work is concerned with the study
of a simple yet powerful commitment device based on prohibition [5]. In particular, they
demonstrate how performance can be improved by removing a strategically chosen set of
edges from the task graph. The drawback of their approach is its computational complexity.
As it turns out, an optimal commitment device is NP-hard to approximate within a ratio less
than

√
n/3, where n denotes the number nodes in the task graph [2]. Currently, the only

known polynomial-time algorithms achieve approximation ratios of 1/β and 1 + β/n, which
in combination yields a 1+

√
n approximation [2]. It should be mentioned that Kleinberg and

Oren’s framework has also been used to analyze reward-based commitment devices [2, 10].
Unfortunately, the computational complexity of such commitment devices does not permit a
polynomial-time approximation within a finite ratio unless P = NP [2].

Our Contribution. To circumvent the theoretical limitations mentioned above, we propose a
natural generalization of Kleinberg and Oren’s work. Instead of prohibition, our commitment

S. Albers and D. Kraft 10:3

device is based on penalty fees, a standard tool in the economic literature [3, 9]. This means
that the designer is free to raise the cost of arbitrary edges in the task graph. We call such
an assignment of penalties a cost configuration. The designer’s objective is to construct cost
configurations that are as efficient as possible.

In Section 3 we conduct a quantitative comparison between the efficiency of penalty fees
and prohibition. Assuming that optimal commitment devices can be computed, we show that
penalties are strictly more powerful than prohibition. In particular, we show that penalties
may outperform prohibition by a factor of 1/β where β parameterizes the present bias. This
result is tight. In Section 4 we investigate the computational complexity of our commitment
device. Using a reduction from 3-SAT, we argue that the construction of an efficient cost
configuration is NP-hard when posed as a decision problem. A generalization of this reduction
proves NP-hardness for approximations within a ratio of 1.08192. Unless P = NP, this
dismisses the existence of a polynomial-time approximation scheme. While analyzing the
complexity of our commitment device we also point to a remarkable structural property.
More specifically, we show that every cost configuration admits another cost configuration of
comparable efficiency that assigns its cost entirely along a single path. Assuming that the
path is known in advance, we provide an algorithm for constructing such a cost configuration
in polynomial-time. This result is important for the design of exact algorithms as it reduces
the search space to the set of paths through the task graph. Finally, Section 5 introduces
a 2-approximation algorithm for our commitment device. This is our main result and a
considerable improvement to the

√
n/3 approximability of the prohibition-based commitment

device [2]. It is interesting to note that the 1/β approximation algorithm of [2] can also be
applied to penalty fees. As a result, our penalty-based approach is particularly interesting
for highly present biased agents with β < 1/2.

2 The Formal Framework

In the following, we introduce Kleinberg and Oren’s framework [5]. Let G = (V,E) be a
directed acyclic graph with n nodes that models a given long-term project. The edges of
G correspond to the tasks of the project and the nodes represent the states. In particular,
there exists a start state s and a target state t. Each path from s to t corresponds to a
valid sequence of tasks to complete the project. The effort of a specific task is captured by a
non-negative cost c(e) assigned to the associated edge e.

To complete the project, an agent with a present bias of β ∈ (0, 1] incrementally constructs
a path from s to t as follows: At any node v different from t, the agent evaluates her lowest
perceived cost. For this purpose she considers all paths P leading from v to t. However, she
only anticipates the cost of the first edge of P correctly; all other edges of P are discounted by
her present bias. More formally, let d(w) denote the cost of a cheapest path from node w to t.
The agent’s lowest perceived cost at v is defined as ζ(v) = min{c(v, w) + βd(w) | (v, w) ∈ E}.
We assume that she only traverses edges (v, w) that minimize her anticipated cost, i.e. edges
for which c(v, w) + βd(w) = ζ(v). Ties are broken arbitrarily. For convenience, we define
the perceived cost of (v, w) as η(v, w) = c(v, w) + βd(w). The agent is motivated by an
intrinsic or extrinsic reward r collected at t. As she receives this reward in the future, she
perceives its value as βr at each node different from t. When located at v, she compares her
lowest perceived cost to the anticipated reward and continues moving if and only if ζ(v) ≤ βr.
Otherwise, if ζ(v) > βr, we assume she abandons the project. We call G motivating if she
does not abandon while constructing her path from s to t. Note that in some graphs the
agent can take several paths from s to t due to ties between incident edges. In this case, G
is considered motivating if she does not abandon on any of these paths.

ICALP 2017

10:4 On the Value of Penalties in Time-Inconsistent Planning

For the sake of a clear presentation, we will assume throughout this work that each node
of G is located on a path from s to t. This assumption is sensible for the following reason:
Clearly, the agent can only visit nodes that are reachable from s. Furthermore, she is not
willing to enter nodes that do not lead to the reward. Consequently, only nodes that are on
a path from s to t are relevant to her behavior. Note that all nodes that do not satisfy this
property can be removed from G in a simple preprocessing step.

To illustrate the model, we revisit Alice’s scenario from Section 1. Assume that the course
takes m weeks. We represent each week i by a distinct node vi and set s = v1. Furthermore,
we introduce a target node t that marks the passing of the course. Each week i < m Alice
can either give a presentation or proceed with the homework. We model the first case by an
edge (vi, t) of cost 3 and the latter case by an edge (vi, vi+1) of cost 1. In the last week, i.e.
i = m, Alice’s only sensible choice is to do the homework. Therefore, edge (vm, t) is of cost
1. Recall that Alice’s present bias is β = 1/3. Moreover, assume that her intrinsic reward for
passing is r = 6. For i < m her perceived cost of the edges (vi, t) is η(vi, t) = c(vi, t) = 3.
As this is less than her perceived reward, which is β6 = 2, she is never motivated to give
a presentation right away. However, her perceived cost of the edges (vi, vi+1) is at most
η(vi, vi+1) ≤ c(vi, vi+1) + βc(vi+1, t) ≤ 2. This matches her perceived reward. As a result,
she walks from v1 to vm along the edge (vi, vi+1). Once she reaches vm she traverses the
only remaining edge for a perceived cost of η(vm, t) = c(vm, t) = 1 and passes the course.
This matches our analysis from Section 1.

3 Prohibition versus Penalties

In this section we demonstrate how the designer can modify a given project to help the agent
reach t. For this purpose, the designer may have several commitment devices at her disposal.
A straightforward approach is to increase the reward that the agent collects at t. Although
this may keep the agent from abandoning the project prematurely, it has no influence on the
path taken by the agent. Furthermore, increasing the reward may be costly for the designer.
As a result, the designer has two conflicting objectives. On the one hand, she must ensure
that the agent reaches t. On the other hand, she needs to minimize the resources spent. To
deal with this dilemma, Kleinberg and Oren allow the designer to prohibit a strategically
chosen set of tasks [5]. This commitment device is readily implemented in their framework.
In fact, it is sufficient to remove all edges of prohibited tasks. The result is a subgraph G′
that may significantly reduce the reward required to motivate the agent. Unfortunately, an
optimal subgraph G′ is NP-hard to approximate within a ratio less than

√
n/3 [2].

To circumvent this theoretical limitation, we propose a different approach. Instead of
prohibiting certain tasks we allow the designer to charge penalty fees. Such fees could be
implemented in several ways; for instance in the form of donations to charity. Our only
assumption is that the designer does not benefit from the fees, i.e. there is no incentive to
maximize the fees payed by the agent. Similar to the prohibition-based commitment device,
our commitment device is readily implemented in Kleinberg and Oren’s framework. The
designer simply assigns a positive extra cost c̃(e) to the desired edges e. The new cost of e
is equal to c(e) + c̃(e). We call c̃ a cost configuration. Applying a cost configuration to G
yields a new task graph with increased edge cost. All concepts of the original framework
carry over immediately. Sometimes it will be necessary to compare different commitment
devices with each other. To clarify which commitment device we are talking about, we use
the following notation whenever necessary: If we consider a subgraph G′, we write dG′ , ηG′

and ζG′ . Similarly, if we consider a cost configuration c̃, we write dc̃, ηc̃ and ζc̃. Moreover,
we denote the trivial cost configuration, i.e. the one that assigns no extra cost, by 0̃.

S. Albers and D. Kraft 10:5

s
v2 v3 v2m

t

w

. . .

. . .

(1− β)ε2 (1− β)ε2 (1− β)ε2

0 0 0 0 1/β

Figure 1 Graph maximizing the ratio between the efficiency of subgraphs and cost configurations.

It is interesting to think of penalty fees as a natural generalization of prohibition. This
becomes particularly apparent in the context of Kleinberg and Oren’s framework as we can
recreate the properties of any subgraph G′ by a cost configuration c̃. For this purpose, it is
sufficient to assign an extra cost of c̃(e) = r+1 to any edge e not contained in G′. As a result,
the agent’s perceived cost of paths along e certainly exceeds her perceived reward. However,
this means that e is irrelevant to the agent’s planning and could be deleted from G altogether.
Consequently, penalties are at least as powerful as prohibition. But how much more efficient
are penalties in the best case? As the following theorem suggests, cost configurations may
outperform subgraphs by a factor of almost 1/β.

I Theorem 1. The ratio between the minimum reward r that admits a motivating subgraph
and the reward q of a motivating cost configuration is at most 1/β. This bound is tight.

Proof. To see that r/q ≤ 1/β, let G be an arbitrary task graph and consider a subgraph G′
whose only edges are those of a cheapest path P from s to t. Recall that d(s) denotes the cost
of P . In G′ the agent’s only choice is to follow P . Because her perceived cost is a discounted
version of the actual cost, she never perceives a cost greater than d(s) in G′. Consequently,
d(s)/β is an upper bound on r. Next, consider an arbitrary cost configuration c̃. As c̃ only
increases edge cost, the agent’s lowest perceived cost at s is at least βd(s). We conclude that
q must be at least d(s) to be motivating. This yields the desired ratio.

It remains to show the tightness of the result. For this purpose, we construct a task
graph G such that: (a) The minimum reward that admits a motivating subgraph is 1/β2.
(b) There exists a cost configuration that is motivating for a reward of (1 + ε)/β, where ε is
a positive value strictly less than 1. Our construction is a modified version of Alice’s task
graph. Let m = dβ−2(1− β)−1ε−2e and assume that G contains a path v1, . . . , v2m+1 whose
edges are all of cost (1− β)ε2. We call this the main path and set s = v1 and t = v2m+1. In
addition to the main path, each vi with i ≤ 2m has a shortcut to t via a common node w.
The edges (vi, w) are free, whereas (w, t) is of cost 1/β. Figure 1 illustrates the structure
of G. Note that the drawing merges some of the edges (vi, w) for a concise representation.

We proceed to argue that G satisfies (a). For the sake of contradiction, assume the
existence of a subgraph G′ that is motivating for a reward r < 1/β2. In this case the
agent must not take shortcuts as her perceived cost at w exceeds her perceived reward.
Therefore, she must follow the main path. In particular, she must visit each node vi on the
first half of the path, i.e. i ≤ m + 1. At each of these nodes, her lowest perceived cost is
realized along the edge (vi, vi+1). Essentially, there are two ways she can come up with this
cost. First, she might plan to take a shortcut at a later point in time. As a result, we get
ηG′(vi, vi+1) ≥ c(vi, vi+1) + βc(w, t) > 1. Secondly, she might plan to stay on the main path.
In this case she must traverse at least m edges, each of which contributes β(1− β)ε2 or more
to ηG′(vi, vi+1). Consequently, we get ηG′(vi, vi+1) ≥ mβ(1− β)ε2 ≥ 1/β ≥ 1. Either way
her perceived cost for taking the main path is at least 1. As this tempts her to take the
shortcut at vi, all of the first m+ 1 shortcuts must be interrupted in G′. This means she
must walk along at least m edges of the main path before taking the first shortcut. As a

ICALP 2017

10:6 On the Value of Penalties in Time-Inconsistent Planning

Algorithm 1: PathAndFence
Input: Task graph G, present bias β, path P = v1, . . . , vm, positive value ε
Output: Cost configuration c̃

1 c̃← 0̃;
2 for i from m− 1 to 1 do
3 foreach w ∈ {w′ | (vi, w′) ∈ E} do
4 if w 6= vi+1 then c̃(vi, w)← max{0, ηc̃(vi, vi+1)− ηc̃(vi, w) + βε/(m− 2)};

5 return c̃;

result, her lowest perceived cost at v1 is at least ζG′(v1) ≥ mβ(1 − β)ε2 ≥ 1/β. This is a
contradiction to the assumption that r is motivating.

Next we show how to construct a cost configuration c̃ that satisfies (b). For this purpose it
is sufficient to add an extra cost of ε to all edges (vi, w). To upper bound the agent’s perceived
cost of (vi, vi+1), assume she plans to take a shortcut in the next step, i.e. at vi+1. For
i < 2m we get ηc̃(vi, vi+1) ≤ c(vi, vi+1) + β(c̃(vi+1, w) + c(w, t)) = (1− β)ε2 + βε+ 1 < 1 + ε.
In the special case of i = 2m, the inequality ηc̃(vi, vi+1) < 1 + ε is still satisfied, this time via
the direct edge (v2m, t). In contrast, the agent’s perceived cost of an immediate shortcut is
ηc̃(vi, t) = ε+ βc(w, t) = 1 + ε for all i ≤ 2m. Therefore, she is never tempted to divert from
the main path. Furthermore, a reward of q = (1+ε)/β is sufficient to keep her motivated. J

4 Computing Motivating Cost Configurations

We now turn our attention to the computational aspects of designing efficient penalty fees.
In this section, we assume that the agent’s reward is fixed to some value r > 0. Our goal is
to compute cost configurations that are motivating for r whenever they exist. Similar to the
prohibition-based commitment device [2], this task is NP-hard whenever the agent is present
biased, i.e. β 6= 1. We will prove this claim at the end of the section. But first, assume that
we already have partial knowledge of the solution. More precisely, assume we know one of
the paths the agent might take in a motivating cost configuration provided a motivating
cost configuration exists. We call this path P . Based on P , Algorithm 1 constructs a cost
configuration c̃ that is motivating for a slightly larger reward r + ε.

The basic idea of Algorithm 1 is simple. Starting with vm−1, it considers all nodes vi of P in
reverse order. For each vi it assigns an extra cost of max{0, ηc̃(vi, vi+1)−ηc̃(vi, w)+βε/(m−2)}
to the edges (vi, w) that leave P , i.e. edges different from (vi, vi+1). As a result, the agent’s
perceived cost of (vi, w) is greater than that of (vi, vi+1) by at least βε/(m−2). Consequently,
she has no incentive to divert from P at vi. Since the algorithm runs in reverse order, extra
cost assigned in iteration i has no effect on the agent’s behavior at later nodes, i.e. nodes
vj with j > i. Figuratively speaking, the algorithm builds a fence of penalty fees along P
preventing the agent from leaving P . For this reason, we call the algorithm PathAndFence.
As the next proposition suggests, cost configurations of this particular fence structure can
achieve almost the same efficiency as any other cost configuration. Due to space constraints,
refer to the full version of this work for a proof.

I Proposition 2. Let P be the agent’s path from s to t with respect to a cost configuration
c̃∗ that is motivating for a reward r. PathAndFence constructs a cost configuration c̃ that
is motivating for a reward of r + ε, where ε is an arbitrary small but positive quantity.

Proposition 2 has some interesting implications. The first one is of conceptual nature.

S. Albers and D. Kraft 10:7

Note that PathAndFence constructs a cost configuration that never actually charges the
agent any extra cost. This suggests the existence of an efficient penalty-based commitment
device that does not require the designer to enforce penalties. The mere threat of repercussions
appears to be sufficient. The second implication is computational. Clearly, PathAndFence
runs in polynomial-time with respect to n. In particular, the number of iterations does
not depend on the choice of ε. Consequently, PathAndFence can be combined with an
exhaustive search algorithm that considers all paths from s to t to search for a motivating
cost configuration. Although the number of such paths can be exponential in n, this approach
still reduces the size of the search space considerably. Finally, it should be noted that a
similar result for the prohibition-based commitment device is unlikely to exist. The reason is
that subgraphs remain hard to approximate even if the agent’s optimal path is known [2],
indicating a favorable computational complexity for the design of penalty fees. Of course there
is another potential source of hardness: the computation of P . To prove that this is a limiting
factor, we introduce the decision problem MOTIVATING COST CONFIGURATION:

I Definition 3 (MCC). Given a task graph G, a reward r > 0 and a present bias β ∈ (0, 1],
decide the existence of a motivating cost configuration.

We propose a reduction from 3-SAT to show that MCC is NP-complete for arbitrary
β ∈ (0, 1). At a later point we will use the same reduction to establish a hardness of
approximation result.

I Theorem 4. MCC is NP-complete for any present bias β ∈ (0, 1).

Proof. According to [2], whether or not a given task graph is motivating for a fixed reward
can be verified in polynomial-time. Of course, this remains valid if the edges are assigned
extra cost. Consequently, any motivating cost configuration is a suitable certificate for a
“yes”-instance of MCC. We conclude that MCC is in NP. In the following, we present a
reduction from 3-SAT to show that MCC is also NP-hard. This establishes the theorem.

Let I be an arbitrary instance of 3-SAT consisting of ` clauses c1, . . . , c` over m variables
x1, . . . , xm. We construct a MCC instance J such that its task graph G admits a motivating
cost configuration for a reward of r = 1/β if and only if I has a satisfying variable assignment.
Figure 2 depicts G for a small sample instance of I. In general, G consists of a source s, a
target t and five nodes u1, . . . , u5. Depending on I, G also contains some extra nodes. For
each variable xk, there are two variable nodes wk,T and wk,F . The idea is to interpret xk as
true whenever the agent visits wk,T and as false whenever she visits wk,F . As a result, the
agent’s walk through G yields a variable assignment τ . Furthermore, for each clause ci there
is a literal node vi,j corresponding to the j-th literal of ci. Our goal is to construct G in such
a way that every motivating cost configuration guides the agent along literal nodes that are
satisfied with respect to τ .

All nodes vi,j and wk,y are connected via so-called forward edges. More specifically, for
all 1 ≤ i < ` and 1 ≤ j, j′ ≤ 3 there is a forward edge from vi,j to vi+1,j′ . Similarly, there
is a forward edge from wk,y to wk+1,y′ for all 1 ≤ k < m and y, y′ ∈ {T, F}. We also have
forward edges from s to each v1,j , from each v`,j to u1, from u2 to each w1,y and from each
wm,y to u3. For the sake of readability, some forward edges are merged in Figure 2. The
price of each forward edge is (1− β)3 − ε, where the encoding length of β is assumed to be
polynomial in I. Furthermore, ε denotes a small but positive quantity such that

ε < min
{

(1− β)2,
β(1− β)3

1 + β
,
β(1− β)2

1 + β

}
.

ICALP 2017

10:8 On the Value of Penalties in Time-Inconsistent Planning

s

v1,1 v1,2 v1,3 v2,1 v2,2 v2,3 v3,1 v3,2 v3,3

w1,T w1,F w2,T w2,F w3,T w3,F

u1u2

u3 u4 u5
t

(1− β)3 − ε (1− β)3 − ε (1− β)3 − ε

(1− β)3 − ε(1− β)2(1− β)3 − ε

(1− β)3 − ε (1− β)3 − ε (1− β)3 − ε (1− β)2 (1− β) 1

Figure 2 Reduction from the 3-SAT instance: (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x3).

In addition to the forward edges, there are three types of shortcuts. The first type, which is
depicted as dashed edges in Figure 2, connects each literal node vi,j to a distinct variable
node via a single edge of cost (1−β)2. If the j-th literal of ci is equal to xk, the shortcut goes
to wk,F . Otherwise, if the literal is negated, i.e. x̄k, the shortcut goes to wk,T . The second
type of shortcut goes from u2 to t along a single edge of cost 2− β. For clear representation,
this shortcut is omitted in Figure 2. The third type of shortcut connects each variable node
wk,y to t via a distinct intermediate node. The first edge is free while the second costs 2− β.
Again, shortcuts of this type are omitted in Figure 2 to keep the drawing simple. Finally,
there are four more edges (u1, u2), (u3, u4), (u4, u5) and (u5, t) of cost (1 − β)2, (1 − β)2,
1− β and 1 respectively. Note that G is acyclic and its encoding length is polynomial in I.

To establish the theorem, we must show that I has a satisfying variable assignment if
and only if J has a motivating cost configuration. A detailed argument is described in the
full version of this work. At this point we only sketch the main ideas. For this purpose let c̃
be a cost configuration that is motivating for a reward of 1/β and let P be the agent’s path
through G with respect to c̃. Note that P cannot contain shortcuts of the second or third
type as their edges are too expensive. Furthermore, P cannot contain a shortcut of the first
type because the agent either perceives it as too expensive or is tempted to enter a shortcut of
the third type immediately afterwards. As a result, P contains exactly one of the two nodes
wk,T and wk,F for each variable xk. Let τ : {x1, . . . , xm} → {T, F} be the corresponding
variable assignment. To keep the agent on P , c̃ must assign extra cost to all shortcuts that
start at a variable node satisfied by τ . However, this raises the perceived cost of all paths via
literal nodes not satisfied by τ to values that are not motivating. Consequently, P cannot
contain such literal nodes. But P must contain exactly one literal node of each clause because
P takes no shortcuts. This means that τ satisfies at least one literal in each clause and is
therefore a feasible solution of I. Conversely, whenever I has a feasible solution τ , we can
construct a motivating cost configuration c̃ as follows: First, assign an appropriate extra cost,
e.g. (1− β)2, to the shortcuts of type three starting at the variable nodes wk,τ(xk). Secondly,
block the forward edges into the variable nodes wk,τ(x̄k) with high extra cost of e.g. 1. J

5 Approximating Motivating Cost Configurations

The previous section suggests that an optimal assignment of penalty fees is NP-hard to
compute. This section therefore focuses on an optimization version of the problem. Our goal
is to construct cost configurations that require the designer to raise the reward at t as little

S. Albers and D. Kraft 10:9

s
v1 v2 v3 v4

t

w

(1− β)3 (1− β)3 (1− β)2 1− β 1

(1− β)2 2− β

Figure 3 Task graph with no optimal cost configuration.

Algorithm 2: MinMaxPathApprox
Input: Task graph G, present bias β
Output: Cost configuration c̃

1 P ← minmax path from s to t with respect to η0̃;
2 %← max{η0̃(e) | e ∈ P};
3 foreach v ∈ V \ {t} do
4 ς(v)← successor node of v on a cheapest path from v to t;
5 foreach (v, w) ∈ E do
6 if (v, w) ∈ P ∨ (ς(v) = w ∧ v /∈ P) then c̃(v, w)← 0;
7 else if (v, w) 6= P ∧ ς(v) 6= w then c̃(v, w)← 3%/β;
8 else
9 P ′ ← v, ς(v), ς(ς(v)), . . . , t;

10 u← first node of P ′ different from v that is also a node of P ;
11 e← most expensive edge of P ′, between v and u;
12 c̃(v, w)← c(e);

13 return c̃;

as possible. However, before we provide a formal definition of the problem we should consider
a curious technical detail; namely, not all task graphs admit an optimal cost configuration.

Consider, for instance, the task graph in Figure 3. At v1 the agent is indifferent between
the edges (v1, v2) and (v1, w). In both cases her perceived cost is 1. If she chooses (v1, w),
she faces a perceived cost of 2 − β at w. Conversely, if she chooses (v1, v2), she perceives
a cost of 1 at v2, v3 and v4. Assuming that β < 1, (v1, v2) is the better choice. To break
the tie between (v1, w) and (v1, v2) we must place a positive extra cost of ε onto the upper
path. However, when located at s the agent’s perceived cost of the upper path is 1 + βε. In
contrast, her perceived cost of the lower path is 1 + β(1− β)3. Assuming that ε < (1− β)3,
she prefers the upper path. Consequently, we can construct a cost configuration that is
motivating for a reward arbitrarily close to 1/β, but no cost configuration is motivating for a
reward of exactly 1/β. To account for the potential lack of an optimal solution, we compare
our results to the infimum of all rewards that admit a motivating cost configuration. The
optimization problem MCC-OPT is defined accordingly:

I Definition 5 (MCC-OPT). Given a task graph G and a present bias β ∈ (0, 1), determine
the infimum of all rewards for which a motivating cost configuration exists.

We are now ready to introduce Algorithm 2. This algorithm enables us to construct
cost configurations that approximate MCC-OPT within a factor of 2. At a high level, the
algorithm proceeds in two phases. First, it computes a value % such that %/β is a lower
bound for any reward that admits a motivating cost configuration. Secondly, it constructs
a cost configuration c̃ that is motivating for a reward of 2%/β. This yields the promised
approximation ratio of 2.

ICALP 2017

10:10 On the Value of Penalties in Time-Inconsistent Planning

For a more detailed discussion of Algorithm 2 assume that each edge e is labeled with
its perceived cost η0̃(e). Furthermore, let c̃′ be an arbitrary cost configuration and P ′ the
agent’s corresponding path from s to t. Our goal is to lower bound the minimum reward that
is motivating for c̃′ by some value %/β. For this purpose, it is instructive to observe that any
motivating reward must be at least max{ηc̃′(e) | e ∈ P ′}/β ≥ max{η0̃(e) | e ∈ P ′}/β. Since
P ′ can be an arbitrary path from s to t, we set

% = min
{

max{η0̃(e) | e ∈ P}
∣∣ P is a path from s to t

}
.

In other words, % is the maximum edge cost of a minmax path P from s to t with respect to η0̃.
Note that P can be computed in polynomial-time by adding the edges of G in non-decreasing
order of perceived cost to an initially empty set E′ until s and t become connected for the
first time. Any path from s to t that only uses edges of E′ is a suitable minmax path.

We continue with the construction of c̃. To facilitate this task, Algorithm 2 sets up a
cheapest path successor relation ς. More precisely, it assigns a distinct successor node ς(v)
to each v ∈ V \ {t}. The successor is chosen in such a way that (v, ς(v)) is the initial edge
of a cheapest path from v to t. Since we may assume that t is reachable from each node
of G, all v 6= t must have at least one suitable successor. By construction of ς, any path
P ′ = v, ς(v), ς(ς(v)), . . . , t is a cheapest path from v to t. We call P ′ the ς-path of v.

Once ς has been created, Algorithm 2 starts to assign an appropriate extra cost to all
edges of G. The idea behind this assignment is to either keep the agent on P or guide her
along a suitable ς-path. For this reason, we also call the algorithm MinMaxPathApprox.
While iterating through the edges (v, w) of G the algorithm distinguishes between three
types of edges: First, (v, w) might be an edge of P or an edge of a ς-path. In the latter
case v must not be a node of P . Any (v, w) that satisfies these requirements is an edge we
want the agent to traverse or use in her plans. Consequently, (v, w) is assigned no extra cost.
Secondly, (v, w) might neither be an edge of P nor of a ς-path. Since we do not want the
agent to traverse or plan along such an edge, the algorithm assigns an extra cost of 3%/β
to (v, w). This is sufficiently expensive for the agent to lose interest in (v, w) provided that
the reward is 2%/β. Thirdly, (v, w) might not be an edge of P but of a ς-path such that v
is a node of P . This is the most involved case. To find an appropriate cost for (v, w), the
algorithm considers the ς-path P ′ of v. Let u be the first common node between P and P ′
that is different from v. Because P and P ′ both end in t, such a node must exist. Moreover,
let e be the most expensive edge of P ′ between v and u. The algorithm assigns an extra cost
of c(e) to (v, w). As we will show in Theorem 6, this cost is either high enough to keep the
agent on P or she travels to u along P ′ without encountering edges that are too expensive.

Clearly, Algorithm 2 can be implemented to run in polynomial-time with respect to
the size of G. It remains to show that the algorithm returns a cost configuration c̃ that
approximates MCC-OPT within a factor of 2.

I Theorem 6. MinMaxPathApprox has an approximation ratio of 2.

Proof. Recall that % denotes the maximum perceived edge cost along the minmax path P .
From the above description of MinMaxPathApprox, it should be evident that %/β is a
lower bound on the minimum motivating reward of any cost configuration. To prove the
theorem, we need to show that the algorithm returns a cost configuration c̃ that is motivating
for a reward of 2%/β.

As our first step we argue that the cost of a cheapest path from any node v to t with
respect to c̃ is at most twice the cost of a cheapest path with respect to 0̃. More formally,
we prove that dc̃(v) ≤ 2d0̃(v). For this purpose let P ′ be the ς-path of v. By construction

S. Albers and D. Kraft 10:11

of ς, P ′ is a cheapest path from v to t. It is crucial to observe that MinMaxApprox only
assigns extra cost to an edge (v′, ς(v′)) of P ′ if v′ is located on P . Consequently, there is
at most one edge with extra cost between any two consecutive intersections of P and P ′.
Furthermore, this extra cost is equal to the cost of an edge on P ′ between v′ and the next
intersection of P and P ′. Therefore, each edge of P ′ can contribute at most once to the total
extra cost assigned to P ′. This means that the price of P ′ with respect to c̃ is at most twice
the price of P ′ with respect to 0̃. Because the price of P ′ is an upper bound for dc̃(v), we
have shown that dc̃(v) ≤ 2d0̃(v).

We proceed to investigate the agent’s walk through G. Our goal is to show that her
lowest perceived cost is at most 2% at every node v on her way. This establishes the theorem.
Our analysis is based on the following case distinction: First, assume that v is located on P .
The immediate successor of v on P is denoted by w. Remember that c̃ assigns no extra cost
to (v, w). Using the result from the previous paragraph, we get

ζc̃(v) ≤ ηc̃(v, w) = c(v, w) + βdc̃(w) ≤ c(v, w) + β2d0̃(w) ≤ 2
(
c(v, w) + βd0̃(w)

)
= 2η0̃(v, w) ≤ 2%.

The last inequality is valid by definition of %.
Secondly, assume that v is not located on P and consider the last node v′ on P the agent

visited before v. Because she traversed (v′, ς(v′)) to get to v, we know that ηc̃(v′, ς(v′)) ≤ 2%
and dc̃(ς(v′)) ≤ 2%/β. We also know that she faces an extra cost of 3%/β whenever she tries
to leave the ς-path P ′ of v′ before the next intersection of P and P ′. Since she is not willing
to pay this much, v must be located on P ′. In particular, all paths from ς(v′) to t either
visit ς(v) or cross an edge that charges an extra cost of 3%/β. Consequently, a cheapest
path from ς(v′) to t with respect to c̃ costs at least dc̃(ς(v′)) ≥ min{3%/β, dc̃(ς(v))}. As
dc̃(ς(v′)) ≤ 2%/β, this implies that dc̃(ς(v′)) ≥ dc̃(ς(v)). Our proof is almost complete. For
the final part, recall that (v, ς(v)) is located on P ′ between v′ and the next intersection of P
and P ′. By construction of c̃ we have c̃(v′, ς(v′)) ≥ c(v, ς(v)). Furthermore, (v, ς(v)) has no
extra cost. Putting all the pieces together we get

ζc̃(v) ≤ ηc̃(v, ς(v)) = c(v, ς(v)) + βdc̃(ς(v)) ≤ c̃(v′, ς(v′)) + βdc̃(ς(v′))
≤ c(v′, ς(v′)) + c̃(v′, ς(v′)) + βdc̃(ς(v′)) = ηc̃(v′, ς(v′)) ≤ 2%. J

To complement this result, we argue that MCC-OPT is NP-hard to approximate within
any ratio of 1 + β(1 − β)4 or less. Choosing β = 1/5 maximizes this term and yields
inapproximability for constant ratios of 1.08192 or less. In particular, assuming that P 6= NP
this rules out the existence of a polynomial-time approximation scheme.

I Theorem 7. MCC-OPT is NP-hard to approximate within a ratio less or equal to 1.08192.

Proof. To establish the theorem, a reduction similar to the one from Theorem 4 can be used.
In fact, given a 3-SAT instance I we can construct the corresponding MCC-OPT instance J
the same way as in the proof of Theorem 4. The only difference is that our choice of ε is
slightly more restrictive as we require

ε < min
{
β(1− β)3, β(1− β)2(2− β), β

2(1− β)3

1 + β
,
β2(1− β)2(2− β)

1 + β

}
.

The proof can be structured around the following properties of J : (a) If I has a solution,
J admits a motivating cost configuration for a reward of 1/β. (b) If I has no solution, J
admits no motivating cost configuration for a reward of (1+β(1−β)4)/β or less. Consequently,

ICALP 2017

10:12 On the Value of Penalties in Time-Inconsistent Planning

any algorithm that approximates MCC-OPT within a ratio of 1 + β(1− β)4 or less must also
solve I. To maximize this ratio we choose β = 1/5 and obtain the desired approximability
bound, namely 1 + (1 − 1/5)4/5 = 1.08192. All that remains to show is that J indeed
satisfies (a) and (b). The correctness of (a) is an immediate consequence of the proof of
Theorem 4. A detailed proof of (b) can be found in the full version of this work. J

6 Conclusion

In this work we have used Kleinberg and Oren’s graph theoretic framework [5] to provide
a systematic analysis of a penalty-based commitment device. We have shown that penalty
fees are strictly more powerful than prohibition. In particular, we have shown that penalties
may outperform prohibition by a factor of up to 1/β. We have also been able to obtain
some of the first positive computational results for the algorithmic design of commitment
devices. We have given a polynomial-time algorithm to construct penalty fees that match
an optimal solution by a factor of 2. This is significant progress when compared to the
prohibition-based commitment device, whose approximation is known to be NP-hard within
a factor less than

√
n/3 [2]. Due to its versatility, expressiveness and favorable computational

properties, we believe that our penalty-based commitment device will prove to be a valuable
tool for addressing time-inconsistent behavior in complex social and economic settings.

References
1 George A. Akerlof. Procrastination and obedience. The American Economic Review,

81(2):1–19, 1991.
2 Susanne Albers and Dennis Kraft. Motivating time-inconsistent agents: A computational

approach. In Proceedings of the 12th Conference on Web and Internet Economics, pages
309–323. Springer, 2016.

3 Gharad Bryan, Dean Karlan, and Scott Nelson. Commitment devices. Annual Review of
Economics, 2:671–698, 2010.

4 Nick Gravin, Nicole Immorlica, Brendan Lucier, and Emmanouil Pountourakis. Procrastin-
ation with variable present bias. In Proceedings of the 17th ACM Conference on Economics
and Computation, pages 361–361, New York, NY, USA, 2016. ACM.

5 Jon Kleinberg and Sigal Oren. Time-inconsistent planning: A computational problem in
behavioral economics. In Proceedings of the 15th ACM Conference on Economics and
Computation, pages 547–564, New York, NY, USA, 2014. ACM.

6 Jon Kleinberg, Sigal Oren, and Manish Raghavan. Planning problems for sophisticated
agents with present bias. In Proceedings of the 17th ACM Conference on Economics and
Computation, pages 343–360, New York, NY, USA, 2016. ACM.

7 David Laibson. Golden eggs and hyperbolic discounting. The Quarterly Journal of Eco-
nomics, pages 443–477, 1997.

8 Ted O’Donoghue and Matthew Rabin. Doing it now or later. The American Economic
Review, 89:103–124, 1999.

9 Ted O’Donoghue and Matthew Rabin. Incentives and self control. Advances in Economics
and Econometrics: The 9th World Congress, 2:215–245, 2006.

10 Pingzhong Tang, Yifeng Teng, Zihe Wang, Shenke Xiao, and Yichong Xu. Computational
issues in time-inconsistent planning. In Proceedings of the 31st AAAI Conference on Arti-
ficial Intelligence, 2017. To appear.

	Introduction
	The Formal Framework
	Prohibition versus Penalties
	Computing Motivating Cost Configurations
	Approximating Motivating Cost Configurations
	Conclusion

