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Abstract
We consider 5the problem of covering a set of vectors of a given finite dimensional linear space
(vector space) by a subspace generated by a set of vectors of minimum size. Specifically, we study
the Space Cover problem, where we are given a matrix M and a subset of its columns T ; the
task is to find a minimum set F of columns of M disjoint with T such that that the linear span
of F contains all vectors of T . This is a fundamental problem arising in different domains, such
as coding theory, machine learning, and graph algorithms.

We give a parameterized algorithm with running time 2O(k) · ||M ||O(1) solving this problem
in the case when M is a totally unimodular matrix over rationals, where k is the size of F . In
other words, we show that the problem is fixed-parameter tractable parameterized by the rank
of the covering subspace. The algorithm is “asymptotically optimal” for the following reasons.

Choice of matrices: Vector matroids corresponding to totally unimodular matrices over ration-
als are exactly the regular matroids. It is known that for matrices corresponding to a more
general class of matroids, namely, binary matroids, the problem becomes W[1]-hard being
parameterized by k.

Choice of the parameter: The problem is NP-hard even if |T | = 3 on matrix-representations of
a subclass of regular matroids, namely cographic matroids. Thus for a stronger parameteriz-
ation, like by the size of T , the problem becomes intractable.

Running Time: The exponential dependence in the running time of our algorithm cannot be
asymptotically improved unless Exponential Time Hypothesis (ETH) fails.

Our algorithm exploits the classical decomposition theorem of Seymour for regular matroids.
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1 Introduction

We consider the fundamental problem of covering a subspace of a given finite dimensional
linear space (vector space) by a set of vectors of minimum size. The input of the problem is
a matrix M given together with a function w assigning a nonnegative weight to each column
of M and a set T of terminal column-vectors T of M . The task is to find a minimum set
of column-vectors F of M (if such a set exists) which is disjoint with T and generates a
subspace containing the linear space generated by T . In other words, T ⊆ span(F ), where
span(F ) is the linear span of F . We refer to this problem as the Space Cover problem.

The Space Cover problem encompasses various problems arising in different domains.
The Minimum Distance problem in coding theory asks for a minimum dependent set of
columns in a matrix over GF(2). This problem can be reduced to Space Cover by finding
for each column t in matrix M a minimum set of columns in the remaining part of the matrix
that cover T = {t}. The complexity of this problem was asked by Berlekamp et al. [2] and
remained open for almost 30 years. It was resolved only in 1997, when Vardy showed it
to be NP-complete [38]. The parameterized version of the Minimum Distance problem,
namely Even Set, asks whether there is a dependent set F ⊆ X of size at most k. The
parameterized complexity of Even Set is a long-standing open question in the area, see
e.g. [8]. In the language of matroid theory, the problem of finding a minimum dependent set
is known as Matroid Girth, i.e. the problem of finding a circuit in matroid of minimum
length [39]. In machine learning this problem is known as the Subspace Recovery problem
[20]. This problem also generalizes the problem of computing the rank of a tensor.

For our purposes, it is convenient to rephrase the definition of the Space Cover problem
in the language of matroids. Given a matrix N , let M = (E, I) denote the matroid where the
ground set E corresponds to the columns of N and I denote the family of subsets of linearly
independent columns. This matroid is called the vector matroid corresponding to matrix N .
Then for matroids, finding a subspace covering T corresponds to finding F ⊆ E \ T , F ∈ I,
such that |F | ≤ k and T is spanned by F . Let us remind that in a matroid set F spans T ,
denoted by T ⊆ span(F ), if r(F ) = r(T ∪ F ). Here r : 2E → N0 is the rank function of M .
(We use N0 to denote the set of nonnegative integers.)

Then Space Cover is defined as follows.

Space Cover Parameter: k

Input: A binary matroid M = (E, I) given together with its matrix representation over
GF(2), a weight function w : E → N0, a set of terminals T ⊆ E, and a nonnegative
integer k.
Question: Is there a set F ⊆ E \ T with w(F ) ≤ k such that T ⊆ span(F )?

Since a representation of a binary matroid is given as a part of the input, we always assume
that the size of M is ||M || = |E|. For regular matroids, testing matroid regularity can be
done efficiently, see e.g. [37], and when the input binary matroid is regular, the requirement
that the matroid is given together with its representation can be omitted.

It is known (see, e.g., [26]) that Space Cover on special classes of binary matroids,
namely graphic and cographic matroids, generalizes two well-studied optimization problems
on graphs, namely Steiner Tree and Multiway Cut. Both problems play fundamental
roles in parameterized algorithms.

Recall that in the Steiner Forest problem we are given a (multi) graph G, a weight
function w : E → N, a collection of pairs of distinct vertices {x1, y1}, . . . , {xr, yr} of G, and a
nonnegative integer k. The task is to decide whether there is a set F ⊆ E(G) with w(F ) ≤ k
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such that for each i ∈ {1, . . . , r}, graph G[F ] contains an (xi, yi)-path. To see that Steiner
Forest is a special case of Space Cover, for instance (G,w, {x1, y1}, . . . , {xr, yr}, k) of
Steiner Forest, we construct the following graph. For each i ∈ {1, . . . , r}, we add a new
edge xiyi to G and assign an arbitrary weight to it; notice that we can create multiple edges
this way. Denote by G′ the obtained mulitigraph and let T be the set of added edges and let
M(G′) be the graphic matroid associated with G′. Then a set of edges F ⊆ E(G) forms a
graph containing all (xi, yi)-paths if an only if T ⊆ span(F ) in M(G′).

The special case of Steiner Forest when x1 = x2 = · · · = xr, i.e. when set F should
form a connected subgraph spanning all demand vertices, is the Steiner Tree problem, the
fundamental problem in network optimization. By the classical result of Dreyfus and Wagner
[10], Steiner Tree is fixed-parameter tractable (FPT) parameterized by the number of
terminals. The study of parameterized algorithms for Steiner Tree has led to the design of
important techniques, such as Fast Subset Convolution [3] and the use of branching walks [29].
Research on the parameterized complexity of Steiner Tree is still on-going, with recent
significant advances for the planar version of the problem [33]. Algorithms for Steiner
Tree are frequently used as a subroutine in FPT algorithms for other problems; examples
include vertex cover problems [19], near-perfect phylogenetic tree reconstruction [4], and
connectivity augmentation problems [1].

The dual of Space Cover, i.e., the variant of Space Cover asking whether there is a
set F ⊆ E \ T with w(F ) ≤ k such that T ⊆ span(F ) in the dual matroid M∗, is equivalent
to the Restricted Subset Feedback Set problem. In this problem the task is for a
given matroid M , a weight function w : E → N0, and a nonnegative integer k, to decide
whether there is a set F ⊆ E \ T with w(F ) ≤ k such that matroid M ′ obtained from M by
deleting the elements of F has no circuit containing an element of T . Hence, Space Cover
for cographic matroids is equivalent to Restricted Subset Feedback Set for graphic
matroids. Restricted Subset Feedback Set for graphs was introduced by Xiao and
Nagamochi [40], who showed that this problem is FPT parameterized by |F |. Let us note
that in order to obtain an algorithm for Space Cover with a single-exponential dependence
in k, we also need to design a new algorithm for Space Cover on cographic matroids which
improves significantly the running time achieved by Xiao and Nagamochi [40].

Multiway Cut, another fundamental graph problem, is the special case of Restricted
Subset Feedback Set, and therefore of Space Cover. In the Multiway Cut problem we
are given a (multi) graph G, a weight function w : E → N, a set S ⊆ V (G), and a nonnegative
integer k. The task is to decide whether there is a set F ⊆ E(G) with w(F ) ≤ k such that the
vertices of S are in distinct connected components of the graph obtained from G by deleting
edges of F . Indeed, let (G,w, S, k) be an instance of Multiway Cut. We construct graph G′
by adding a new vertex u and connecting it to the vertices of S. Denote by T the set of added
edges and assign weights to them arbitrarily. Then (G,w, S, k) is equivalent to the instance
(M(G′), w, T, k) of Restricted Subset Feedback Set. If |S| = 2, Multiway Cut is
exactly the classical min-cut problem which is solvable in polynomial time. However, as it
was proved by Dahlhaus et al. [6] already for three terminals the problem becomes NP-hard.
Marx, in his celebrated work on important separators [28], has shown that Multiway Cut
is FPT when parameterized by the size of the cut |F |.

While Steiner Tree is FPT parameterized by the number of terminal vertices, the
hardness results for Multiway Cut with three terminals yields that Space Cover paramet-
erized by the size of the terminal set T is Para-NP-complete even if restricted to cographic
matroids. This explains why we parameterize Space Cover by the rank of the span and
not the size of the terminal set.
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There is also a strong argument that Space Cover is not tractable in its full generality
on binary matroids for the following reason. It follows from the result of Downey et al. [9]
on the hardness of the Maximum-Likelihood Decoding problem, that Space Cover
is W[1]-hard for binary matroids when parameterized by k even if restricted to the inputs
with one terminal and unit-weight elements. However, it is still possible to establish the
tractability of the problem on a large class of binary matroids. Sandwiched between graphic
and cographic (where the problem is FPT) and binary matroids (where the problem is
intractable) is the class of regular matroids. Our main theorem establishes the tractability of
Space Cover on regular matroids.

I Theorem 1. Space Cover on regular matroids is solvable in time 2O(k) · ||M ||O(1).

We believe that due to the generality of Space Cover, Theorem 1 will be useful in the
study of various optimization problems on regular matroids. As an example, we consider
the Rank h-Reduction problem, see e.g. [24]. Here we are given a binary matroid M

and positive integers h and k, the task is to decide whether it is possible to decrease the
rank of M by at least h by deleting k elements. For graphic matroids, this is the h-Way
Cut problem, which is for a connected graph G and positive integers h and k, to decide
whether it is possible to separate G into at least h connected components by deleting at
most k edges. By the celebrated result of Kawarabayashi and Thorup [25], h-Way Cut is
FPT parameterized by k even if h is a part of the input. The result of Kawarabayashi and
Thorup cannot be extended to cographic matroids; we show that for cographic matroids the
problem is W[1]-hard when parameterized by h+ k. On the other hand, by making use of
Theorem 1, we solve Rank h-Reduction in time 2O(k) · ||M ||O(h) on regular matroids.

Let us also remark that the running time of our algorithm is asymptotically optimal:
unless Exponential Time Hypothesis fails, there is no algorithm of running time 2o(k) ·||M ||O(1)

solving Space Cover on graphic (Steiner Tree) or cographic (Multiway Cut) matroids,
see e.g. [5].

Related work. The main building block of our algorithm is the fundamental theorem of
Seymour [34] on a decomposition of regular matroids. Roughly speaking (we define it
properly in Section 2), the Seymour’s decomposition provides a way to decompose a regular
matroid into much simpler base matroids that are graphic, cographic or have a constant
size in such way that all “communication” between base matroids is limited to “cuts” of
small rank (we refer to the monograph of Truemper [37] and the survey of Seymour [35]
for the introduction to matroid decompositions). This theorem has a number of important
combinatorial and algorithmic applications. Among the classic algorithmic applications
of Seymour’s decomposition are the polynomial time algorithms of Truemper [36] (see
also [37]) for finding maximum flows and shortest routes and the polynomial algorithm of
Golynski and Horton [18] for constructing a minimum cycle basis. More recent applications
of Seymour’s decomposition can be found in approximation, on-line and parameterized
algorithms. Godberg and Jerrum [17] used Seymour’s decomposition theorem for obtaining
a fully polynomial randomized approximation scheme (FPRAS) for the partition function of
the ferromagnetic Ising model on regular matroids. Dinitz and Kortsarz in [7] applied the
decomposition theorem for the Matroid Secretary problem. In [12], Gavenciak, Král and
Oum initiated the study of the Minimum Spanning Circuit problem for matroids that
generalizes the classical Cycle Through Elements problem for graphs. The problem asks
for a matroid M , a set T ⊆ E and a nonnegative integer `, whether there is a circuit C of
M with T ⊆ C of size at most `. Gavenciak, Král and Oum [12] proved that the problem is
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FPT when parameterized by ` if |T | ≤ 2. Very recently, in [11], we extended this result by
showing that Minimum Spanning Circuit is FPT when parameterized by k = `− |T |.

On a very superficial level, all the algorithmic approaches based on the Seymour’s decom-
position theorem utilize the same idea: solve the problem on base matroids and then “glue”
solutions into a global solution. However, such a view is a strong oversimplification. First of
all, the original decomposition of Seymour in [34] was not meant for algorithmic purposes
and almost every time to use it algorithmically one has to apply nontrivial adjustments
to the original decomposition. For example, in order to solve Matroid Secretary on
regular matroids, Dinitz and Kortsarz in [7] had to give a refined decomposition theorem
suitable for their algorithmic needs. Similarly, in order to use the decomposition theorem for
approximation algorithms, Goldberg and Jerrum in [17] had to add several new ingredients to
the original Seymour’s construction. We face exactly the same nature of difficulties in using
Seymour’s decomposition theorem. Our starting point is the variant of the decomposition
theorem proved by Dinitz and Kortsarz in [7]. However, this theorem as it is can also not be
used “statically” for our purposes. Our algorithm, while recursively constructing a solution
has to “dynamically” transform the decomposition. This occurs when the algorithm processes
cographic matroids “glued” with other matroids and for that part of the algorithm the
transformation of the decomposition is essential.

2 Algorithm roadmap

In this section we give a high level overview of our algorithm for Space Cover. Due to
space restrictions, all details and proofs are postponed for a journal version of our paper.
We assume that the reader is acquainted with the basics of Matroid theory and refer to the
book of Oxley [32] for the introduction.

We denote the ground set of matroid M = (E, I) by E(M) or simply by E if it does
not create confusion. Recall that a set X ⊆ E spans e ∈ E if r(X ∪ {e}) = r(X), and
span(X) = {e ∈ E | X spans e}, where r is the rank function of M . Respectively, X spans
a set T ⊆ E if T ⊆ span(X). An (inclusion) minimal dependent set is called a circuit of
M . An one-element circuit is called loop, and if {e1, e2} is a two-element circuit, then it is
said that e1 and e2 are parallel. A set X ⊆ E is a cycle of M if X is either empty or X is
a disjoint union of circuits. Let G be a (multi) graph. The cycle matroid M(G) has the
ground set E(G) and a set X ⊆ E(G) is independent if X = ∅ or G[X] has no cycles. Notice
that C is a circuit of M(G) if and only if C induces a cycle of G. The bond matroid M∗(G)
with the ground set E(G) is dual to M(G), and X is a circuit of M∗(G) if and only if X is a
minimal cut-set of G. It is said that M is a graphic matroid if M is isomorphic to M(G) for
some graph G and M is cographic if M is isomorphic to M∗(G).

Our algorithm uses the following observation.

I Observation 2. Let e ∈ E and X ⊆ E \ {e} for a matroid M . Then e ∈ span(X) if and
only if there is a circuit C such that e ∈ C ⊆ X ∪ {e}.

By Observation 2, to solve Space Cover we have to find F ⊆ E \ T with w(F ) ≤ k

such that for every t ∈ T , there is circuit C of M such that t ∈ C ⊆ F ∪ {t}.

2.1 Regular matroid decompositions
In this section we describe matroid decomposition theorems that are pivotal for the algorithm
for Space Cover. Roughly speaking, the classical theorem of Seymour [34] says that every
regular matroid can be decomposed via “small sums" into basic matroids which are graphic,
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cographic and very special matroid of constant size called R10. To describe the decomposition
of matroids, we need the notion of “`-sums” of matroids; we refer to [32, 37] for a formal
introduction to matroid sums. However, for our purpose, it is sufficient that we restrict
ourselves to binary matroids and up to 3-sums [34]. Recall that, for two sets X and Y ,
X 4 Y = (X \ Y ) ∪ (Y \X) denotes the symmetric difference of X and Y . For two binary
matroids M1 and M2, the sum of M1 and M2, denoted by M14M2, is the matroid M with
the ground set E(M1)4 E(M2) whose cycles are all subsets C ⊆ E(M1)4 E(M2) of the
form C = C1 4 C2, where C1 is a cycle of M1 and C2 is a cycle of M2.

I Definition 3 ({1, 2, 3}-sum). For matroids M1, M2 and their sum M ,
(S1) If E(M1) ∩ E(M2) = ∅ and E(M1), E(M2) 6= ∅, then M is the 1-sum of M1 and M2

and we write M = M1 ⊕1 M2.
(S2) If |E(M1) ∩ E(M2)| = 1, then M is the 2-sum of M1 and M2 and we write M =

M1 ⊕2 M2.
(S3) If |E(M1) ∩E(M2)| = 3, the 3-element set Z = E(M1) ∩E(M2) is a circuit of M1 and

M2, then M is the 3-sum of M1 and M2 and we write M = M1 ⊕3 M2.
If M = M1 ⊕k M2 for some k ∈ {1, 2, 3}, then we write M = M1 ⊕M2.

Note that the definitions of (S2) and (S3) in [34] include some additional restrictions for
E(M1) ∩ E(M2) but, as it was pointed by Dinitz and Kortsarz in [7], they are used only to
ensure the nontriviality and can be omitted for algorithmic applications.

I Definition 4 ({1, 2, 3}-decomposition). A {1, 2, 3}-decomposition of a matroid M is a
collection of matroidsM, called the basic matroids, and a rooted binary tree T in which M
is the root and the elements ofM are the leaves such that any internal node is either 1-, 2-
or 3-sum of its children.

We also need the special binary matroid R10 which is represented over GF(2) by the
5× 10-matrix whose columns are formed by vectors that have exactly three non-zero entries
(or rather three ones) and no two columns are identical. Seymour’s theorem [34] states that
every regular matroid has a {1, 2, 3}-decomposition in which every basic matroid is graphic,
cographic or isomorphic to R10.

Dinitz and Kortsarz in [7] obtained a variant of matroid decomposition which is more
handy for our purposes. This variant is based on the notion conflict graph.

I Definition 5 ([7]). Let (T,M) be a {1, 2, 3}-decomposition of a matroid M . The conflict
(or intersection) graph of (T,M) is the graph GT with the vertex setM such that distinct
M1,M2 ∈M are adjacent in GT if and only if E(M1) ∩ E(M2) 6= ∅.

I Theorem 6 ([7]). For a given regular matroid M , there is a (conflict) tree T , whose
set of nodes is a set of matroids M, where each element of M is a graphic or cographic
matroid, or a matroid obtained from R10 by (possibly) adding parallel elements, that has the
following properties: (i) if two distinct matroids M1,M2 ∈M have nonempty intersection,
then M1 and M2 are adjacent in T , (ii) for any distinct M1,M2 ∈ M, the intersection
E(M1)∩E(M2) satisfies one of the properties (S1)–(S3) of 1, 2 or 3-sums, (iii) M is obtained
by the consecutive performing 1, 2 or 3-sums for adjacent matroids in any order. Moreover,
T can be constructed in a polynomial time.

If T is a conflict tree for matroid M , we say that M is defined by T .
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2.2 Elementary reductions for Space Cover
In this section we give some elementary reduction rules that we apply on the instances of
Space Cover to make it more structured. This structure will be exploited by our FPT
algorithm. In particular, our algorithm crucially utilizes the fact that the solution F we are
seeking is of size at most k. However, the way our algorithm is designed, in certain cases the
weights of elements can be changed and it can occur that some elements could have been
assigned weight zero by w. In this case a solution F of weight at most k does not imply
that it is a solution of size at most k. These reduction rules allow us to take care of such
situations.

I Reduction Rule 1 (Zero-element). If there is an element e ∈ E \ T with w(e) = 0, then
contract e.

I Reduction Rule 2 (Terminal circuit). If there is a circuit C ⊆ T , then delete an arbitrary
element e ∈ C from M .

Let us note that Reduction Rules 1 and 2 can be applied in time polynomial in ||M ||.

2.3 Solving Space Cover for basic matroids
We start by solving Space Cover on basic matroids that are building blocks of regular
matroid: R10, graphic and cographic matroids. For R10 the solution is trivial and for graphic
matroids it is an easy extension of the classic Dreyfus-Wagner algorithm [10] for Steiner
Tree. However, a single-exponential algorithm for cographic matroids requires new ideas.

Thus we obtain the following lemmata.

I Lemma 7. Space Cover can be solved in polynomial time for matroids that can be
obtained from R10 by adding parallel elements, element deletions and contractions.

I Lemma 8. Space Cover on graphic matroids is solvable in time 4k · ||M ||O(1).

I Lemma 9. Space Cover can be solved in time 2O(k) · ||M ||O(1) on cographic matroids.

By the results of Xiao and Nagamochi [40], Restricted Subset Feedback Set can
be solved in time 2O(k log k) · ||M ||O(1) on graphic matroids. It immediately implies that
Space Cover can be solved in the same time on cographic matroids by the duality of these
problems. To improve this running time and get a single-exponential dependence in k, we
construct a new algorithm based on the idea of enumeration of important cuts proposed by
Marx in [28], see also [5]. Let G be a graph such that M is isomorphic to the bond matroid
M∗(G) of G. By the duality of Space Cover and Restricted Subset Feedback Set, a
set F ⊆ E(G) \ T spans T if and only if the edges of T are the bridges of G− F . The set of
circuits of M is the set of inclusion-minimal edge cut-sets of G. Hence we restate Space
Cover as a cut problem in G: for a given set T ⊆ E(G), we need to find a minimum set
F ⊆ E(G) \ T such that the edges of T are bridges of G − F . For our purpose, we need
to modify the definition of an important cut given by Marx [28, 5]. Let s ∈ V (G) be a
vertex of G, T ⊆ V (G) \ {s} be a set of terminals, and k be a nonnegative integer. We
say that a set W ⊆ V (G) is interesting if G[W ] is connected, s ∈ W , and |T ∩W | ≤ 1.
For W ⊆ V (G), by ∆(W ) we denote the set of edges of G with exactly one end-vertex in
W . Given two interesting sets W1 and W2 we say that W1 is better than W2 and denote
by W2 �W1 if W2 ⊆W1, |∆(W1)| ≤ |∆(W2)|, and T ∩W1 ⊆ T ∩W2. For set of terminals
T ⊆ V (G) \ {s}, an interesting set W is (s, T, k)-semi-important if |∆(W )| ≤ k and there is
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no set W ′ such that W �W ′. The set of edges ∆(W ) of a (s, T, k)-semi-important set W is
called a (s, T, k)-semi-important cut. We show that the number of (s, T, k)-semi-important
cuts is in 16k ·nO(1). Moreover, such cuts can be enumerated within the same time. The crux
in the proof of Lemma 9 is the recursive algorithm computing the solution. The running time
of the algorithm can be estimated by a polynomial of the number of (s, T, k)-semi-important
cuts.

2.4 Solving Space Cover for regular matroids
Now we conjure all that have developed so far and design an algorithm for Space Cover on
regular matroids, running in time 2O(k) · ||M ||O(1). We first give some generic steps, followed
by steps when matroid in consideration is either graphic and cographic and ending with a
result that ties them all.

Let (M,w, T, k) be a given instance of Space Cover. First, we exhaustively apply Re-
duction Rules 1-2. To simplify notations, we also denote the reduced instance by (M,w, T, k).
We say that a matroid M is basic if it is graphic, cographic or can be obtained from R10 by
adding parallel elements. By Lemmata 7, 8, and 9, we have the following lemma.

I Lemma 10. Let (M,w, T, k) be an instance of Space Cover. If M is a basic matroid,
then Space Cover can be solved in time 2O(k) · ||M ||O(1).

From now onwards we assume that matroid M in the instance (M,w, T, k) is not basic.
Now using Theorem 6, we find a conflict tree T . Recall that the set of nodes of T is the
collection of basic matroidsM, its the edges correspond to 1-, 2− and 3-sums and that M
can be constructed from M by performing the sums corresponding to the edges of T in
an arbitrary order. Our algorithm is based on performing bottom-up traversal of the tree
T . We select an arbitrarily node r as the root of T . This defines the natural parent-child
relationship for the nodes of T . We say that node Ms is a sub-leaf if all its children are
leaves of T . Observe that there always exists a sub-leaf in a tree on at least two nodes and
that this node can be found in polynomial time.

We first modify the decomposition by an exhaustive application of the following rule.

I Reduction Rule 3 (Terminal flipping). If there is a child M` of a sub-leaf Ms such that
there is e ∈ E(Ms)∩E(M`) that is parallel to a terminal t ∈ E(M`)∩ T in M`, then delete t
from M` and add t to Ms as an element parallel to e.

It is easy to show that Reduction Rule 3 is safe and can be applied in polynomial time.
From now we assume that there is no child M` of Ms such that there exists an element
e ∈ E(Ms) ∩ E(M`) that is parallel to a terminal t ∈ E(M`) ∩ T in M`. This is important
because it allows us to reduce the parameter while branching. In what follows, we do a
bottom-up traversal of T and at each step we delete one of the children of Ms. A child of
Ms is deleted either because of an application of a reduction rule, or because of recursively
solving the problem on a smaller sized tree. It is possible that, while recursively solving the
problem, we could possibly modify (or replace) Ms to encode some auxiliary information
that we have already computed while solving the problem. If at some moment we arrive at
the case T = ∅, then algorithm returns yes and stops. If at some moment the situation with
E \ T = ∅ or |T | > k occurs, then we return no and stop.

2.4.1 Processing leaves
For a sub-leaf node Ms, we say that a child M` of Ms is a 1, 2 or 3-leaf if the edge between
Ms and M` corresponds to 1, 2 or 3-sum respectively. While the cases with 1- and 2-leaves
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are relatively easy to settle, the case when M` is a 3-leaf is difficult. We start from generic
steps which do not depend on the types of Ms and its child.

If M` is an 1-leaf such that E(M`) does not contain terminals, we simply delete M`

from T and consider the problem for the matroid defined by the obtained tree. If M` is
an 1-leaf such that T` = E(M`) ∩ T 6= ∅, then we can solve Space Cover for M` with
the set of terminals T` independently. More formally, we find minimum k′ ≤ k such that
(M`, w`, T`, k

′) is a yes-instance of Space Cover using Lemma 10. Then if such k′ exist,
we consider the matroid M ′ defined by T ′ obtained from T by the deletion of Ms and then
solve the problem for (M ′, w, T ∩ E(M ′), k − k′). Safeness of this reduction immediately
follows from the definition of 1-sum, and the reduction can be done in time 2O(k) · ||M ||O(1).

For 2-leaves, we either reduce a leaf or apply a recursive procedure based on whether
the leaf contains a terminal or not. Let M` be 2-leaf that is adjacent to Ms is T and
E(Ms) ∩ E(M`) = {e}. Let also M ′ be the matroid defined by T ′ obtained from T by the
deletion of M`.

IfM` does not contain terminals, we find a circuit ofM` of minimum weight w` containing
e assuming that the weight of e is 0. Notice, that this can be done in time 2O(k) · ||M ||O(1) by
solving Space Cover on M` for the unique terminal e. Then we delete M` from T , assign
the weight w` to the element e of Ms and then solve the problem for M ′.

Suppose that M` is a 2-leaf with terminals. Let T` = E(M`) ∩ T and T ′ = T \ T`. Notice
that due to Reduction Rule 3, M` has no terminal parallel to e. In particular, it can be
shown that this implies that the total weight of the elements of M` in any solution is positive
and this makes the branching possible, because the selection of elements of a solution in
M` reduces the parameter. Notice here that we allow zero weights but all such nonterminal
elements are contracted by Reduction Rule 1. We have three branching cases corresponding
to the behavior of a (potential) solution F . Recall that by Observation 2, for each t ∈ T ,
there is a circuit C such that t ∈ C ⊆ F ∪ {t}.

Case 1. There is t ∈ T ′ and a circuit C of M such that t ∈ C ⊆ F ∪ {t} and C contains an
element of M`. To handle this case, we consider Space Cover on M` with the terminals
Te ∪ {e}, that is, we declare e to be a terminal. We find the minimum 0 < k′ ≤ k such that
(M`, w, T` ∪ {e}, k′) is a yes-instance of Space Cover using Lemma 10. Then we assign the
weight 0 to e in Ms and solve the problem for (M ′, w, T ′, k − k′).

Case 2. There is t ∈ T` and a circuit C of M such that t ∈ C ⊆ F ∪ {t} and C contains an
element of M ′. This case is handled symmetrically to Case 1 and, respectively, we find the
minimum 0 < k′ ≤ k such that (M`, w, T`, k

′) is a yes-instance of Space Cover where e is
assumed to have the weight 0. Then we solve the problem for (M ′, w, T ′ ∪ {e}, k − k′).

Case 3. None of the above cases occur, i.e., every terminal from M` is spanned by elements
of M` in F and every terminal from M ′ is spanned by elements of M ′. Then we can solve
the problem independently for M` and M ′ assuming that the weight of e is k + 1 which
forbids using e in a solution. We find minimum 0 < k′ ≤ k such that (M`, w`, T`, k

′) is a
yes-instance of Space Cover and then solve the problem for (M ′, w, T ′, k − k′).

It is possible to show this branching is exhaustive. We show also that one call of the step
(without recursive calls) can be done in time 2O(k) · ||M ||O(1).

Suppose now that M` is a 3-leaf adjacent to Ms in T . We again differentiate between
cases when it has terminals or not. Assume that M` contains T` = E(M`) ∩ T 6= ∅. Denote
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by Z = E(Ms)∩E(M`). As for 2-leaves, we observe that there are no terminals of T` that are
parallel to the elements of Z in M` and we can branch according to the possible variants of
the behavior of a (potential) solution F . The case analysis is technically complicated, because
we have more variants of the behavior of F comparing to the case analysis for 2-leaves. Still,
the majority of the cases are handled by similar arguments and we omit them here, but there
is one case that makes our algorithm complicated and we briefly discuss it here.

Denote by M ′ the matroid defined by T ′ obtained from T by the deletion of M`. Suppose
that there is t ∈ T ′ and a circuit C of M such that t ∈ C ⊆ F ∪ {t} and C contains an
element of M`, and there is t′ ∈ T` and a circuit C ′ of M such that t′ ∈ C ′ ⊆ F ∪ {t′} and
C ′ contains an element of M ′. Then it can be shown that there are distinct ei, ej ∈ Z such
that C = C1 4 C2, C ′ = C ′1 4 C ′2 where C1, C

′
1 are circuits of M`, C2, C

′
2 are circuits of

M ′, C1 ∩ C2 = {ei} and C ′1 ∩ C ′2 = {ej}. We declare w(ei) = w(ej) = 0 and let the weight
of the third element of Z to be k + 1. Then we find the minimum 0 < k′ ≤ k such that
(M`, w, T` ∪ {ei}, k′) is a yes-instance of Space Cover and afterwards solve the problem for
(M ′, w, T ′ ∪ {ej}, k − k′).

However, it can lead to the following situation. We have solutions F` and F ′ for
(M`, w, T` ∪ {ei}, k′) and (M ′, w, T ′ ∪ {ej}, k − k′). Then there are circuits C` of M` and
C ′ of M ′ such that ei ∈ C` ⊆ F` ∪ {ei} and ej ∈ C ′ ⊆ F ′ ∪ {ej}. If ej ∈ C` and ei ∈ C ′,
then (F` 4 F ′) \ Z is not a solution for M . To avoid this situation, we have to solve a
special variant of Space Cover for (M`, w, T` ∪ {ei}, k′) where we put on the solution F`

the additional condition that ei ∈ span(F` \ ej). Due to this technicality, we also have to
provide algorithms solving this version of Space Cover on basic matroids. This is done by
constructing variants of the algorithm from Lemmata 8 and 9.

For this branching, we show that it is exhaustive and one call of this branching step
(without recursive calls) can be done in time 2O(k) · ||M ||O(1).

We approach the most challenging part concerning processing of 3-leaves without terminals.
At this stage we can assume that T has only 3-leaves. The way to handle this case depends
on the type of the sub-leaf Ms adjacent to a 3-leaf M`. Since M` is a 3-leaf, we have that
Ms is either graphic or cographic, because R10 has no circuit of odd size.

Suppose that Ms is a graphic matroid. Let G be a graph such that its cycle matroid
M(G) is isomorphic to Ms. The algorithm that constructs a good {1, 2, 3}-decomposition
also could be used to output the graph G. We assume that M(G) = Ms. The idea is to
replace M` by attaching a gadget to G. Recall that the circuits of M(G) are exactly the
cycles of G. Since Z is a circuit of M(G), the elements of Z form a cycle of G. Denote by
v1, v2, v3 its vertices. We modify G by adding a new vertex u and making it adjacent to
v1, v2, v3. Denote by G′ the obtained graph. We assign weights to the edges of Z and the
new edges according to the possible structure of a solution F in M` by solving auxiliary
instances of Space Cover on M`. It can happen that to span T in M , we only need the
property that F ∩ E(M`) spans in M` a unique edge vivj of Z. Then we find a spanning
set F` of minimum weight wij ≤ k in M` for the terminal vivj such that vhvi, vhvj /∈ F` for
h 6= i, j. Then we define w(vivj) = wij if F` exists and set w(vivj) = k + 1 otherwise. The
other important possibility is that F ∩E(M`) spans in M` all vivj for distinct i, j ∈ {1, 2, 3}.
We find a spanning set F` of minimum weight w′ ≤ k in M` for the terminal set Z. We show
that it is possible to assign the weights to the edges uvi for i ∈ {1, 2, 3} in such a way that
w(uv1) + w(uv2) + w(uv3) = w′ and w(uvi) + w(uvj) ≥ w(vivj) for i, j ∈ {1, 2, 3} if such a
solution F` exist. Otherwise, we simply set w(uvi) = k + 1 for i ∈ {1, 2, 3}. To complete the
reduction, we consider the matroid M ′ defined by T ′ obtained from T by the deletion of M`

where Ms is replaced by M(G′). Then we solve Space Cover for (M ′, w, T, k). We show
that the reduction can be done in time 2O(k) · ||M ||O(1).
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The case when Ms is a cographic matroid is most challenging. Let G be a graph such
that the bond matroid of G is isomorphic to Ms. Without loss of generality, we can assume
that G is connected. Recall also that the circuits of the bond matroid M∗(G) are exactly
minimal cut-sets of G.

Isomorphism betweenMs andM∗(G) is not necessarily unique. We choose an isomorphism
between Ms and M∗(G) that is beneficial for our algorithmic purposes. Let M (1)

` , . . . ,M
(s)
`

denote those leaves of the conflict tree T that are also the children of Ms. Let Zi =
E(Ms) ∩ E(M (i)

` ), i ∈ {1, . . . , s}. If Ms has a parent M∗ in T and E(Ms) ∩ E(M∗) 6= ∅,
then let Z∗ = E(Ms) ∩ E(M∗); we emphasize that Z∗ may not exist. Next we define the
notion of a clean cut.

I Definition 11. We say that α(Zi) ⊆ E(G) is a clean cut with respect to an isomorphism
α : Ms → M∗(G), if there is a component H of G − α(Zi) such that (i) H has no bridge,
(ii) E(H) ∩ α(Zj) = ∅ for j ∈ {1, . . . , s}, and (iii) E(H) ∩ α(Z∗) = ∅ if Z∗ exists. We call H
a clean component of G− α(Zi).

Next we show that given any isomorphism between Ms and M∗(G), we can obtain another
isomorphism between Ms and M∗(G) with respect to which we have at least one clean
component.

I Lemma 12. There is an isomorphism α : Ms →M∗(G) and a child M (i)
` of Ms such that

α(Zi) is a clean cut with respect to α. Moreover, given any arbitrary isomorphism from
Ms to M∗(G), one can obtain such an isomorphism and a clean cut together with a clean
component in polynomial time.

Using Lemma 12, we can always assume that we have an isomorphism of Ms to M∗(G)
such that for a child M` of Ms in T , Z = E(Ms) ∩ E(M`) is mapped to a clean cut. To
simplify notations, we assume that Ms = M∗(G) and Z is a clean cut with respect to this
isomorphism. Denote by H the clean component. Let Z = {e1, e2, e3} and let ei = xiyi for
i ∈ {1, 2, 3}, where y1, y2, y3 ∈ V (H). Notice that some y1, y2, y3 can be the same.

We first handle the case when E(H) ∩ T = ∅. Similarly to the case of a graphic subleaf,
we replace M` by a gadget. The difference is that the gadget replaces Ms and H. We modify
G as follows. First, we delete H. Then we construct three new pairwise adjacent vertices
z1, z2, z3 and make zi adjacent to xi for i ∈ {1, 2, 3}. Let G′ be the obtained graph. We
analyze the possible structure of a solution in H and M`, and use this information to assign
weight to the edges xizi for i ∈ {1, 2, 3} and zizj for i, j ∈ {1, 2, 3} similarly to the case
of a graphic subleaf. Finally, we consider the matroid M ′ defined by T ′ obtained from T
by the deletion of Ms where Ms is replaced by M(G′). Then we solve Space Cover for
(M ′, w, T, k). We prove that the reduction can be done in time 2O(k) · ||M ||O(1).

It remains to consider the case E(H) ∩ T 6= ∅. In this case, we either reduce H or
recursively solve the problem on smaller H. Rather than describing these steps, we observe
that we can decompose Ms further using the decomposition theorem given in [37, Chapter
8] using the cut {x1y1, x2y2, x3y3}. This way, we obtain a new leaf with terminals and can
apply the already described rules.

Concerning the total running time, observe that we apply reduction rules either in
polynomial time or in 2O(k) · ||M ||O(1) time. After each reduction rule we obtain a conflict
tree with a smaller number of vertices, hence we use reductions a polynomial number of
times. For each of the branching rule, in the recursive call we reduce the parameter, hence
the number of nodes in the corresponding search tree is in 2O(k). Therefore the running time
of the algorithm is 2O(k) · ||M ||O(1).
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3 Reducing rank

In the well-known h-Way Cut problem, we are given a connected graph G and positive
integers h and k, the task is to find at most k edges whose removal increases the number
of connected components by at least h. The problem has a simple formulation in terms of
matroids: Given a graph G and an integers k, h, find k elements of the graphical matroid of G
whose removal reduces its rank by at least h. This motivated Joret and Vetta [24] to introduce
the Rank h-Reduction problem on matroids. Here we define Rank h-Reduction on
binary matroids.

Rank h-Reduction Parameter: k

Input: A binary matroid M = (E, I) given together with its matrix representation over
GF(2) and two positive integers h and k.
Question: Is there a set X ⊆ E with |X| ≤ k such that r(M)− r(M −X) ≥ h?

As a corollary of Theorem 1, we show that on regular matroids Rank h-Reduction is FPT
for any fixed h.

We use the following lemma.

I Lemma 13. Let M be a binary matroid and let k ≥ h be positive integers. Then M has a
set X ⊆ E with |X| ≤ k such that r(M) − r(M −X) ≥ h if and only if there are disjoint
sets F, T ⊆ E such that |T | = h, |F | ≤ k − h, and T ⊆ span(F ) in M∗.

For graphic matroids, when Rank h-Reduction is equivalent to h-Way Cut, the
problem is FPT parameterized by k even if h is a part of the input [25]. Unfortunately,
similar result does not hold for cographic matroids.

I Proposition 14. Rank h-Reduction is W[1]-hard for cographic matroids parameterized
by h+ k.

However, by Theorem 1, for fixed h, Rank h-Reduction is FPT parameterized by k on
regular matroids.

I Theorem 15. Rank h-Reduction can be solved in time 2O(k) · ||M ||O(h) on regular
matroids.

4 Conclusion

In this paper, we used the structural theorem of Seymour for designing parameterized
algorithm for Space Cover. While structural graph theory and graph decompositions
serve as the most usable tools in the design of parameterized algorithms, the applications of
structural matroid theory in parameterized algorithms are limited. There is a series of papers
about width-measures and decompositions of matroids (see, in articular, [21, 22, 23, 27, 30, 31]
and the bibliography therein) but, apart of this specific area, we are not aware of other
applications except the works Gavenciak et al. [12] and our recent work [11]. In spite of the
tremendous progress in understanding the structure of matroids representable over finite
fields [13, 14, 15, 16], this rich research area still remains to be explored from the perspective
of parameterized complexity.

As a concrete open problem, what about the parameterized complexity of Space Cover
on any proper minor-closed class of binary matroids?
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