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Abstract
We initiate the study of network monitoring algorithms in a class of hybrid networks in which
the nodes are connected by an external network and an internal network (as a short form for
externally and internally controlled network). While the external network lies outside of the
control of the nodes (or in our case, the monitoring protocol running in them) and might be
exposed to continuous changes, the internal network is fully under the control of the nodes.
As an example, consider a group of users with mobile devices having access to the cell phone
infrastructure. While the network formed by the WiFi connections of the devices is an external
network (as its structure is not necessarily under the control of the monitoring protocol), the
connections between the devices via the cell phone infrastructure represent an internal network (as
it can be controlled by the monitoring protocol). Our goal is to continuously monitor properties
of the external network with the help of the internal network. We present scalable distributed
algorithms that efficiently monitor the number of edges, the average node degree, the clustering
coefficient, the bipartiteness, and the weight of a minimum spanning tree. Their performance
bounds demonstrate that monitoring the external network state with the help of an internal
network can be done much more efficiently than just using the external network, as is usually
done in the literature.
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1 Introduction

In this paper we propose a new model for the study of distributed algorithms for commu-
nication networks that is based on a class of hybrid networks that is becoming more and
more important. In this class of hybrid networks, the nodes are connected by an external
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network and an internal network. While the external network is not under the control of
the nodes, the internal network is fully under their control. Such hybrid networks can be
found at a physical as well as logical level. Consider, for instance, the case that we have a
set of wireless devices with access to the cell phone infrastructure that are dispersed over a
limited area like a city center so that they can form a connected network using their WiFi
connections. The advantage of this type of network is that the devices would in principle
be able to exchange information without the use of the cell phone infrastructure, which
would save costs. However, this may come at the price of having large message delays and
even being unable to handle certain tasks as there might be network partitions from time
to time. Therefore, if it is possible to design protocols that only require a small amount of
message exchanges via the cell phone infrastructure in order to solve certain tasks much
faster and more reliably than via the WiFi network, users may find it acceptable to make
use of the cell phone infrastructure. Another example is an expedition or a rescue team that
is connected via satellite telephones, which nowadays can support both satellite as well as
wireless communication. In the logical world, one can envision a peer-to-peer network formed
by friendship links in a social network. Just communicating via these friendship links has
the advantage that all interactions are trusted. However, due to the irregular structure of
the social network it has the disadvantage that it might be hard to perform certain tasks
like network monitoring or finding anyone efficiently. Therefore, it might also be useful to
have a network of untrusted links on top of the social network in order to be able to quickly
approximate certain properties of it or to find shortest paths. A common theme in all of
these examples is having two communication modes that significantly differ concerning their
control and in which control comes with costs like financial cost, acceptance, reliability, or
integrity. There is already a large body of literature on network algorithms for the case of
static or dynamic networks whose topology is not under the control of the nodes. On the
other side, there also exists an abundance of network algorithms in which the topology is
fully under the control of the nodes, like in peer-to-peer systems. However, to the best of our
knowledge, nothing rigorous in the context of network monitoring has been shown yet for
combinations of these networks, so this paper initiates the rigorous study of this direction.

1.1 Model and Problem Statement
We consider networks with a static node set and a dynamic edge set. Time proceeds in
synchronous rounds and for each round i we are given a set of undirected edges Ei. The
external network in round i is represented by the undirected graph Gi = (V,Ei). We assume
that the degree of Gi is polylogarithmic for all i. An algorithm has no control over the
edges in Ei, however it can establish additional overlay edges to form an internal network or
overlay network: Each node u has a unique identifier id(u) which is a bit string of length
O(logn) where n = |V |. Let Di(u) be the set of identifiers stored by a node u in round i.
We define the set of overlay edges in round i as Di = {(u, v) | u ∈ V and v ∈ Di(u)}. A
node has immediate access to the identifiers of its neighbors in Gi and can store such an
identifier for future reference. In round i, a node u can send a distinct message to each node
v such that {u, v} ∈ Ei or (u, v) ∈ Di. A message sent in round i arrives at the beginning of
round i + 1. The local memory and computation of the nodes is unbounded. However, a
node can send and receive at most polylogarithmically many bits in each round.

We investigate monitoring problems. In these problems, a designated node s that we call
the monitor node or simply monitor has to continuously observe a property of the external
network like the number of edges or the weight of a minimum spanning tree. Formally, a
property p is a function from the set of undirected graphs into some set of property values.
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Since the external network Gi is dynamic, the property value p(Gi) can change from round
to round. We say an algorithm monitors a property p with setup time i0 and delay δ if for all
rounds i ≥ i0 the monitor node outputs the property value p(Gi) by round i+ δ. We refer to
the first i0 rounds of the execution of a monitoring algorithm as the setup phase and refer to
the remaining rounds as the monitoring phase. Initially, the set of overlay edges D0 is empty.
An algorithm can use the setup phase to construct an initial internal network that supports
the computation of the property value. It can continue to adapt the internal network during
the monitoring phase. We assume the graph G0 to be connected. Beyond this, we make no
assumptions about the evolution of the edge set.

1.2 Related Work
In the networking community, the name “hybrid network” has been used in the context
of networks containing equipment from multiple vendors, consisting of different physical
networks or communication modes, or networks incorporating both peer-to-peer and client-
server approaches. These topics are not related to our work, so we do not consider them.

There is a large body of literature on overlay networks, especially in the context of
peer-to-peer systems. Whereas most of the proposed overlay networks do not worry about the
underlying network, there is also a number of proposals for so-called locality-aware overlays,
with prominent examples like Tapestry [37] and Pastry [34]. However, these constructions
are only concerned about adapting or optimizing the overlay to the underlying network and
do not aim at monitoring properties of the underlying network with the help of the overlay.

The dynamic external network assumed by our model is related to the dynamic graph
model introduced by Kuhn et al. [24], in which an adversary changes the edge set of a graph
in every round. Kuhn et al. [24] focus on solving the counting and the token dissemination
problem in that model, which has been further considered, for example, in [12, 15] (see
[5] for an overview). Abshoff and Meyer auf der Heide study how to perform continuous
aggregation in these networks [1]. However, like the other works in this area, they do not
consider establishing additional overlay edges. Another approach related to ours is the work
by Michail and Spirakis [28], which extends the population protocol model to a model in
which nodes can decide whether to keep connections proposed to them or not, but there is
no underlying network to monitor.

Some of our algorithms make use of techniques particularly known from the field of
parallel computation. For example, it is well-known how to use pointer jumping [18] in order
to perform rapid tree traversals in PRAMs (see e.g. [3, 19, 35]). Furthermore, there exists an
abundance of parallel algorithms computing MSTs in such models, the best of which achieve
a runtime of O(logn) (see [16] for an overview). The algorithm presented in Section 2 has
some similarities with [19]. However, we are not aware of any distributed implementation of
such an algorithm with runtime o(log2 n) that does not cause high node congestion. This is
also the problem with the various algorithms proposed for the congested clique model, which
has recently received a considerable amount of attention (e.g., [7, 11, 17, 25, 27]).

Our algorithms make extensive use of a subroutine for the construction of overlay networks
that we present in Section 2. This subroutine transforms a given graph into a rooted tree
of constant degree and depth O(logn). Angluin et al. [2] proposed a similar subroutine
that achieves the same result and that even works in an asynchronous setting. However,
the subroutine of Angluin et al. is randomized while our subroutine is deterministic. As a
consequence, all monitoring algorithms presented in this work are also fully deterministic.
Furthermore, our subroutine can be used for the efficient construction of a spanning tree of a
given graph, which cannot directly be achieved using the approach by Angluin et al.
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Table 1 This table summarizes the results of this work. W is the maximum weight of an edge
in the graph. The algorithm for monitoring the exact weight of a minimum spanning tree requires
integral edge weights while the approximation algorithm has no such requirement. The latter
algorithm approximates the weight M up to an additive factor of ±εM .

Monitoring Problem Setup Time Delay Section

Number of Edges O(log2 n) O(log n/ log log n) 3
Average Node Degree O(log2 n) O(log n/ log log n) 3
Clustering Coefficient O(log2 n) O(log n/ log log n) 3
Bipartiteness 0 O(log2 n) 4
Exact MST Weight 0 O(W + log2 n) 5.1
Approximate MST Weight O(log2 n) O(log(W )/ε · log2(W/ε) + log n/ log log n) 5.2

In the algorithms presented in Section 3 the monitor continuously collects data from
the nodes of the network by performing aggregation. There is a huge amount of work on
aggregation in the context of sensor networks, but research in this area has focused on
monitoring environmental properties, the state of systems (like bridges or airplanes) or
facilities (like warehouses). Distributed aggregation has also been studied extensively for
conventional, static networks (see, e.g., [4, 22, 23] or [26] for a comprehensive overview), but
not for hybrid forms as considered in this paper.

One of the network properties considered in this work is the weight of a minimum spanning
tree (or MST), see Section 5. The problem of computing an MST in a distributed manner
is well studied, see for example [13, 14, 32, 33]. The problem of computing only the weight
of an MST instead of the MST itself has been studied in the area of sequential sublinear
algorithms. This line of research was initiated by Chazelle et al. [8] and continued in [6, 9, 10].
Our algorithms for monitoring the weight of an MST apply the ideas of Chazelle et al. [8] in
a distributed context and also incorporate some ideas from [10].

1.3 Our Contribution
We initiate the study of hybrid networks consisting of externally and internally controlled
edges and present deterministic algorithms for monitoring network properties in such networks.
Our results are summarized in Table 1. As a byproduct of the algorithms for monitoring the
weight of a minimum spanning tree, we also present algorithms for the distributed computation
of minimum spanning trees in hybrid networks. Since the delays trivially increase to Ω(n)
in the worst case when just using an external network, our results demonstrate that with
the help of hybrid networks monitoring can be done exponentially faster compared to just
having an external network.

2 Setup Phase

All monitoring algorithms presented in this work that rely on a dedicated setup phase use
a common algorithm for the construction of the initial overlay network. This algorithm
organizes the nodes into a tree T of polylogarithmic degree and depth O(logn/ log logn)
that is rooted at the monitor. In this section, we first present a more general algorithm that
we refer to as the Overlay Construction Algorithm. This algorithm shares some similarities
with an algorithm of Angluin et al. [2]. The algorithm is also frequently used as a subroutine
throughout the remainder of this work. Based on this algorithm, we describe how the desired
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tree T can be constructed at the end of the section. For simplicity, we assume that every
node knows the total number of nodes n. The algorithms can be modified to remove this
assumption.

For a given bidirected connected graph G of polylogarithmic degree, the Overlay Construc-
tion Algorithm arranges the nodes of G into a tree of constant degree and depth O(logn).
On a high level, the algorithm works as follows. It operates on supernodes which are groups
of nodes that act in coordination. Let the identifier of a supernode be the highest identifier of
the nodes it contains. Define two supernodes u, v to be adjacent if there are nodes x, y that
are adjacent in G such that x is in u and y is in v. Initially, each node forms a supernode on
its own. The algorithm alternatingly executes a grouping step and a merging step. In the
grouping step, each supernode u determines the neighboring supernode v with the highest
identifier. If id(v) > id(u) then u sends a merge request to v. Consider the graph whose node
set is the set of all supernodes and that contains a directed edge (u, v) if u sent a merge
request to v. Since each supernode sends at most one merge request to a supernode of higher
identifier, this graph is a forest. During the merging step, each tree of this forest is merged
into a new supernode. Before we describe how this high-level algorithm can be implemented
by the nodes, we analyze the number of iterations of consecutive grouping and merging steps
until only a single supernode remains. The following lemma can be shown by observing that
each supernode merges with another supernode within at most 2 iterations.

I Lemma 1. After O(logn) iterations only a single supernode remains.

At the beginning of every grouping step, the following invariant holds: Each supernode is
internally organized in an overlay forming a tree of constant degree and depth O(logn) that
is rooted at the node with the highest identifier and each node knows the identifier of its
supernode. The nodes cooperatively simulate the behavior of their respective supernodes
during the grouping step as follows. Consider a supernode u and the corresponding internal
tree Tu. First, every node of u sends id(u) along every incident edge in the original graph G.
Thereby, every node learns the identifiers of its neighboring supernodes. Then, the nodes
of u use a convergecast along Tu to determine the identifier of the supernode v with the
highest identifier among the neighbors of u. This convergecast also collects the identifier
of the node x with the highest identifier in u that is adjacent to a node in v. Once this
convergecast is complete, the root of Tu knows both id(v) and id(x). If id(v) > id(u) then
the root of u sends a message to x. Upon receiving this message, x sends a merge request
to a neighboring node in v and sends a broadcast through Tu to establish itself as the new
root of Tu. The nodes in G wait with starting the merging step until O(logn) rounds have
passed to guarantee that the above operations are completed in all supernodes and all nodes
start the merging step at the same time.

At the beginning of every merging step, we have the following situation. Consider the
graph consisting of the internal trees of all supernodes together with all edges along which a
merge request has been sent. This graph is a forest and the trees of this forest form the new
supernodes resulting from the merging step. Therefore, the nodes of each new supernode v
are already arranged into a tree Tv. Furthermore, v contains exactly one former root node
that did not instruct a node to send a merge request. It is not hard to see that this node has
the highest identifier in v and therefore becomes the root of Tv. In its current state, Tv can
have up to polylogarithmic degree and linear depth. To restore the invariants required at
the beginning of a grouping step, we have to transform Tv into a tree of constant degree and
depth O(logn). Furthermore, we have to make sure that all nodes in v know the identifier
id(v) of the root of Tv.
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First, we reorganize Tv into a child-sibling tree. For this, each inner node y arranges its
children into a path sorted by increasing identifier and only keeps the child with the lowest
identifier. Each former child of y changes its parent to be its predecessor on the path and
stores its successor as a sibling. In the resulting child-sibling tree, each node stores at most
three identifiers: a parent, a sibling, and a child. By interpreting the sibling of a node as a
second child, we get a binary tree. This transformation of Tv into a binary tree takes O(1)
rounds.

Based on this binary tree, we construct a ring of virtual nodes as follows. Consider the
depth-first traversal of the tree that visits the children of each node in order of increasing
identifier. A node occurs at most three times in this traversal. Let each node act as a distinct
virtual node for each such occurrence and let k ≤ 3n be the number of virtual nodes. A node
can locally determine the predecessor and successor of its virtual nodes according to the
traversal. Therefore, the nodes can connect their virtual nodes into a ring in O(1) rounds.

Next, we use pointer jumping to quickly add chords (i.e., shortcut edges) to the ring.
The virtual nodes execute the following protocol for blognc+ 1 ≥ blog kc − 1 rounds. Each
virtual node y learns two identifiers `t and rt in each round t of this protocol. Let `0 and
r0 be the predecessor and successor of y in the ring. In round t, y sends `t to rt and vice
versa. At the beginning of round t+ 1, y receives one identifier from `t and rt, respectively.
It sets `t+1 to the identifier received from `t and rt+1 to the identifier received from rt. It
then proceeds to the next round of the protocol. In every round of this protocol each virtual
node adds a new chord to the ring by introducing its latest neighbors to each other. The
distance between these neighbors w.r.t the ring doubles from round to round up to the point
where the distance exceeds the number of virtual nodes k. Based on this observation, it is
not hard to show that after the specified number of rounds, the diameter of the graph has
reduced to O(logn) while the degree has grown to O(logn). Once the protocol finished, the
root of v initiates a broadcast from one of its virtual nodes followed by a convergecast to
determine the number of virtual nodes k.

Finally, we use the chords to construct a binary tree of depth O(logn). For this, the
root of v initiates a broadcast by sending a message to its neighbors `t′ and rt′ where
t′ = blog kc − 1. A node that receives the broadcast after t steps forwards it to `t′ and rt′

where t′ = max{blog kc − t − 1, 0}. It is not hard to see that the binary tree constructed
by this broadcast has depth O(logn) and contains all nodes of the ring. At this point, the
nodes discard all overlay edges constructed so far and only keep the edges of the binary tree.
We then merge the virtual nodes back together such that each node adopts the edges of its
virtual nodes. This results in a graph of degree at most 6 and diameter O(logn). Note that
this graph is not necessarily a tree. To construct a tree that satisfies the invariants for the
grouping step, the root of v sends another broadcast through the resulting graph to construct
a breadth-first search tree that has constant degree and diameter O(logn). This broadcast
also informs all nodes in v about id(v). The operations described above take O(logn) rounds
overall. As before, all nodes in G wait for O(logn) rounds to pass so that they enter the
next grouping step at the same time.

Once only a single supernode u remains, which is the case if during a grouping step no
node reports the identifier of a neighboring supernode, Tu covers all nodes of G and has the
desired properties. Since the algorithm runs for O(logn) iterations and each iteration takes
O(logn) rounds, we have the following theorem.

I Theorem 2. Given any bidirected connected graph G of n nodes and polylogarithmic degree,
the Overlay Construction Algorithm constructs a constant degree tree of depth O(logn) that
contains all nodes of G and that is rooted at the node with the highest identifier. The algorithm
takes O(log2 n) rounds.
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Theorem 2 directly implies the following corollary.

I Corollary 3. Consider a bidirected graph G of n nodes and polylogarithmic degree. For
each connected component C of G, the Overlay Construction Algorithm constructs a constant
degree tree of depth O(log |C|) that contains all nodes of C and that is rooted at the node
with the highest identifier in C. The algorithm takes O(log2 |C|) rounds in each component
and O(log2 n) rounds overall.

Finally, note that the algorithm only sends merge requests along edges of G. This gives rise
to the following observation.

I Observation 4. For a bidirected connected graph G, the edges along which the Overlay
Construction Algorithm sends the merge requests form a spanning tree of G.

So by letting the nodes locally mark the edges that carry a merge request, the algorithm can
be used for the distributed construction of a spanning tree of G in O(log2 n) time. While this
observation is not immediately relevant for the setup phase, it will be useful in later sections.

Based on the Overlay Construction Algorithm, it is easy to achieve the goal for the
setup phase of organizing the nodes into a tree T of polylogarithmic degree and depth
O(logn/ log logn) that is rooted at the monitor s. At the beginning of the setup phase, each
node stores the identifiers of its neighbors in the given graph G0 that represents the external
network. This effectively creates a bidirected overlay network that directly corresponds to
the undirected graph G0. Note that G0 is connected by assumption. Therefore, we can
use the Overlay Construction Algorithm to construct a tree of constant degree and depth
O(logn) that contains all nodes in the network. Once the algorithm terminates, s broadcasts
a message through the resulting tree to establish itself as the new root. This does not increase
the asymptotic depth of the tree. We then decrease the depth to O(logn/ log logn) as follows.
Each node x broadcasts its identifier down the tree up to a distance of dlog logne. Every
node that receives the broadcast of x establishes an edge to x. It is not hard to see that this
creates a graph of at most polylogarithmic degree and diameter O(logn/ log logn). Finally,
s sends a broadcast through this graph to create a breadth-first search tree that has the
desired properties. We have the following theorem.

I Theorem 5. A setup time of O(log2 n) rounds is sufficient to organize the nodes of the
network into a tree T of polylogarithmic degree and depth O(logn/ log logn).

Unless otherwise stated, we assume in the following sections that the setup phase is executed
as described above.

3 Three Simple Monitoring Problems

In order to introduce some basic concepts that underlie all monitoring algorithms presented
in this work, we first consider three simple monitoring problems. Specifically, we show how
to monitor the number of edges, the average node degree, and the clustering coefficient of
the network by performing aggregation on the tree T constructed during the setup phase.

Consider the problem of monitoring the number of edges. We first present an algorithm
that efficiently determines the number of edges in a graph G and then show how this algorithm
can be used to continuously monitor the number of edges. It is well known that the number
of edges in a graph is |E| = 1/2 ·

∑
u∈V deg(u) where deg(u) is the degree of a node u.

Therefore, we can compute |E| by aggregating the sum of all node degrees in the following
way. In the first round, each leaf node u in T sends deg(u) to its parent. Once an inner node
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u has received a value xj from each of its children, it sends deg(u) +
∑

j xj to its parent.
After O(logn/ log logn) rounds, the monitor s has received a value from each of its children
and can use these values together with its own degree to compute |E| as described above.

To continuously monitor |Ei| for every i ≥ i0, the above algorithm is executed in a
pipelined fashion: In each round i ≥ i0 a new instance of the algorithm is started. The
instances run in parallel and do not interact with each other. At the beginning of a round i,
each node stores the identifiers of its neighbors in the graph Gi that represents the external
network to create a copy of the graph in form of an overlay network that the algorithm
can operate on. This copy is discarded once the corresponding instance of the algorithm
terminates. The messages sent by an instance of the algorithm are labeled with the round
number in which the instance was started so that received messages can be correctly assigned.
Note that the number of bits a node sends and receives per round in the given algorithm is
polylogarithmic. Since the delay of the algorithm is also polylogarithmic, the number of bits
a node sends and receives in the pipelined execution is polylogarithmic as well. We have the
following theorem.

I Theorem 6. The number of edges can be monitored with setup time O(log2 n) and delay
O(logn/ log logn).

In the remainder of this work, we only present algorithms that compute the value of a
network property for a single graph G and implicitly assume that the respective algorithm is
executed in a pipelined fashion to solve the monitoring problem under consideration.

Based on the ideas of the algorithm above, it is easy to solve a number of monitoring
problems that can be reduced to aggregation. For example, one can monitor the average node
degree by letting s multiply the result of the given algorithm with 2/n before outputting it.
This gives us the following corollary.

I Corollary 7. The average node degree can be monitored with setup time O(log2 n) and
delay O(logn/ log logn).

As a final example, we consider the clustering coefficient of a network [36]. Intuitively, the
clustering coefficient reflects the relative number of triangles in a graph G. It is particularly
relevant in the context of biological and social networks [29, 30, 31, 36]. Formally, the
clustering coefficient of a node u is defined as

C(u) = 2 · | {v, w ∈ N(u) | {v, w} ∈ E} |
deg(u) · (deg(u)− 1) ,

where N(u) is the set of neighbors of u. The clustering coefficient of a graph G is defined as
C(G) = 1/n·

∑
u∈V C(u). Each node u can compute C(u) in constant time by communicating

with its neighbors. Therefore, C(G) can be computed by aggregating the sum of all C(u)
along T and dividing the result by n at the monitor. We have the following theorem.

I Theorem 8. The clustering coefficient can be monitored with setup time O(log2 n) and
delay O(logn/ log logn).

4 Bipartiteness

In this section, we consider the problem of monitoring whether the network forms a bipartite
graph. Our algorithm is based on the following commonly known approach (see e.g. [20]).
Given a connected graph G, compute a rooted spanning tree of G and assign a color from
{0, 1} to each node that corresponds to the parity of its depth in the spanning tree. We say
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an edge is valid if it connects nodes of different colors and invalid otherwise. G is bipartite if
and only if all edges are valid. It remains to show how this approach can be implemented
efficiently in our framework.

According to Observation 4, we can use the Overlay Construction Algorithm to mark
the edges of a spanning tree S in G. Define the monitor s to be the root of S. Each node
has to determine the parity of its depth in S to set its color. Since S might have linear
depth, a simple broadcast from s does not constitute an efficient solution to this problem.
Instead, we use pointer jumping along a depth-first traversal of S to determine the colors of
the nodes. We define the traversal of S as follows. The traversal starts at s and moves to
the neighbor of s in S with the lowest identifier. For a node u, let u0, . . . , udeg(u)−1 be the
neighbors of u in S arranged by increasing identifier. When the traversal reaches u from a
node ui, it continues on to node u(i+1) mod deg(u). The traversal finishes when it reaches s
from the neighbor of s in S with the highest identifier. Define the traversal distance d(u) to
be the number of steps required to reach u for the first time in this traversal. As we will
show in Lemma 9, the parity of d(u) equals the parity of the depth of u in S. For now, we
focus on computing d(u) efficiently for all nodes.

Each node u simulates one virtual node for each occurrence of u in the traversal, and
the nodes connect these virtual nodes into a ring. More specifically, each node u simulates
virtual nodes v0, . . . , vdeg(u)−1 such that vi is the successor of a virtual node of ui and the
predecessor of a virtual node of u(i+1) mod deg(u) in the ring. Note that the resulting ring
consists of 2(n−1) virtual nodes. We use pointer jumping to add chords to the ring following
the same protocol we used during the merging step of the Overlay Construction Algorithm.
We define `0 to be the successor of a virtual node and r0 to be the predecessor of a virtual
node. We execute the protocol for t = blog(2(n− 1))c rounds so that each node constructs
chords `i and ri for each 1 ≤ i ≤ t. Each chord `i (resp. ri) bridges a distance of exactly 2i

along the ring. The chords allow us to efficiently compute the values d(u) in the following
way. Let v∗ be the virtual node simulated by s that precedes a virtual node of the neighbor
of s with the lowest identifier. v∗ stores the value 0 and initiates a broadcast by sending a
message with value 2i along each chord `i for 0 ≤ i ≤ t. Consider a virtual node that receives
a broadcast message and that has not yet stored a value. Let x be the value associated
with the received message. The virtual node stores x and sends a message containing the
value x + 2i along each chord `i for 0 ≤ i ≤ t. It is not hard to see that this broadcast
reaches all virtual nodes within O(logn) rounds and the value stored at a virtual node v
after the broadcast finishes corresponds to the length of the path from v∗ to v along the
ring. Therefore, each node u can determine the value d(u) by taking the minimum of the
values stored at its virtual nodes. Once all nodes computed their traversal distance in this
way, each node u determines whether it is incident to an invalid edge by checking for each
neighbor w in G whether d(u) ≡ d(w) mod 2. Then, the nodes use a convergecast to inform
s whether there is an invalid edge. If so, s outputs that G is not bipartite. Otherwise, s
outputs that G is bipartite.

To establish the correctness of the algorithm, we show the following lemma.

I Lemma 9. For each node u, the parity of the depth of u equals the parity of d(u).

Proof. Note that the tree is traversed in a depth-first order. Therefore, the traversal takes
an even number of steps between any two visits of the same node. Let P be the shortest path
from s to u in S. The length of P equals the depth of u. The traversal follows P but takes a
detour whenever it explores a branch outside of P . By the argument above, each such detour
has even length. Therefore, the parity of the depth of u equals the parity of d(u). J
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We can monitor bipartiteness for a disconnected graph by performing the above algorithm
on its connected components and aggregating the results on the tree T built in the setup
phase. Furthermore, we can reduce the setup time to 0 by delaying the first monitoring
phase until T is constructed, which does not asymptotically increase the total delay. This
implies the following theorem.

I Theorem 10. The bipartiteness of a graph can be monitored with setup time 0 and delay
O(log2 n).

5 Minimum Spanning Tree

We now turn to the problem of monitoring the weight of a minimum spanning tree (or MST ).
We assume that the edge set changes from round to round but the external network always
stays connected. Additionally, we assume that each edge has a weight that can also change
every round. We present an algorithm that monitors the exact MST weight in Section 5.1
and an algorithm that monitors an approximation of the MST weight with a shorter delay
in Section 5.2. Both algorithms are based on a sequential approximation algorithm by
Chazelle et al. [8]. As a byproduct, we describe in Section 5.3 how the algorithms for
computing the MST weight can be adapted for the distributed computation of an actual
MST.

5.1 Exact MST Weight

The main idea behind the algorithm is to reduce the computation of the weight of an MST
in a graph G to counting the number of connected components in certain subgraphs of G.
This idea was first introduced by Chazelle et al. [8]. We assume that the edge weights are
taken from the set {1, 2, . . . ,W} for some given W ∈ N. Define the threshold graph G(`) to
be the subgraph of G consisting of all edges with weight at most `, and define c(`) to be the
number of connected components in G(`). The MST weight M can be computed from the
values c(`) as shown in the following lemma.

I Lemma 11 (Chazelle et al. [8]). In a graph with edge weights from {1, 2, . . . ,W}, the MST
weight is M = n−W +

∑W−1
i=1 c(i).

Based on Lemma 11, the monitor can compute the MST weight as follows. Consider the
threshold graph G(`) for some ` ∈ {1, 2, . . .W − 1}. According to Corollary 3, executing the
Overlay Construction Algorithm on G(`) creates an overlay network in which each connected
component of G(`) is spanned by a rooted tree of overlay edges. Each node knows whether it is
a root of one of these trees. Therefore, we can determine c(`) by counting the number of roots,
which can easily be achieved using aggregation along the tree T that results from the setup
phase. By iterating this process, the monitor learns the value c(`) for each ` ∈ {1, 2, . . .W−1}.
It can then use the equation given in Lemma 11 to compute the MST weight. Since T is only
used after the algorithm already ran for O(log2 n) rounds, we can construct T during the
monitoring phase and therefore skip the setup phase. Furthermore, we can reduce the delay
by computing up to log2 n different c(i)’s in parallel. This implies the following theorem.

I Theorem 12. For edge weights from {1, 2, . . . ,W}, the MST weight can be monitored with
setup time 0 and delay O(W + log2 n).
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5.2 Approximate MST Weight
Next, we present an algorithm that monitors the MST weight with a significantly shorter
delay at the cost of a small approximation error. The algorithm is less restrictive in that it
allows the edge weights to be real numbers from the interval [1,W ] for a given W ∈ R. It is
based on the same general idea as the algorithm from the previous section but additionally
incorporates ideas from the work of Czumaj and Sohler [10].

First, each node rounds up the edge weight of each incident edge to a power of (1 + ε) for
a fixed ε with 0 < ε ≤ 1. In the resulting graph G′, each edge weight is of the form (1 + ε)i

where 0 ≤ i ≤ log1+ε W . Let M ′ be the MST weight in G′. We have the following lemma,
which is analogous to Lemma 11 from the previous section.

I Lemma 13 (Czumaj and Sohler [10]). In a graph with edge weights of the form (1 + ε)i for
0 ≤ i ≤ log1+ε W , the MST weight is M ′ = n−W + ε ·

∑log1+ε W−1
i=0 (1 + ε)i · c((1+ε)i).

Based on Lemma 13, we can compute M ′ by determining the number of connected
components c((1+ε)i) in log1+ε W many threshold graphs. While this already implies an
improvement over the algorithm from the previous section, we can further reduce the delay
by ignoring large components in the threshold graphs.

Consider some threshold graph G((1+ε)i). We execute the Overlay Construction Algorithm
as in the previous section but we stop its execution after O(log2(2W/ε)) rounds. By
Corollary 3, the algorithm is guaranteed to finish its computation in each connected component
of size at most 2W/ε. In larger connected components, the algorithm may finish but is
not guaranteed to do so. It is easy to modify the algorithm such that all nodes of a
connected component know whether the algorithm finished its computation for that connected
component. This allows us to ignore root nodes in connected components for which the
algorithm did not finish. Thereby, the algorithm establishes a unique root node for each
connected component of size at most 2W/ε while in each larger connected component either
a unique root node is established or no root is established. Let ĉ((1+ε)i) be the number of root
nodes established in this way. The nodes determine the value of ĉ((1+ε)i) using aggregation
along the tree T constructed in the setup phase.

As in the previous section, the nodes iteratively execute this process for each i such that
0 ≤ i ≤ log1+ε W . After the Overlay Construction Algorithm finishes for an iteration, the
nodes start the aggregation for counting the number of roots. The nodes do not wait for this
aggregation to finish but rather execute it in parallel to the next iteration. Thereby, we slightly
interleave consecutive iterations which reduces the overall delay. After the monitor has learned
the values ĉ((1+ε)i), it computes and outputs M̂ = n−W + ε ·

∑log1+ε W−1
i=0 (1 + ε)i · ĉ((1+ε)i).

We have the following theorem.

I Theorem 14. For edge weights from [1,W ], the MST weight M can be monitored up
to an additive term of ±εM for any 0 < ε ≤ 1 with setup time O(log2 n) and delay
O
(

log W
ε · log2 (W

ε

)
+ log n

log log n

)
.

Proof. We first show the approximation factor. Rounding up the edge weights to a power
of (1 + ε) increases the MST weight by a factor of at most (1 + ε). Therefore, we have
M ≤M ′ ≤ (1+ε) ·M . When computing the values ĉ((1+ε)i) the algorithm potentially ignores
all connected components of size larger than 2W/ε. In each threshold graph there are at
most εn/(2W ) such connected components. The algorithm cannot overestimate the number
of connected components. Therefore, we have c((1+ε)i)− εn/(2W ) ≤ ĉ((1+ε)i) ≤ c((1+ε)i). For
the upper bound on the output M̂ of the algorithm, the equations above together with the
definitions ofM ′ and M̂ directly imply M̂ ≤M ′ ≤ (1+ε) ·M . For the lower bound on M̂ , we
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have M̂ ≥ n−W+ε·
∑log1+ε W−1

i=0 (1+ε)i ·
(
c((1+ε)i) − εn

2W

)
= M ′− ε2n

2W ·
∑log1+ε W−1

i=0 (1+ε)i ≥
M ′ − ε

2 · n ≥ (1 − ε) ·M, where we assume n ≥ 2 so that n ≤ M + 1 ≤ 2M for the last
inequality.

We now turn to the delay of the algorithm. The algorithm iteratively computes the
values ĉ((1+ε)i) for log1+ε W = O(log(W )/ε) threshold graphs. In each of these iterations
the modified Overlay Construction Algorithm is executed for O(log2(W/ε)) rounds. After
the Overlay Construction Algorithm finishes in the last iteration, the nodes have to wait for
the final aggregation to complete. This takes an additional O(log / log logn) rounds. J

Finally, if W = nO(1) we can execute logW iterations of the algorithm in parallel which
gives us the following corollary.

I Corollary 15. For edge weights from [1,W ] where W = nO(1), the MST weight M can be
monitored up to an additive term of ±εM for any 0 < ε ≤ 1 with setup time O(log2 n) and
delay O

(
1
ε · log2 (W

ε

)
+ log n

log log n

)
.

5.3 Distributed Computation of MSTs
Based on the ideas of the previous two sections, we can devise algorithms that mark the
edges of an MST instead of just computing the MST weight. While these algorithms do not
fit into the monitoring context, they represent natural extensions of the given algorithms
and demonstrate that the underlying ideas might be useful outside of network monitoring.

First, we run the Overlay Construction Algorithm on the graph G(1) and mark all edges
along which a merge request is sent. We then add the edges of weight 2 and run the Overlay
Construction Algorithm again to further merge the supernodes while still marking edges as
before. We keep adding edges of increasing weight in this way until we reach the threshold
graph G(W ) in which only a single supernode remains. By Observation 4, the marked edges
form a spanning tree of G. Furthermore, at any given time the algorithm only adds edges of
minimal weight to the spanning tree. Therefore, the algorithm is essentially a distributed
implementation of Kruskal’s Algorithm [21] so that the spanning tree computed by the
algorithm is in fact an MST. We have the following theorem.

I Theorem 16. Consider a network that initially forms a bidirected connected graph G with
edge weights from {1, 2, . . . ,W} for some W ∈ N. There is an algorithm that marks the edges
of an MST in G in O(W log2 n) rounds.

Combining this approach with the ideas from Section 5.2 gives us the following theorem.

I Theorem 17. Consider a network that initially forms a bidirected connected graph G

with edge weights from [1,W ] for some W ∈ R. Let M be the weight of an MST in G.
There is an algorithm that marks the edges of a spanning tree in G with weight M ′ such that
M ≤M ′ ≤ (1 + ε) ·M in O(1/ε · logW · log2 n) rounds.

6 Future Work

We were only able to present a small number of monitoring problems in hybrid networks in
this work. However, there is an abundance of classical problems in the literature that can be
newly investigated under this model. As we tried to demonstrate in Section 5.3, the idea of
using the ability to establish new edges to speed up computation can also be applied outside
of network monitoring. We would be very interested in seeing further applications of this
idea in other contexts.



R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler 137:13

References
1 Sebastian Abshoff and Friedhelm Meyer auf der Heide. Continuous aggregation in dynamic

ad-hoc networks. In Magnús M. Halldórsson, editor, Structural Information and Commu-
nication Complexity - 21st International Colloquium, SIROCCO 2014, Takayama, Japan,
July 23-25, 2014. Proceedings, volume 8576 of Lecture Notes in Computer Science, pages
194–209. Springer, 2014. doi:10.1007/978-3-319-09620-9_16.

2 Dana Angluin, James Aspnes, Jiang Chen, Yinghua Wu, and Yitong Yin. Fast construc-
tion of overlay networks. In Proceedings of the 17th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA’05, page 145, 2005. doi:10.1145/1073970.1073991.

3 Mikhail Atallah and Uzi Vishkin. Finding euler tours in parallel. Journal of Computer and
System Sciences, 29(3):330–337, 1984. doi:10.1016/0022-0000(84)90003-5.

4 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. John Wiley and Sons, Inc., 2nd edition, 2004.

5 John Augustine, Gopal Pandurangan, and Peter Robinson. Distributed algorithmic foun-
dations of dynamic networks. SIGACT News, 47(1):69–98, 2016. doi:10.1145/2902945.
2902959.

6 Petra Berenbrink, Bruce Krayenhoff, and Frederik Mallmann-Trenn. Estimating the num-
ber of connected components in sublinear time. Information Processing Letter, 114(11):639–
642, 2014. doi:10.1016/j.ipl.2014.05.008.

7 Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC’15, pages 143–152, 2015.
doi:10.1145/2767386.2767414.

8 Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum
spanning tree weight in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005.

9 Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan Newman, Ronitt Ru-
binfeld, and Christian Sohler. Approximating the weight of the euclidean minimum
spanning tree in sublinear time. SIAM J. Comput., 35(1):91–109, 2005. doi:10.1137/
S0097539703435297.

10 Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum spanning
trees in sublinear time. SIAM J. Comput., 39(3):904–922, 2009. doi:10.1137/060672121.

11 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC’14, pages 367–376, 2014. doi:10.1145/2611462.2611493.

12 Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, Zhifeng Sun, and Emanuele
Viola. On the complexity of information spreading in dynamic networks. In Sanjeev Khanna,
editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 717–736.
SIAM, 2013. doi:10.1137/1.9781611973105.52.

13 Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the
distributed minimum spanning tree problem. In Proceedings of the 36th ACM Symposium
on Theory of Computing, STOC’04, pages 331–340, 2004. doi:10.1145/1007352.1007407.

14 Michael Elkin. A faster distributed protocol for constructing a minimum spanning tree.
Journal of Computer and System Sciences, 72(8):1282–1308, 2006. doi:10.1016/j.jcss.
2006.07.002.

15 Bernhard Haeupler and David Karger. Faster information dissemination in dynamic net-
works via network coding. In Proceedings of the 30th Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC’11, pages 381–390, 2011. doi:10.1145/1993806.
1993885.

ICALP 2017

http://dx.doi.org/10.1007/978-3-319-09620-9_16
http://dx.doi.org/10.1145/1073970.1073991
http://dx.doi.org/10.1016/0022-0000(84)90003-5
http://dx.doi.org/10.1145/2902945.2902959
http://dx.doi.org/10.1145/2902945.2902959
http://dx.doi.org/10.1016/j.ipl.2014.05.008
http://dx.doi.org/10.1145/2767386.2767414
http://dx.doi.org/10.1137/S0097539703435297
http://dx.doi.org/10.1137/S0097539703435297
http://dx.doi.org/10.1137/060672121
http://dx.doi.org/10.1145/2611462.2611493
http://dx.doi.org/10.1137/1.9781611973105.52
http://dx.doi.org/10.1145/1007352.1007407
http://dx.doi.org/10.1016/j.jcss.2006.07.002
http://dx.doi.org/10.1016/j.jcss.2006.07.002
http://dx.doi.org/10.1145/1993806.1993885
http://dx.doi.org/10.1145/1993806.1993885


137:14 Distributed Monitoring of Network Properties: The Power of Hybrid Networks

16 Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms for finding
spanning forests. Journal of Algorithms, 39(1):1–46, 2001. doi:10.1006/jagm.2000.1146.

17 James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh,
and Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connec-
tivity and mst. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC’15, pages 91–100, 2015. doi:10.1145/2767386.2767434.

18 Joseph JaJa. An Introduction to Parallel Algorithms, volume 17. Addison Wesley, 1992.
19 Donald B. Johnson and Panagiotis Metaxas. A parallel algorithm for computing minimum

spanning trees. Journal of Algorithms, 19(3):383–401, 1995. doi:10.1006/jagm.1995.
1043.

20 Jon Kleinberg and Eva Tardos. Algorithm Design: Pearson New International Edition.
Pearson Education Limited, 2013.

21 Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956. doi:10.
2307/2033241.

22 Fabian Kuhn, Thomas Locher, and Stefan Schmid. Distributed computation of the mode. In
Proceedings of the 27th ACM Symposium on Principles of Distributed Computing, PODC’08,
pages 15–24, 2008. doi:10.1145/1400751.1400756.

23 Fabian Kuhn, Thomas Locher, and Roger Wattenhofer. Tight bounds for distributed se-
lection. In Proceedings of the 19th Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA’07, pages 145–153, 2007. doi:10.1145/1248377.1248401.

24 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC’10,
pages 513–522, 2010. doi:10.1145/1806689.1806760.

25 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
Symposium on Principles of Distributed Computing, PODC’13, pages 42–50, 2013. doi:
10.1145/2484239.2501983.

26 Thomas Locher. Foundations of aggregation and synchronization in distributed systems.
PhD thesis, ETH Zürich, 2009. doi:10.3929/ethz-a-005799819.

27 Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning
tree construction in O(log log n) communication rounds. SIAM J. Comput., 35(1):120–131,
2005. doi:10.1137/S0097539704441848.

28 Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed sta-
ble network construction. In ACM Symposium on Principles of Distributed Computing,
PODC’14, pages 76–85, 2014. doi:10.1145/2611462.2611466.

29 Mark E. J. Newman. The structure of scientific collaboration networks. Proceedings of the
National Academy of Sciences, 98(2):404–409, 2001. doi:10.1073/pnas.98.2.404.

30 Mark E. J. Newman, Steven H. Strogatz, and Duncan J. Watts. Random graphs with
arbitrary degree distributions and their applications. Physical Review E, 64(2):26118, jul
2001. doi:10.1103/PhysRevE.64.026118.

31 Mark E. J. Newman, Duncan J. Watts, and Steven H. Strogatz. Random graph models of
social networks. Proceedings of the National Academy of Sciences, 99(suppl 1):2566–2572,
2002. doi:10.1073/pnas.012582999.

32 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Fast distributed algorithms
for connectivity and mst in large graphs. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA’16, pages 429–438, 2016. doi:10.1145/
2935764.2935785.

33 David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity
of distributed mst construction. In 40th Annual Symposium on Foundations of Computer
Science, FOCS’99, pages 253–261, 1999. doi:10.1109/SFFCS.1999.814597.

http://dx.doi.org/10.1006/jagm.2000.1146
http://dx.doi.org/10.1145/2767386.2767434
http://dx.doi.org/10.1006/jagm.1995.1043
http://dx.doi.org/10.1006/jagm.1995.1043
http://dx.doi.org/10.2307/2033241
http://dx.doi.org/10.2307/2033241
http://dx.doi.org/10.1145/1400751.1400756
http://dx.doi.org/10.1145/1248377.1248401
http://dx.doi.org/10.1145/1806689.1806760
http://dx.doi.org/10.1145/2484239.2501983
http://dx.doi.org/10.1145/2484239.2501983
http://dx.doi.org/10.3929/ethz-a-005799819
http://dx.doi.org/10.1137/S0097539704441848
http://dx.doi.org/10.1145/2611462.2611466
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1073/pnas.012582999
http://dx.doi.org/10.1145/2935764.2935785
http://dx.doi.org/10.1145/2935764.2935785
http://dx.doi.org/10.1109/SFFCS.1999.814597


R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler 137:15

34 Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In Middleware 2001, IFIP/ACM
International Conference on Distributed Systems Platforms, pages 329–350, 2001. doi:
10.1007/3-540-45518-3_18.

35 Robert E. Tarjan and Uzi Vishkin. An efficient parallel biconnectivity algorithm. SIAM J.
Comput., 14(4):862–874, 1985. doi:10.1137/0214061.

36 Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):440–442, 1998. doi:10.1038/30918.

37 Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John
Kubiatowicz. Tapestry: a resilient global-scale overlay for service deployment. IEEE Jour-
nal on Selected Areas in Communications, 22(1):41–53, 2004. doi:10.1109/JSAC.2003.
818784.

ICALP 2017

http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1137/0214061
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1109/JSAC.2003.818784
http://dx.doi.org/10.1109/JSAC.2003.818784

	Introduction
	Model and Problem Statement
	Related Work
	Our Contribution

	Setup Phase
	Three Simple Monitoring Problems
	Bipartiteness
	Minimum Spanning Tree
	Exact MST Weight
	Approximate MST Weight
	Distributed Computation of MSTs

	Future Work

