
Tight Bounds on the Maximum Number of
Shortest Unique Substrings∗

Takuya Mieno1, Shunsuke Inenaga2, Hideo Bannai3, and
Masayuki Takeda4

1 Department of Informatics, Kyushu University, Japan
takuya.mieno@inf.kyushu-u.ac.jp

2 Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

3 Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

4 Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
A substring Q of a string S is called a shortest unique substring (SUS) for interval [s, t] in S,
if Q occurs exactly once in S, this occurrence of Q contains interval [s, t], and every substring
of S which contains interval [s, t] and is shorter than Q occurs at least twice in S. The SUS
problem is, given a string S, to preprocess S so that for any subsequent query interval [s, t] all
the SUSs for interval [s, t] can be answered quickly. When s = t, we call the SUSs for [s, t] as
point SUSs, and when s ≤ t, we call the SUSs for [s, t] as interval SUSs. There exist optimal
O(n)-time preprocessing scheme which answers queries in optimal O(k) time for both point and
interval SUSs, where n is the length of S and k is the number of outputs for a given query. In
this paper, we reveal structural, combinatorial properties underlying the SUS problem: Namely,
we show that the number of intervals in S that correspond to point SUSs for all query positions
in S is less than 1.5n, and show that this is a matching upper and lower bound. Also, we consider
the maximum number of intervals in S that correspond to interval SUSs for all query intervals
in S.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases shortest unique substrings, maximal unique substrings

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.24

1 Introduction

1.1 Shortest unique substring (SUS) problems
A substring Q of a string S is called a shortest unique substring (SUS) for interval [s, t] in
S, if (1) Q occurs exactly once in S, (2) this occurrence of Q contains interval [s, t], and
(3) every substring of S which contains interval [s, t] and is shorter than Q occurs at least
twice in S. The SUS problem is to preprocess a given string S so that for any subsequent
query interval [s, t], SUSs for interval [s, t] can be answered quickly. When s = t, a query
[s, t] refers to a single position in the string S, and the problem is specifically called the point
SUS problem. For clarity, when s ≤ t, the problem is called the interval SUS problem.

∗ This work was in part supported by JSPS KAKENHI Grant Numbers JP25240003, JP26280003,
JP16H02783, JP17H01697.

© Takuya Mieno, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 24; pp. 24:1–24:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Tight Bounds on the Maximum Number of Shortest Unique Substrings

Pei et al. [5] were the first to consider the point SUS problem, motivated by some
applications in bioinformatics. They considered two versions of this problem, depending on
whether a single point SUS has to be returned (the single point SUS problem) or all point
SUSs have to be returned (the all point SUSs problem) for a query position.

There is a series of research for the single point SUS problem. Pei et al. [5] gave an
O(n2)-time preprocessing scheme which returns a single point SUS for a query position in
O(1) time, where n is the length of the input string. Tsuruta et al. [6] and Ileri et al. [3]
independently showed optimal O(n)-time preprocessing schemes which return a single point
SUS for a query position in O(1) time. Hon et al. [1] proposed an in-place algorithm for the
same version of the problem, achieving the same bounds as the above solutions.

For the all point SUS problem which is more difficult, Tsuruta et al. [6] and Ileri et al. [3]
also showed optimal algorithms achieving O(n) preprocessing time and O(k) query time,
where k is the number of all point SUSs for a query point.

Hu et al. [2] were the first to consider the interval SUS problem, and they proposed an
optimal algorithm for the interval SUS problem, using O(n) time for preprocessing and O(k′)
time for queries, where k′ is the number of interval SUSs for a query interval. Recently, Mieno
et al. [4] proposed an algorithm which solves the interval SUS problem on strings represented
by run-length encoding (RLE). If r is the size of the RLE of a given string of length n, then
r ≤ n always holds. Mieno et al.’s algorithm uses O(r) space, requires O(r log r) time to
construct, and answers all SUSs for a query interval in O(k′ +

√
log r/ log log r) time.

A substring X of a string S is said to be a minimal unique substring (MUS) of S, if (i)
X occurs in S exactly once and (ii) every proper substring of X occurs at least twice in S.
All the above algorithms for the SUS problems pre-compute all MUSs of the input string S
(or some data structure which is essentially equivalent to MUSs), and extensively use MUSs
to return the SUSs for a query position or interval.

Tsuruta et al. [6] showed that the maximum number of MUSs contained in a string of
length n is at most n. This immediately follows from the fact that MUSs do not nest. Mieno
et al. [4] proved that the maximum number of MUSs in a string is bounded by 2r− 1, where
r is the size of the RLE of the string. They also showed a series of strings which have 2r − 1
MUSs, and hence this bound is tight. These properties played significant roles in designing
efficient algorithms for the SUS problems.

On the other hand, structural properties of SUSs are not well understood. A trivial
upperbound for the maximum number of intervals that correspond to point SUSs is 3n, since
every MUS can be a SUS for some position of the input string S, and for each query position
p (1 ≤ p ≤ n), there can be at most 2 SUSs that are not MUSs (one that ends at position p
and the other that begins at position p).

1.2 Our contribution
The main contribution of this paper is matching upper and lower bounds for the maximum
number of SUSs for the point SUS problem, which translate to “less than 1.5n point SUSs”.
Namely, we prove that any string of length n contains at most (3n− 1)/2 SUSs for the point
SUS problem. We give a series of strings which contains (3n− 1)/2 SUSs for any odd number
n ≥ 5. Therefore, our bound is tight, and to our knowledge, this is the first non-trivial result
for structural properties of SUSs.

We also consider the maximum number of SUSs for the interval SUS problem. In so
doing, we exclude a special case where a query interval [s, t] itself is a unique substring that
occurs exactly once in S. This is because we have Θ(n2) bounds for such trivial SUSs. We
then prove that any string of length n contains less than 2n non-trivial SUSs for the interval

T. Mieno, S. Inenaga, H. Bannai, and M. Takeda 24:3

SUS problem. We also prove that there exists a string of length n which contains (2− ε)n
non-trivial SUSs for any small number ε > 0.

1.3 Related work
Xu [7] introduced the longest repeat (LR) problem. An interval [i, j] of a string S is said to
be an LR for interval [s, t] if (a) the substring R = S[i..j] occurs at least twice in S, (b) the
occurrence [i, j] of R contains [s, t] and (c) there does not exist an interval [i′, j′] of S such
that j′ − i′ > j − i, the substring S[i′..j′] occurs at least twice in S, and the interval [i′, j′]
contains interval [s, t]. The point and interval LR problems are defined analogously as the
point and interval SUS problems, respectively.

Xu [7] presented an optimal algorithm which, after O(n)-time preprocessing, returns all
LRs for a given interval in O(k′′) time, where k′′ is the number of output LRs. He claimed
that although the point/interval SUS problems and the point/interval LR problems look
alike, these problems are actually quite different, with a support from an example where an
SUS and LR for the same query point seem rather unrelated.

Our (3n− 1)/2 bound for the maximum number of SUSs for the point SUS problem also
supports his claim in the following sense: In the preprocessing, Xu’s algorithm computes the
set of maximal repeats (MR). An interval [i, j] of a string S is said to be an MR if (A) the
substring W = S[i..j] occurs at least twice in S, and (B) for any 1 ≤ i′ ≤ i ≤ j ≤ j′ ≤ n with
j′ − i′ > j − i, the superstring Y = S[i′..j′] of W occurs once in S. It is easy to see that the
maximum number of MRs is bounded by n, since for any position in S, there can be at most
one MR that begins at that position. This bound is also tight: any even palindrome consisting
of n/2 distinct characters contains n intervals for which the corresponding substrings are
MRs (e.g., for even palindrome abcdeedcba of length 10, any interval [i, i] for 1 ≤ i ≤ 10 is
an MR). By definition, any LR of string S is also an MR of S. Hence, the maximum number
of LRs is also bounded by n. Since the above lower bound for MRs with palindromes also
applies to LRs, this upper bound for LRs is also tight. Thus, there is a gap of (n − 1)/2
between the maximum numbers of SUSs and LRs.

2 Preliminaries

2.1 Notations
Let Σ be the alphabet. An element of Σ∗ is called a string. We denote the length of string S
by |S|. The empty string is the string of length 0. For any string S of length n and integer
1 ≤ i ≤ n, let S[i] denote the ith character of S. For any 1 ≤ i ≤ j ≤ n, let S[i..j] denote the
substring of S that starts at position i and ends at position j in S. For convenience, S[i..j]
is the empty string if i > j. For any strings S and w, let #occS(w) denote the number of
occurrences of w in S, namely, #occS(w) = |{i : S[i..i+ |w| − 1] = w}|.

2.2 MUSs and SUSs
Let S be any string of length n, and w be any non-empty substring of S. We say that
w is a repeating substring of S iff #occS(w) ≥ 2, and that w is a unique substring of S
iff #occS(w) = 1. Since any unique substring w of S occurs exactly once in S, we will
sometimes identify w with its corresponding interval [i, j] such that w = S[i..j]. We also say
that interval [i, j] is unique iff the corresponding S[i..j] is a unique substring of S.

A unique substring w = S[i..j] of S is said to be a minimal unique substring (MUS) iff
any proper substring of w is a repeating substring, namely, #occS(S[i′..j′]) ≥ 2 for any i′

CPM 2017

24:4 Tight Bounds on the Maximum Number of Shortest Unique Substrings

1 2 3 4 5 6 7 8 9 10 11

S = aabbaa babaa
All MUSs in S

All point SUSs in S

AllSUSs.eps

Figure 1 For string S = aabbaababaa, the set MS = {[3..4], [4..7], [5..8], [7..9], [8..11]} =
{bb, baab, aaba, bab, abaa} of all MUSs of S is shown in the upper part of the diagram. The
set PSS of all SUSs for all positions of string S is shown in the lower part of the diagram. For
example, the intervals [3..6] = bbaa, [4..7] = baab, [5..8] = aaba, and [6..9] = abab are SUSs for
query position 6, where the first SUS [3..6] is obtained by extending the right-end of MUS [3..4] up
to position 6, the second SUS [4..7] and the third [5..8] are MUSs of S, and the fourth SUS [6..9] is
obtained by extending the left-end of MUS [8..11] up to position 6.

and j′ with i′ ≥ i, j′ ≤ j, and j′ − i′ < j − i. LetMS be the set of all MUSs in S, namely,
MS = {[i, j] : S[i..j] is a MUS of S}. The next lemma follows from the definition of MUSs.

I Lemma 1 ([6]). No element of MS is nested in another element of MS, namely, any two
MUSs [i, j], [k, `] ∈MS satisfy [i, j] 6⊂ [k, `] and [k, `] 6⊂ [i, j]. Therefore, 0 < |MS | ≤ n.

For any substring S[i..j] and an interval [s, t] in S, S[i..j] is said to be a shortest unique
substring (SUS) for interval [s, t] iff
1. S[i..j] is a unique substring of S,
2. [s, t] ⊂ [i, j], and
3. S[i′..j′] is a repeating substring of S for any i′, j′ with [s, t] ⊂ [i′, j′] and j′ − i′ < j − i.

In particular, a SUS for some interval [p, p] of length 1 is said to be a SUS for position p
and is sometimes referred to as a point SUS in S. Also, a SUS for some interval (including
those of length 1) is sometimes referred to as an interval SUS in S.

Since any SUS S[i..j] occurs in S exactly once, we will sometimes identify it with the
interval [i, j] which corresponds to its unique occurrence in S.

Clearly, if [i, j] is unique, then [i, j] is the only SUS for the interval [i, j]. For any interval
[i, j] with i < j, if [i, j] is unique and there is no other interval [s, t] ⊂ [i, j] for which [i, j] is
a SUS, then we say that [i, j] is a trivial interval SUS. Also, we say that [i, j] is a non-trivial
interval SUS if [i, j] is not a trivial SUS.

For any interval [s, t] ⊂ [1, |S|], let SUSS([s, t]) denote the set of interval SUSs of S that
contain query interval [s, t], and ISS the set of all non-trivial interval SUSs of S. Also, for
any position p ∈ [1, |S|], let SUSS(p) denote the set of point SUSs of S that contain query
position p, and PSS the set of all point SUSs of S, namely, PSS =

⋃n
p=1 SUSS(p). Figure 1

shows examples of MUSs and SUSs.
Hu et al. [2] showed that it is possible to preprocess a given string S of length n in O(n)

time so that later, we can return all SUSs that contain a query interval [s, t] in O(k) time,
where k is the number of such SUSs.

As is shown in Lemma 1, the number of MUSs in any string S of length n is bounded
by n. In this paper, we show that the number of point SUSs in S is less than 1.5n, more
precisely, |PSS | ≤ (3n− 1)/2. We will do so by first showing two different bounds on |PSS |
in terms of the number |MS | of MUSs in the string S, and then merging these two results
that lead to the claimed bound. Moreover, this bound is indeed tight, namely, we show

T. Mieno, S. Inenaga, H. Bannai, and M. Takeda 24:5

a series of strings containing (3n − 1)/2 SUSs. In addition, we show that the number of
non-trivial SUSs in S is less than 2n, namely, |ISS | < 2n. We also prove that there exists a
string of length n which contains (2− ε)n non-trivial SUSs for any small number ε > 0.

3 Bounds on the number of point SUSs

Here we show a tight bound for the maximum number of point SUSs in a string. In this
section, whenever we speak of SUSs, we mean point SUSs (those for the point SUS problem).

3.1 Upperbound A
In this subsection, we show our first upperbound on the number of SUSs in a string S. In so
doing, we define the subsets LSS ,MSS , and RSS of the set PSS of all SUS of string S by

LSS = PSS ∩ {[x, y] 6∈ MS : x < ∃i ≤ y [i, y] ∈MS},
MSS = PSS ∩MS , and
RSS = PSS ∩ {[x, y] 6∈ MS : x ≤ ∃j < y [x, j] ∈MS}.

Intuitively, LSS is the set of SUSs of S which are not MUSs of S and can be obtained by
extending the beginning positions of some MUSs to the left up to query positions,MSS is
the set of SUSs of S which are also MUSs of S, and RSS is the set of SUSs of S which are
not MUSs of S and can be obtained by extending the ending positions of some MUSs to the
right up to query positions.

It follows from their definitions that LSS ∩MSS = φ,MSS ∩RSS = φ, RSS ∩LSS = φ

and that PSS = LSS ∪MSS ∪RSS .
Figure 3 in the next subsection shows examples of LSS , MSS , and RSS for string

S = aabbaababaa. Also compare it with Figure 1 which shows PSS for the same string S.
In the proof of the following theorem, we will evaluate the sizes of these three sets LSS ,

MSS , and RSS separately.

I Theorem 2. For any string S, |PSS | ≤ 2|S| − |MS |.

Proof. Let n = |S| and m = |MS |. For any 1 ≤ i ≤ m, let [bi, ei] denote the MUS of S that
has the ith smallest beginning position inMS .

It is clear that |MSS | ≤ m. Note that the inequality is due to that fact that some MUS
may not be a point SUS for any position in S (such a MUS is called meaningless in the
literature [6]).

Next, we consider the size of RSS . By definition, for any [x, y] ∈ RSS , x is equal to
the beginning position of a MUS of S. Therefore, we can bound |RSS | by summing up
the number of SUSs that begin with bi for every [bi, ei] ∈ MS . For any 1 ≤ i ≤ m − 1,
consider two adjacent MUSs [bi, ei], [bi+1, ei+1] ∈ MS . Recall that bi < bi+1. Then, for
any j ≥ ei+1, the interval [bi, j] contains both MUSs [bi, ei] and [bi+1, ei+1]. This implies
that [bi, j] 6∈ PSS (see Figure 2), since otherwise both [bi, j] and [bi+1, j] are SUSs for
position j, a contradiction. Thus, for any [bi, ei] ∈ MS with 1 ≤ i ≤ m − 1, the number
of SUSs that begin with bi and belong to RSS is at most ei+1 − ei − 1. Also, the number
of SUSs that begin with bm and belong to RSS is at most n − em. Consequently, we get
|RSS | =

∑m−1
i=1 (ei+1 − ei − 1) + n− em = em − e1 − (m− 1) + n− em ≤ n−m.

A symmetric argument gives us the same bound for |LSS |, namely, |LSS | ≤ n − m.
Overall, we obtain |PSS | = |LSS |+ |MSS |+ |RSS | ≤ 2(n−m) +m = 2n−m. J

CPM 2017

24:6 Tight Bounds on the Maximum Number of Shortest Unique Substrings

bi ei bi+1 ei+1

・ ・ ・

・ ・ ・
Intervals not in RSS

Candidates for
the elements of RSS

S
n1

Figure 2 Illustration for Theorem 2. Consider two adjacent MUSs [bi, ei] and [bi+1, ei+1] depicted
as the two intervals on the top. For any ei < e < ei+1, [bi, e] can be an element of RSS . On the
other hand, for any e′ ≥ ei+1, [bi, e′] can never be an element of PSS since [bi, e′] contains two
distinct MUSs [bi, ei] and [bi, ei+1], and hence [bi, e′] can never be an element of RSS as well.

3.2 Upperbound B
In this subsection, we provide another upperbound on the size of PSS .

I Theorem 3. For any string S, |PSS | ≤ |S|+ |MS | − 1.

In order to show Theorem 3, we will use a function f : PSS → {1, 2, . . . , n} and its
inverse image f−1 : {1, 2, . . . , n} → 2PSS . The next lemma is useful to define f and f−1.

I Lemma 4. For any string S and interval [x, y] such that 1 ≤ x ≤ y ≤ |S|, if [x, y] ∈ RSS
then [x, y] ∈ SUSS(y), and if [x, y] ∈ LSS then [x, y] ∈ SUSS(x).

Proof. We first prove the former case. Assume on the contrary that some [x, y] ∈ RSS
satisfies [x, y] 6∈ SUSS(y). This implies that there exists a position p in S such that x ≤ p < y

and [x, y] ∈ SUSS(p). In addition, since [x, y] ∈ RSS , there exists a position q such that
x ≤ q < y and [x, q] ∈ MS . Let z = max{p, q}. Then, S[x..z] is a unique substring of S
which is shorter than S[x..y] and contains position p. However, this contradicts that S[x..y]
is a SUS for position p. Thus, if [x, y] ∈ RSS then [x, y] ∈ SUSS(y). The latter case is
symmetric and thus can be shown similarly. J

We are now ready to define f :

f([x, y]) =
{
x if [x, y] ∈ LSS ∪MSS ,
y if [x, y] ∈ RSS .

Intuitively, the function f charges a given interval [x, y] to its beginning position x if [x, y]
is an element ofMS ∩ PSS or if [x, y] is an element of SUSS(p) for some query position p
which is obtained by extending the left-end of a MUS to the left up to p. On the other hand,
it charges [x, y] to its ending position y if the interval is an element of SUSS(p) for some
query position p which is obtained by extending the right-end of a MUS to the right up to p.
Figure 3 shows examples for how the function f charges given interval [x, y] ∈ PSS .

We also define the inverse image f−1 of f as follows:

f−1(u) = {[x, y] ∈ PSS : f([x, y]) = u}.

For positions u for which there is no element [x, y] in PSS satisfying f([x, y]) = u, let
f−1(u) = ∅. See also Figure 3 for examples of f−1.

T. Mieno, S. Inenaga, H. Bannai, and M. Takeda 24:7

1 2 3 4 5 6 7 8 9 10 11

S = aabbaababaa
All MUSs in S

Intervals in RSS

3TypeSUSs.eps

Intervals in MSS

Intervals in LSS

Figure 3 Illustration for functions f and f−1 of string S = aabbaababaa. The upper part
of this diagram shows all MUSs in S, and the lower part shows all SUSs for all positions in
S. Each star shows the position to which the function f maps the corresponding interval. Here,
RSS = {[3, 5], [3, 6], [7, 10]},MSS = {[3, 4], [4, 7], [5, 8], [7, 9], [8, 11]}, and LSS = {[1, 4], [2, 4], [6, 10]}.
Hence, we have f([3, 5]) = 5, f([3, 6]) = 6, f([7, 10]) = 10, f([3, 4]) = 3, f([4, 7]) = 4, f([5, 8]) = 5,
f([7, 9]) = 7, f([8, 11]) = 8, f([1, 4]) = 1, f([2, 4]) = 2, and f([6, 10]) = 6. For the inverse image,
f−1, we have f−1(1) = {[1, 4]}, f−1(2) = {[2, 4]}, f−1(3) = {[3, 4]}, f−1(4) = {[4, 7]}, f−1(5) =
{[3, 5], [5, 8]}, f−1(6) = {[3, 6], [6, 10]}, f−1(7) = {[7, 9]}, f−1(8) = {[8, 11]}, f−1(9) = f−1(11) = ∅,
and f−1(10) = {[7, 10]}.

By the definition of f−1, it is clear that |PSS | =
∑|S|
u=1 |f−1(u)|. Hence, in what follows

we analyze |f−1(u)| for all positions u in string S.

I Lemma 5. For any string and position 1 ≤ u ≤ |S|, |f−1(u)| ≤ 2.

Proof. Assume on the contrary that |f−1(u)| ≥ 3 for some position u in S. Let [x1, y1],
[x2, y2] be any distinct elements of f−1(u). We firstly consider the following cases.
1. Case where [x1, y1], [x2, y2] ∈ LSS : It follows from the definition of f−1 that f([x1, y1]) =

f([x2, y2]) = u, and it follows from the definition of f that x1 = x2 = u. Since [x1, y1]
and [x2, y2] are distinct, y1 6= y2. Assume w.l.o.g. that y1 < y2. Then, [x2, y2] = [u, y2] is
a SUS for position u but it is longer than another SUS [x1, y1] = [u, y1] for position u, a
contradiction.

2. Case where [x1, y1], [x2, y2] ∈MSS : It follows from the definition of f−1 that f([x1, y1]) =
f([x2, y2]) = u, and it follows from the definition of f that x1 = x2 = u. Since [x1, y1]
and [x2, y2] are distinct, y1 6= y2. Assume w.l.o.g. that y1 < y2. Then, [x2, y2] = [u, y2] is
a MUS, but it contains another MUS [x1, y1] = [u, y1], a contradiction.

3. Case where [x1, y1], [x2, y2] ∈ RSS : This is symmetric to Case (1) and thus we can obtain
a contradiction in a similar way.

Hence, none of the above three cases is possible, and thus the remaining possibility is the
case where |f−1(u)| = 3 and each element of f−1(u) belongs to a different subset of PSS ,
namely, f−1(u) = {[x1, y1], [x2, y2], [x3, y3]} for some [x1, y1] ∈ LSS , [x2, y2] ∈ MSS , and
[x3, y3] ∈ RSS . It follows from the definition of f−1 that f([x1, y1]) = f([x2, y2]) = u, and
it follows from the definition of f that x1 = x2 = u. Since [x1, y1] and [x2, y2] are distinct,
y1 6= y2. There are two sub-cases.
(i) If y1 < y2, then a MUS [x2, y2] = [u, y2] contains a shorter SUS [x1, y1] = [u, y1] for

position u, a contradiction.
(ii) If y1 > y2, then a SUS [x1, y1] = [u, y1] for position u contains a shorter MUS [x2, y2] =

[u, y2], a contradiction.
Hence, neither of the sub-cases is possible.

Overall, we conclude that |f−1(u)| ≤ 2. J

CPM 2017

24:8 Tight Bounds on the Maximum Number of Shortest Unique Substrings

By Lemma 5, for any position u in string S we have |f−1(u)| ≤ 2. Now let us consider
any position u for which |f−1(u)| = 2. We have the next lemma.

I Lemma 6. For any position u in string S for which |f−1(u)| = 2, let f−1(u) =
{[x1, y1], [x2, y2]} and assume w.l.o.g. that x1 ≤ x2. Then, x1 6= x2, [x1, y1] ∈ RSS
and [x2, y2] ∈ LSS ∪MSS.

Proof. Suppose x1 = x2 and assume w.l.o.g. that y1 < y2. Then, from the definition of
f , we have that (x1 = u or y1 = u) and (x2 = u or y2 = u) and thus x1 = x2 = u. Since
[x2, y2] ∈ f−1(u) is not a MUS since it includes [x1, y1], it must be that [x2, y2] ∈ SUSS(u).
This is a contradiction, because there exists a shorter unique substring [x1, y1] that contains
u. Thus we have x1 6= x2. Assume on the contrary that [x1, y1] ∈ LSS ∪MSS . Then, it
follows from the definition of f that f([x1, y1]) = x1. In addition, since [x1, y1] ∈ f−1(u), we
have u = x1. This implies that u = x1 < x2, but it contradicts that [x2, y2] ∈ f−1(u). Thus,
[x1, y1] 6∈ LSS ∪MSS , namely, [x1, y1] ∈ RSS . Now, it follows from the arguments in the
proof of Lemma 5 that [x2, y2] 6∈ RSS , and hence [x2, y2] ∈MSS ∪ LSS . J

Let m = |MS |, andMS = {[b1, e1], . . . , [bm, em]}. The next corollary immediately follows
from Lemmas 4 and 6.

I Corollary 7. For any position u in string S with |f−1(u)| = 2, there exist two integers
1 ≤ i < j ≤ m such that SUSS(u) = {[bi, u], [u, ej]}.

For any position u in string S before b1 or after bm, we have the next lemma.

I Lemma 8. For any position u in string S s.t. 1 ≤ u ≤ b1 or bm < u ≤ n, |f−1(u)| ≤ 1.

Proof. Assume on the contrary that |f−1(u)| = 2 for some 1 ≤ u ≤ b1. By Lemma 6, there
exists [x, y] ∈ f−1(u) such that [x, y] ∈ RSS . By the definitions of f and f−1, we have y = u.
Also, by the definition of RSS , there exists a position e < y in S such that [x, e] ∈MS . Now
we have x ≤ e < y = u ≤ b1, however, this contradicts that b1 is the beginning position of
the first (leftmost) MUS inMS . Thus |f−1(u)| ≤ 1 for any 1 ≤ u ≤ b1.

Assume on the contrary that |f−1(u)| = 2 for some bm < u ≤ n. By Lemma 6, there
exists [x′, y′] ∈ f−1(u) such that [x′, y′] ∈MSS ∪ LSS . By the definition of f and f−1, we
have x′ = u. There are two cases to consider:

If [x′, y′] ∈ MSS , then [x′, y′] ∈ MS . Thus x′ = u > bm is the beginning position of
a MUS inMS , however, this contradicts that bm is the beginning position of the last
(rightmost) MUS inMS .
If [x′, y′] ∈ LSS , then by the definition of LSS there exists a position b > x′ such that
[b, y′] ∈ MS . Now we have b > x′ = u > bm, however, this contradicts that bm is the
beginning position of the last (rightmost) MUS inMS .

Consequently, |f−1(u)| ≤ 1 for any bm < u ≤ n. J

I Lemma 9. For any non-empty string S, let U = {u : |f−1(u)| = 2}. Then, |U | ≤ |MS |−1.

Proof. Let n = |S| and m = |MS |. Recall that for any 1 ≤ i ≤ m, [bi, ei] denotes the ith
element ofMS .

Let B = {bi : 1 ≤ i ≤ m − 1}. We define function g : U → B as g(u) = max{b <
u : b ∈ B}. By the definition of U and Lemma 8, any position u ∈ U satisfies b1 < u ≤ bm.
Therefore, g(u) is well-defined for any position u ∈ U , and g(u) returns the predecessor of u
in the set B. It is clear that |B| = m− 1. Thus, if g is an injection, then we immediately
obtain the claimed bound |U | ≤ |B| = m− 1.

T. Mieno, S. Inenaga, H. Bannai, and M. Takeda 24:9

bk u1 bi+1 ei+1
S

u2 ≤<<

MUS MUS

l2 l2

l1

injective.eps

Figure 4 Illustration for Lemma 9. The two intervals show two MUSs [bk, ek], [bi+1, ei+1] ∈MS ,
where bk ≤ bi. Both [bk, u2] and [u2, bi+1] are SUSs for position u2, and [u1, ei+1] is a SUS for
position u1. Since u1 < u2, it holds that l1 > l2, where l1 and l2 are the lengths of SUSs for positions
u1 and u2, respectively. Then, the interval [bk, u2] of length l2 contains position u1 and S[bk..u2] is
a unique substring of S. However, this contradicts that l1 is the length of each SUS for position u1.

In what follows, we show that g is indeed an injection. Assume on the contrary that g is not
an injection. Let u1 and u2 be elements in U such that u1 < u2 and g(u1) = g(u2). Let bi ∈ B
such that bi = g(u1) = g(u2). Then, by the definition of g, we have bi < u1 < u2 ≤ bi+1. See
Figure 4 for illustration.

Let l1 and l2 be the lengths of the SUSs for positions u1 and u2, respectively. Since
|f−1(u2)| = 2, it follows from Corollary 7 that there exists bk ∈ B such that bk ≤ bi and
SUSS(u2) = {[bk, u2], [u2, ei+1]}. This implies l2 = u2− bk + 1 = ei+1− u2 + 1. On the other
hand, since |f−1(u1)| = 2, it follows from Corollary 7 that [u1, ei+1] ∈ SUSS(u1), which
implies l1 = ei+1 − u1 + 1. Since u1 < u2, we have l1 > l2.

Now focus on a SUS [bk, u2] for position u2. Since bk ≤ bi < u1 < u2, [bk, u2] contains
u1. However, [bk, u2] is a SUS for position u2 and is of length l2 < l1. This contradicts that
[u1, ei+1] of length l1 is each SUS for position u1. Hence g is an injection. J

We are ready to prove the main result of this subsection, Theorem 3.

Proof. Let n = |S|, m = |MS |, U = {u : |f−1(u)| = 2}, and V = {1, · · · , n} \ U . It is
clear that |U | + |V | = n. By Lemma 5, V = {u : |f−1(u)| ≤ 1}. Also, by Lemma 9,
|U | ≤ m− 1. Recall that |PSS | =

∑n
u=1 |f−1(u)|. Putting all together, we obtain |PSS | =∑n

u=1 |f−1(u)| ≤ |V |+ 2|U | = n+ |U | ≤ n+m− 1. J

3.3 Matching upper and lower bounds
We are ready to show the main result of this paper.

I Theorem 10. For any non-empty string S, |PSS | ≤ (3|S| − 1)/2. This bound is tight,
namely, for any odd n ≥ 5 there exists a string T of length n s.t. |PST | = (3n− 1)/2.

Proof. By Theorem 2, we have |MS | ≤ 2|S| − |PSS |. Also, by Theorem 3, we have
|PSS | − |S|+ 1 ≤ |MS |. Thus |PSS | − |S|+ 1 ≤ 2|S| − |PSS |, which immediately leads to
the claimed bound |PSS | ≤ (3|S| − 1)/2.

We show that the above upperbound is indeed tight. For any odd number n = 2k− 1 ≥ 5,
consider string T = a1xa2x · · · ak−1xak, where a1, . . . , ak, x ∈ Σ, ai 6= aj for all 1 ≤ i 6= j ≤ k,
and x 6= ai for all 1 ≤ i ≤ k. For any 1 ≤ i ≤ k, T [2i − 1] = ai is a unique substring
of T , and thus [2i − 1, 2i − 1] ∈ SUST (2i − 1). Also, for any 1 ≤ i ≤ k − 1, T [2i] = x is
a repeating substring of T while T [2i − 1..2i] = aix and T [2i..2i + 1] = xai+1 are unique
substrings of T . This implies that [2i − 1, 2i], [2i, 2i + 1] ∈ SUST (2i). Hence, we have
|PST | = k + 2(k − 1) = 3k − 2 = 3(n+ 1)/2− 2 = (3n− 1)/2. J

CPM 2017

24:10 Tight Bounds on the Maximum Number of Shortest Unique Substrings

3.4 Lower bound for fixed-size alphabet
The lowerbound of Theorem 10 is due to a series of strings over an alphabet of unbounded
size. In this subsection, we fix the alphabet size σ and present a series of strings that contain
many point SUSs.

I Theorem 11. Let n ≥ 2 and 2 ≤ σ ≤ (n+ 3)/2. There exists a string T of length n over
an alphabet of size σ such that |PST | = n+ σ − 2.

Proof. Let Σ = {a1, · · · , aσ−1, x} and T = a1xa2x · · · aσ−1x
n−2σ+3. For any 1 ≤ i ≤ σ − 1,

T [2i − 1] = ai is a unique substring of T , and thus [2i − 1, 2i − 1] ∈ SUST (2i − 1). For
any 1 ≤ j ≤ σ − 2, T [2j] = x is a repeating substring of T while T [2j − 1..2j] = ajx and
T [2j..2j + 1] = xaj+1 are unique substrings of T . This implies that [2j − 1, 2j], [2j, 2j + 1] ∈
SUST (2j). For any 2σ − 2 ≤ k ≤ n − 1, T [2σ − 2..k] = xk−2σ+3 is a repeating substring
of T while T [2σ − 1..k] = aσ−1x

k−2σ+3 is a unique substrings of T . This implies that
[2σ − 1, k] ∈ SUST (k). Also, T [2σ − 1..n] = xn−2σ+2 is a repeating substring of T and
T [2σ−2..n] = xn−2σ+3 is a unique substring of T , and thus [2σ−2..n] ∈ SUST (n). Summing
up all the point SUSs above, we obtain |PST | = σ−1+2(σ−2)+n−2σ+2+1 = n+σ−2. J

4 Bounds on the number of interval SUSs

In this section, we show almost tight bounds for the maximum number of non-trivial interval
SUSs ISS of a string S. The following upper bound for |ISS | can be obtained in an analogous
way to Theorem 2.

I Lemma 12. For any non-empty string S, |ISS | ≤ 2|S| − |MS |.

We also have the following lower bound for |ISS |.

I Lemma 13. For any ε > 0, there exists a string T of length n such that |IST | > (2− ε)n.

Proof. Let x = d3/(2ε)e, T = c1a
xc2a

xc3 and n = |T | = 2x+ 3. Clearly, c1, c2 and c3 are
MUSs of T and are in IST . For all 2 ≤ i ≤ x+1, T [1..i] and T [i..x+2] are unique substrings of
T , and T [2..i] and T [i..x+ 1] are repeating substrings of T . This implies T [1..i] ∈ SUSS([2, i])
and T [i..x + 2] ∈ SUSS([i, x + 1]). Similarly, for all x + 3 ≤ j ≤ 2x + 2, T [x + 2..j] ∈
SUSS([x+ 3, j]) and T [j..2x+ 3] ∈ SUSS([j, 2x+ 2]). Then, we have |IST | = 4x+ 3. Hence,
|IST |− (2−ε)n = 4x+3− (2−ε)(2x+3) = 2εx+3ε−3 = 2εd3/(2ε)e+3ε−3 ≥ 3ε > 0. J

As is shown in the following theorem, the number of non-trivial interval SUSs contained
in the string T of Lemma 13 “almost coincides” with the upper bound of Lemma. Namely:

I Theorem 14. For any ε > 0, there is a string T such that (2|T |− |MT |)− (2− ε)|T | ≤ 5ε.

Proof. For any ε > 0, consider the string T of Lemma 13. We remark that T contains 3 MUSs,
namely, |MT | = 3. Hence, we obtain (2|T | − |MT |)− (2− ε)|T | = ε|T | − |MT | = ε|T | − 3 =
ε(2d3/(2ε)e+ 3)− 3 = 2εd3/(2ε)e+ 3ε− 3 ≤ 2ε(3/(2ε) + 1) + 3ε− 3 = 5ε→ 0 (ε→ 0). J

5 Conclusions and open questions

In this paper, we presented matching upper and lower bounds for the maximum number of
SUSs for the point SUS problem. Namely, we proved that any string of length n can contain
at most (3n− 1)/2 SUSs for the point SUS problem, and showed that this bound is tight
by giving a string of length n containing (3n− 1)/2 SUSs. For a fixed alphabet size σ, we

T. Mieno, S. Inenaga, H. Bannai, and M. Takeda 24:11

also presented a string of length n containing n+ σ − 2 SUSs. Moreover, we showed that
any string of length n which contains m MUSs can have at most 2n−m non-trivial interval
SUSs, and that for any ε > 0 there is a string of length n which contains (2− ε)n non-trivial
interval SUSs.

An interesting future work is to show a non-trivial upper bound of the maximum number
of point SUSs for a fixed alphabet size σ. We conjecture that the tight upper bound matches
our lower bound n + σ − 2. Another future work is to close the small gap between the
upper and lower bounds on the maximum number of non-trivial interval SUSs shown in
Theorem 14.

References
1 Wing-Kai Hon, Sharma V. Thankachan, and Bojian Xu. An in-place framework for ex-

act and approximate shortest unique substring queries. In Khaled M. Elbassioni and
Kazuhisa Makino, editors, Proceedings of the 26th International Symposium on Algorithms
and Computation (ISAAC 2015), volume 9472 of LNCS, pages 755–767. Springer, 2015.
doi:10.1007/978-3-662-48971-0_63.

2 Xiaocheng Hu, Jian Pei, and Yufei Tao. Shortest unique queries on strings. In Edleno Silva
de Moura and Maxime Crochemore, editors, Proceedings of the 21st International Sym-
posium on String Processing and Information Retrieval (SPIRE 2014), volume 8799 of
LNCS, pages 161–172. Springer, 2014. doi:10.1007/978-3-319-11918-2_16.

3 Atalay Mert Ileri, M. Oguzhan Külekci, and Bojian Xu. Shortest unique substring query
revisited. In Alexander S. Kulikov, Sergei O. Kuznetsov, and Pavel A. Pevzner, editors, Pro-
ceedings of the 25th Annual Symposium on Combinatorial Pattern Matching (CPM 2014),
volume 8486 of LNCS, pages 172–181. Springer, 2014. doi:10.1007/978-3-319-07566-2_
18.

4 Takuya Mieno, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Shortest unique
substring queries on run-length encoded strings. In Piotr Faliszewski, Anca Muscholl, and
Rolf Niedermeier, editors, Proceedings of the 41st International Symposium on Mathem-
atical Foundations of Computer Science (MFCS 2016), volume 58 of LIPIcs, pages 69:1–
69:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
MFCS.2016.69.

5 Jian Pei, Wush Chi-Hsuan Wu, and Mi-Yen Yeh. On shortest unique substring queries. In
Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou, editors, Proceedings of
the 29th IEEE International Conference on Data Engineering (ICDE 2013), pages 937–948.
IEEE Computer Society, 2013. doi:10.1109/ICDE.2013.6544887.

6 Kazuya Tsuruta, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Shortest unique
substrings queries in optimal time. In Viliam Geffert, Bart Preneel, Branislav Rovan,
Julius Stuller, and A Min Tjoa, editors, Proceedings of the 40th International Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM 2014), volume
8327 of LNCS, pages 503–513. Springer, 2014. doi:10.1007/978-3-319-04298-5_44.

7 Bojian Xu. On stabbing queries for generalized longest repeat. In Jun Huan, Satoru Miyano,
Amarda Shehu, Xiaohua Tony Hu, Bin Ma, Sanguthevar Rajasekaran, Vijay K. Gombar,
Matthieu-P. Schapranow, Illhoi Yoo, Jiayu Zhou, Brian Chen, Vinay Pai, and Brian G.
Pierce, editors, Proceedings of the 2015 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM 2015), pages 523–530. IEEE Computer Society, 2015. doi:10.
1109/BIBM.2015.7359738.

CPM 2017

http://dx.doi.org/10.1007/978-3-662-48971-0_63
http://dx.doi.org/10.1007/978-3-319-11918-2_16
http://dx.doi.org/10.1007/978-3-319-07566-2_18
http://dx.doi.org/10.1007/978-3-319-07566-2_18
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.69
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.69
http://dx.doi.org/10.1109/ICDE.2013.6544887
http://dx.doi.org/10.1007/978-3-319-04298-5_44
http://dx.doi.org/10.1109/BIBM.2015.7359738
http://dx.doi.org/10.1109/BIBM.2015.7359738

	Introduction
	Shortest unique substring (SUS) problems
	Our contribution
	Related work

	Preliminaries
	Notations
	MUSs and SUSs

	Bounds on the number of point SUSs
	Upperbound A
	Upperbound B
	Matching upper and lower bounds
	Lower bound for fixed-size alphabet

	Bounds on the number of interval SUSs
	Conclusions and open questions

