
A Family of Approximation Algorithms for the
Maximum Duo-Preservation String Mapping
Problem
Bartłomiej Dudek1, Paweł Gawrychowski2, and
Piotr Ostropolski-Nalewaja3

1 Institute of Computer Science, University of Wrocław, Wrocław, Poland
2 Institute of Computer Science, University of Wrocław, Wrocław, Poland; and

University of Haifa, Haifa, Israel
3 Institute of Computer Science, University of Wrocław, Wrocław, Poland

Abstract
In the Maximum Duo-Preservation String Mapping problem we are given two strings and wish to
map the letters of the former to the letters of the latter as to maximise the number of duos. A duo
is a pair of consecutive letters that is mapped to a pair of consecutive letters in the same order.
This is complementary to the well-studied Minimum Common String Partition problem, where
the goal is to partition the former string into blocks that can be permuted and concatenated to
obtain the latter string.

Maximum Duo-Preservation String Mapping is APX-hard. After a series of improvements,
Brubach [WABI 2016] showed a polynomial-time 3.25-approximation algorithm. Our main con-
tribution is that, for any ε > 0, there exists a polynomial-time (2 + ε)-approximation algorithm.
Similarly to a previous solution by Boria et al. [CPM 2016], our algorithm uses the local search
technique. However, this is used only after a certain preliminary greedy procedure, which gives
us more structure and makes a more general local search possible. We complement this with a
specialised version of the algorithm that achieves 2.67-approximation in quadratic time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximation scheme, minimum common string partition, local search

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.10

1 Introduction

A fundamental question in computational biology and, consequently, stringology, is comparing
similarity of two strings. A textbook approach is to compute the edit distance, that is,
the smallest number of operations necessary to transform one string into another, where
every operation is inserting, removing, or replacing a character. While this can be efficiently
computed in quadratic time, a major drawback from the point of view of biological applications
is that every operation changes only a single character. Therefore, it makes sense to also allow
moving arbitrary substrings as a single operation to obtain edit distance with moves. Such
relaxation makes computing the smallest number of operations NP-hard [17], but Cormode
and Muthukrishnan [9] showed an almost linear-time O(logn·log∗ n)-approximation algorithm.
The problem is already interesting if the only allowed operation is moving a substring. This
is usually called the Minimum Common String Partition (MCSP). Formally, we are given
two strings X and Y , where Y is a permutation of X. The goal is to cut X into the least
number of pieces that can be rearranged (without reversing) and concatenated to obtain Y .

© Bartłomiej Dudek, Paweł Gawrychowski, and Piotr Ostropolski-Nalewaja;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 A Family of Approximation Algorithms for the MPSM Problem

MCSP is known to be APX-hard [12]. Chrobak et al. [8] analysed performance of the
simple greedy approximation algorithm, that in every step extracts the longest common
substring from the input strings, and Kaplan and Shafrir [16] further improved their bounds.
This simple greedy algorithm can be implemented in linear time [13], and further tweaked
to obtain better practical results [14]. Also, an exact exponential time algorithm [11] and
different parameterizations were considered [15, 5, 6, 10].

There was also some interest in the complementary problem called the Maximum Duo-
Preservation String Mapping (MPSM), introduced by Chen et al. [7]. The goal there is to
map the letters of X to the letters of Y as to maximise the number of preserved duos. A duo
is a pair of consecutive letters, and a duo of X is said to be preserved if its pair of consecutive
letters is mapped to a pair of consecutive letters of Y (in the same order). MCSP and MPSM
are indeed complementary, as one can think of preserving a duo as not splitting its two
letters apart to see that the number of preserved duos and the number of pieces add up to
|X|. Of course, this does not say anything about the relationship between the approximation
guarantees for both problems. Chen et al. [7] designed a k2-approximation algorithm based
on linear programming for the restricted version of the problem, called k-MPSM, where
each letter occurs at most k times. This was soon followed by an APX-hardness proof
of 2-MPSM and a general 4-approximation algorithm provided by Boria et al. [3]. The
approximation ratio was then improved to 3.5 [2] using a particularly clean argument based
on local search. Finally, Brubach [4] obtained a 3.25-approximation, and Beretta et al. [1]
considered parameterized tractability.

Our main contribution is a family of polynomial-time approximation algorithms for
MPSM: for any ε > 0, we show a polynomial-time (2 + ε)-approximation algorithm. We
complement this with a specialised (and simplified) version of the algorithm that achieves 2.67-
approximation in quadratic time, which already improves on the approximation guarantee
and the running time of the previous solutions, as the running time of the 3.5-approximation
was O(n4). At a high level, we also apply local search, that is, we iteratively try to slightly
change the current solution as long as such a change leads to an improvement. The intuition
is that not being able to find such local improvement should imply a (2 + ε)-approximation
guarantee. This requires considering larger and larger neighbourhoods of the current solution
for smaller and smaller ε and seems problematic already for ε = 1. To overcome this, we
apply local search only after a certain preliminary greedy procedure, which gives us more
structure and makes a more general local search possible.

2 Preliminaries

In the Maximum Duo-Preservation String Mapping (MPSM) we are given two strings X
and Y , where Y is a permutation of X. The goal is to map the letters of X to the letters
of Y as to maximise the number of preserved duos. A duo is a pair of consecutive letters,
and a duo of X is said to be preserved if its pair of consecutive letters is mapped to a
pair of consecutive letters of Y (in the same order). This can be restated by creating a
bipartite graph G = (A∪̇B,E), where n = |X| − 1 = |A| = |B| and A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bn}. Node ai corresponds to duo (X[i], X[i+1]) and similarly bi corresponds
to (Y [i], Y [i+ 1]). Two nodes are connected with an edge if their corresponding duos are the
same, that is, E = {(ai, bj) : X[i] = Y [j] and X[i+ 1] = Y [j + 1]}. See Figure 1.

Now, we want to find a maximum matching in G that corresponds to a proper mapping of
letters between the strings, that is, such that every two consecutive mapped duos (consisting
of three consecutive letters) are mapped to two consecutive duos (in the same order). It is

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:3

x y z a b c b

a b b c x y z

xy yz za ab bc cb

ab bb bc cx xy yz

Figure 1 An optimal solution of MCSP for strings xyzabcb and abbcxyz (left). It corresponds
to a solution of MPSM, where the mapping preserves duos (x, y), (y, z), and (a, b) (right).

Figure 2 Two pairs of overlapping edges (left) and decomposition of a consecutive matching into
streaks (right).

not necessary that all duos are mapped. Formally, a matching M is called consecutive if
every two neighbouring nodes are either matched to two neighbouring nodes (preserving the
order) or at least one of them is unmatched:

∀i,j,j′∈{1..n}
(
〈ai, bj〉 ∈M ∧ 〈ai+1, bj′〉 ∈M

)
⇒
(
j′ = j + 1

)
and a symmetric condition for the other side of the graph. Even though the graph G obtained
as described above from an instance of MPSM has some additional structure, we focus only
on the more general problem where the given bipartite graph G = (A∪̇B,E) is arbitrary
and we are looking for a consecutive matching of maximum cardinality. This was called the
Maximum Consecutive Bipartite Matching (MCBM) by Boria et al. [3].

Definitions. We say that two edges 〈ai, bj〉 and 〈ai′ , bj′〉 are overlapping if |i − i′| ≤ 1
or |j − j′| ≤ 1. Given a consecutive matching M , we define a streak to be a maximal
(under inclusion) set of consecutive edges e1, e2, . . . , ek, such that for some p, q we have that
ei = 〈ap+i, bq+i〉 for all i = 1, 2, . . . , k. See Figure 2. Note that from the definition, ei

overlaps with itself, ei−1 and ei+1 (assuming that these edges exist). This notion is extended
to sets of edges: S1 overlaps with S2 if there exist e1 ∈ S1, e2 ∈ S2 such that e1 overlaps
with e2. Similarly, we define overlaps between an edge and a set of edges. Note that every
consecutive matching M can be uniquely decomposed into a set of streaks such that no two
of them are overlapping with each other.

3 Greedy Algorithm

Consider a simple greedy procedure, that in every step takes the longest possible streak from
G and, if the streak consists of at least k edges, adds it to the solution. See Algorithm 1.

To analyse quality of the returned solution, we fix an optimal solution OPT and would
like to compare |ALG| with |OPT |. Let si be the streak that was removed in the i-th step
of the algorithm and oi be the set of edges from OPT that are overlapping with si, but were
not overlapping with s1, s2, . . . , si−1. In other words, oi consists of those edges from OPT

that after i− 1 steps of the algorithm still could have been added to the solution, but are no
longer available after the i-th step. Note that oi contains all the edges of OPT ∩ si, because
every edge overlaps with itself. Observe that |oi| ≤ 2|si|+ 4 as there can be at most |si|+ 2
edges from oi overlapping with si at each side of G. Moreover, even a stronger property
holds:

CPM 2017

10:4 A Family of Approximation Algorithms for the MPSM Problem

Algorithm 1 Choosing the largest possible streak greedily.
1: function Greedy(k)
2: ALG := ∅
3: while true do
4: s := the largest streak in G
5: if |s| < k then
6: break
7: remove s and all edges overlapping with s from G

8: ALG := ALG ∪ s
9: return ALG

I Lemma 1. |oi| ≤ 2|si|+ 2.

Proof. Suppose that the endpoints of si at one side of the graph (say A) form a sequence
of nodes aj , aj+1, . . . , aj+|si|−1. Define E = {aj−1, aj , . . . , aj+|si|−1, aj+|si|} (assuming that
aj−1 and aj+|si| exist). We will show that at most |si| + 1 edges from oi can end in E .
Then, applying the same reasoning to the other side of the graph will finish the proof. If
|E| < |si| + 2 then the claim holds. Otherwise, if |E| = |si| + 2 there are three cases to
consider:
1. There are two or more streaks from oi ending in E . Then they cannot end in all nodes

from E , because at least two of them would be overlapping with each other. Thus there
is at least one node from E that is not an endpoint of edge from oi, so there are at most
|si|+ 1 of them.

2. There is one streak from oi ending in E . Then the streak cannot be larger than |si|,
because then the greedy algorithm would have taken the larger streak (recall that oi

consists of edges that could have been added to the solution in the i-th step). Thus there
are at most |si| edges of oi ending in E .

3. There is no streak from oi ending in E . Then the statement holds trivially. J

We still need to specify the algorithm for smaller streaks (consisting of less than k edges),
but before doing so in the next section we bound the quality of the solution found by the
greedy algorithm.

Let m be the number of steps performed by the greedy algorithm. The algorithm returns
ALG =

⋃m
i=1 si which should be compared with the set of edges of OPT that can no longer

be taken due to the decisions made by the greedy algorithm, that is,
⋃m

i=1 oi ⊆ OPT . Using
Lemma 1 we can compute the desired ratio as follows:

|
⋃m

i=1 oi|
|
⋃m

i=1 si|
=
∑m

i=1 |oi|∑m
i=1 |si|

≤
∑m

i=1 (2|si|+ 2)∑m
i=1 |si|

= 2 + m · 2∑m
i=1 |si|

≤ 2 + m · 2
m · k

= 2 + 2
k

where the last inequality holds because all taken streaks consist of at least k edges.
To conclude, the solution ALG found by the greedy algorithm is at most 2 + 2

k times
smaller than the set of edges from OPT that is overlapping with ALG. Informally, on average
we discard only a few edges of OPT for every edge from ALG. After running the algorithm
for k = 1, there will be no edges left and thus we have a simple 4-approximation algorithm.
To obtain a better approximation ratio, we will increase k and focus on the subgraph G′
of G consisting of all edges that are not overlapping with any streak si already taken by
the algorithm (and hence still available). The crucial insight is that we can analyse the
performance of the greedy algorithm on G \ G′ and the performance of the algorithm for
small k on G′ separately. We know that the approximation ratio of the greedy algorithm on

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:5

G \ G′ is 2 + 2
k and size of the optimal solution for G′ is at least |OPT −

⋃m
i=1 oi|. Then,

due to the definition of G′, any solution found for G′ can be combined with ALG to obtain
a solution for the original instance, so the final approximation ratio is the maximum of 2 + 2

k

and the ratio of the algorithm used for G′.

4 Algorithm for Small k

As stated above, applying the greedy algorithm with k = 1 immediately implies a 4-
approximation algorithm. For larger values of k we need another phase to find a solution
for the remaining part of the graph. For k = 2, we present a simple algorithm based on
maximum bipartite matching (not consecutive) that can be used to obtain a 3-approximation.
For larger values of k, we first consider k = 3 and design a quadratic-time algorithm based
on the local search technique. Then, we move to a general k and develop a more involved
polynomial-time algorithm that achieves (2 + ε)-approximation.

4.1 3-approximation Based on Maximum Matching for k = 2
After running Greedy(2) there are no streaks of size 2. Recall that G′ = (A∪̇B,E′) is the
subgraph of the original graph G consisting of all edges that are not overlapping with the
already taken edges. Consider the following algorithm:

1. Create a bipartite graph H = (A′∪̇B′, F) where:
A′ = {a(1,2), a(3,4), . . . , a(n−1,n)} and similarly for B′. In other words, nodes of A′
correspond to merged pairs of neighbouring nodes of A (if n is odd, the last node of
A′ corresponds to a single node of A).
F =

{
{a(2i−1,2i), b(2j−1,2j)} : {a2i−1, a2i} × {b2j−1, b2j} ∩ E′ 6= ∅

}
. In other words,

there is an edge between two merged pairs of nodes if there was an edge between a
node from the first pair and a node from the second pair.

2. Find the maximum matching M ′ in H.
3. For every edge of M ′, choose an edge of G′ connecting nodes from the corresponding

pairs (if there are multiple possibilities, choose any of them). Let M be the set of chosen
edges.

4. Let ALG← ∅. Process all edges of M in arbitrary order. For an edge (ai, bj) ∈M :
remove from M all edges ending in nodes ai−1, ai+1, bj−1 and bj+1,
add (ai, bj) to ALG.

5. Return ALG.

Consider the optimal solution OPT . As G′ contains no streaks consisting of 2 or more
edges, the endpoints of any two of its edges cannot be neighbouring. Therefore, OPT can be
translated into a matching in H with the same cardinality, so |OPT | ≤ |M ′|.

We claim that after including an edge (ai, bj) ∈ M in ALG at most 2 other edges are
removed from M . Assume otherwise, that is, there are 3 such edges. Without loss of
generality, one of them ends in ai−1 and one in ai+1. Depending on the parity of i, edge
(ai, bj) and the edge ending in either ai−1 or ai+1 correspond in H to edges ending in the
same node of A′. This is a contradiction, because all edges in M ′ have distinct endpoints.
Because initially |M ′| = |M |, we conclude that |ALG| ≥ |M ′|/3.

Combining the inequalities gives us 3 · |ALG| ≥ |M ′| ≥ |OPT |, so the above algorithm is a
3-approximation for graphs with no streaks of size at least 2. Combining it with Greedy(2),
that guarantees approximation ratio of 2 + 2

k = 2 + 2
2 = 3, gives us a 3-approximation

algorithm for the whole problem.

CPM 2017

10:6 A Family of Approximation Algorithms for the MPSM Problem

Algorithm 2 Local improvements in O(m2n2) time.
1: function LocalImprovements
2: ALG := ∅
3: while true do
4: if ∃e /∈ ALG s.t. ALG ∪ {e} is a valid solution then
5: ALG := ALG ∪ {e}
6: if ∃e1, e2 /∈ ALG, e′ ∈ ALG s.t. ALG \ {e′} ∪ {e1, e2} is a valid solution then
7: ALG := ALG \ {e′} ∪ {e1, e2}
8: if |ALG| was not increased then
9: break

10: return ALG

4.2 2.67-approximation for k = 3
For k = 3 we use procedure LocalImprovements based on the local search technique. See
Algorithm 2. Essentially the same method was used to obtain the 3.5-approximation [2].
The algorithm consists of a number of steps in which it tries to either add a single edge or
remove one edge so that two other edges can be added. However, the crucial difference is
that in our case there are no streaks of size greater than 2 in G′. This allows for a better
bound on the approximation ratio.

Fix an optimal solution OPT . We want to bound the total number C of overlaps between
the edges from ALG and OPT . First, observe that an edge from ALG can overlap with at
most 4 edges from OPT , because there are no streaks of size 3 in the graph. Thus:

4 · |ALG| ≥ C. (1)

Second, let k1 be the number of edges from OPT that overlap with exactly one edge from
ALG. Then all other edges from OPT overlap with at least two edges from ALG (because
otherwise the algorithm would have taken an edge not overlapping with any already taken
edge), so:

C ≥ k1 + 2 · (|OPT | − k1) = 2 · |OPT | − k1. (2)

I Lemma 2. k1 ≤ |ALG|.

Proof. Suppose that k1 > |ALG|. Then there are two edges e1, e2 ∈ OPT that overlap with
only one and the very same edge edel ∈ ALG. But then the algorithm would have increased
size of the solution by removing edel and adding e1 and e2, so we obtain a contradiction. J

Applying Lemma 2 to (2) and combining with (1) we get 4·|ALG| ≥ C ≥ 2·|OPT |−|ALG|
and thus 2.5 · |ALG| ≥ |OPT |. Recall that the approximation ratio of the first greedy part
of the algorithm is 2 + 2

3 < 2.67, so the overall ratio of the combined algorithm is also 2.67.
The algorithm clearly runs in polynomial time as in every iteration of the main loop the size
of ALG increases by one and is bounded by n. In [2] the running time was further optimised
to O(n4), but in the remaining part of this section we will describe how to decrease the time
to O(n2). We will also show how to implement the greedy algorithm in the same O(n2)
complexity, thus obtaining an 2.67-approximation algorithm in O(n2) time.

Greedy part in O(n2) time. We show how to implement Greedy(k) in O(n2) time. Recall
that in every iteration the algorithm chooses the longest streak in the remaining part of the

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:7

graph, includes it in the solution, and removes all edges that overlap with it from the graph.
The procedure terminates if the streak contains less than k edges.

We start with creating a list L of edges 〈x, y〉 sorted lexicographically first by x and then
by y. This can be done in O(n2) time using bucket sort and while sorting we can also retrieve
for every edge the edge that would be its predecessor in a streak. Then we iterate over the
edges in L and split them into streaks. The edges of every streak are stored in a doubly
linked list and every edge stores a pointer to its streak. We also keep streaks grouped by
size, that is, Ds contains all streaks of size s. To allow insertions and deletions in O(1) time,
Ds is internally also implemented as a doubly linked list, but in order not to confuse it with
the lists storing edges inside a streak, later on we will refer to lists Ds as groups.

Having split all edges into streaks and grouped streaks by their sizes, we iterate over
the groups Dn, Dn−1, . . . , Dk and retrieve a streak s from the non-empty group with the
largest index. We add s to the solution and remove all edges overlapping with s from the
graph. Every removed edge either decreases the size of its streak by one or splits it into
two smaller streaks. In both cases, the smaller streak(s) is moved between the appropriate
groups. Removing an edge takes constant time and every edge is removed at most once from
the graph. Similarly, moving or splitting of a streak due to a removed edge takes constant
time as the size of the smaller streak can be computed in constant time by looking at its
first and last edge. Thus, the overall time of the procedure is O(n2).

I Remark. Recall that we have generalised the MPSM problem and now are working with an
arbitrary bipartite graph G. However, if G was constructed from an instance of MPSM, then
finding the longest available streak corresponds to finding the longest string that occurs in
both X and Y without overlapping with any of the previously chosen substrings. Goldstein
and Lewenstein [13] showed how to implement such a procedure in O(n) total time.

Local improvements in O(n2) time. Recall that to analyse the approximation ratio (in
Lemma 2), we only need that after termination of the algorithm there are no three edges
e1, e2 /∈ ALG, edel ∈ ALG such that ALG \ {edel} ∪ {e1, e2} is a valid solution. At a high
level, FastLocalImprovements keeps track of edges that can potentially increase size of
the solution in a queue Q. As long as Q is not empty, we retrieve a candidate edge e from
Q. First, we verify that e /∈ ALG and e overlaps with at most one edge from ALG. If e can
be added to ALG, we do so and continue after adding to Q all edges overlapping with e.
Otherwise, we check if some other edge e′ can be added while removing another edge edel at
the same time using procedure TryAddingPairWith(e), and if so, we add to Q all edges
overlapping with one of the modified edges (e, e′ and edel). See Algorithm 3 and Algorithm 4.

The algorithm uses the following data structures and functions:
For every node v ∈ G′, we keep a list of all edges from E ending in v and separately
edges of ALG ending in v.
Close(e) is the set of nodes of G′ at distance at most 1 from the endpoints of edge e. In
other words, Close(e) is the set of up to 6 nodes where edges overlapping with e can end.
Overlap(e) is the set of edges overlapping with edge e. It is computed on the fly, by
iterating through edges ending in v ∈ Close(e).
Queue Q of candidate edges. For every edge in E we remember if it is currently in Q in
order not to store any duplicates and keep the space usage O(m).
For every node v ∈ G′ we keep a list Lv of edges from E \ALG that overlap with exactly
one edge from ALG and end in v. To keep these lists updated, every time an edge
e = 〈x, y〉 is enqueued or added or removed from ALG, we count the edges from ALG it

CPM 2017

10:8 A Family of Approximation Algorithms for the MPSM Problem

Algorithm 3 Local improvements in O(n2) time.
1: function FastLocalImprovements
2: Q.enqueue(E)
3: while Q is not empty do
4: e := Q.dequeue()
5: if e ∈ ALG or e overlaps with more than one edge from ALG then
6: continue
7: if ALG ∪ {e} is a valid solution then
8: ALG := ALG ∪ {e}
9: Q.enqueue

(
Overlap(e)

)
10: continue
11: TryAddingPairWith(e)

Algorithm 4 Adding a pair with edge e.
1: function TryAddingPairWith(e)
2: edel := the only edge from ALG overlapping with e
3: for each e′ that can be a neighbour of e in a streak do . O(1)
4: if ALG \ {edel} ∪ {e, e′} is a valid solution then
5: ALG := ALG \ {edel} ∪ {e, e′}
6: Q.enqueue

(
Overlap(e) ∪ Overlap(e′) ∪ Overlap(edel)

)
7: return
8: for each node v ∈ Close(edel) \ Close(e) do . O(1)
9: for each edge e′ ∈ Lv do . see Lemma 3

10: if ALG \ {edel} ∪ {e, e′} is a valid solution then
11: ALG := ALG \ {edel} ∪ {e, e′}
12: Q.enqueue

(
Overlap(e) ∪ Overlap(e′) ∪ Overlap(edel)

)
13: return

overlaps with. If there is only one of them, we make sure that e is in Lx and Ly, otherwise
we remove e from Lx and Ly.

Clearly, after termination of the algorithm there is no triple of edges e1, e2 and edel that
can be used to increase the solution, because every time an edge is added to or removed from
the solution, all of its overlapping edges are enqueued. It remains to prove that Algorithm 3
indeed runs in O(n2) time. First, observe that |Close(e)| ≤ 6, so from the definition of
overlapping edges |Overlap(e)| ≤ |Close(e)| · n ∈ O(n), as there are at most n edges ending
in a node. So, every time the algorithm enqueues a set of edges, there are at most O(n) of
them. As this happens only after increasing the size of ALG, which can happen at most n
times, in total there are O(n2) enqueued edges. So it suffices to prove that every time an
edge e is dequeued, it takes O(1) time to check if it can be used to increase the solution.
Here we disregard the time for enqueuing edges due to increasing the size of ALG, as it adds
up to O(n2) as mentioned before. Note that both counting the edges overlapping with e and
finding the unique edge from ALG overlapping with e takes O(1) time, as we just need to
check edges from ALG ending in Close(e). Similarly, as ALG is always a valid solution, each
validity check takes O(1) time, as we always try to modify a constant number of edges. By
the same argument, loops in lines 3 and 8 take constant number of iterations, and also:

I Lemma 3. There are O(1) iterations of the loop in line 9 of TryAddingPairWith(e).

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:9

v

v

edel
e

edel

e

Figure 3 Dotted lines show the only 3 possible edges e′ ∈ Lv that overlap with e. Among any 4
edges in Lv, at least one can be used to increase |ALG| and break the loop.

Algorithm 5 Improvements of bounded size.
1: function BoundedSizeImprovements(t)
2: ALG := ∅
3: while true do
4: for each Eremove, Eadd ⊆ E such that |Eremove| < |Eadd| ≤ t do
5: ALG′ := ALG \ Eremove ∪ Eadd
6: if ALG′ is a valid solution then
7: ALG := ALG′

8: break
9: if ALG was not improved then

10: break
11: return ALG

Proof. Consider an edge e′ ∈ Lv such that ALG′ := ALG \ {edel} ∪ {e, e′} is not a valid
solution. From the definition of Lv, e′ overlaps only with edel ∈ ALG, so both ALG\{edel}∪
{e} and ALG \ {edel} ∪ {e′} are valid solutions. Thus, the only reason for ALG′ not being
valid is that e′ overlaps with e. But v is at distance 2 or more from the endpoint of e, so e
and e′ can be overlapping only at the other side of the graph. There are at most 3 possible
endpoints of such e′ at the other side, see Figure 3. Consequently, after checking 4 edges
from Lv we will surely find one that can be used to increase |ALG|. J

To conclude, Greedy(3) with FastLocalImprovements yield 2.67-approximation in
O(n2) time.

5 (2 + ε)-approximation

Given ε > 0 we would like to create a polynomial time (2 + ε)-approximation algorithm. We
set k = d 2

εe and run Greedy(k) to remove all streaks of size at least k from the graph G.
From now we focus on the subgraph G′ remaining after the first greedy phase and let OPT
denote the optimal solution in G′.

Let t = d 4
εe + 1 and ALG be the solution found by BoundedSizeImprovements(t),

see Algorithm 5. Similarly to the case k = 3, the algorithm tries to improve the current
solution using local optimisations, however now the number of edges that we try to add
or remove in every step is bounded by t (that depends on ε). We want to prove that
(2 + ε) · |ALG| ≥ |OPT |. To this end, we assign (2 + ε) units of credit to every edge of ALG.
Then the goal is to distribute the credits from the edges of ALG to the edges of OPT , so that
every edge of OPT receives at least one credit. Alternatively, we can think of transferring
credits to the streaks from OPT , in such a way that a streak consisting of s edges receives
at least s credits. This will clearly demonstrate the required inequality.

CPM 2017

10:10 A Family of Approximation Algorithms for the MPSM Problem

s s′

e1 e2 e3

Figure 4 Dotted lines denote edges from ALG. According to the scheme, e1 and e2 transfer a
credit to an edge from s, but e3 does not because its endpoint is between s and s′.

Credit distribution scheme. Every edge from ALG distributes (1 + ε
2) credits from each

of its two endpoints independently. Consider an endpoint vi of an edge from ALG. Let
. . . , vi−1, vi, vi+1, . . . be all nodes at the corresponding side of the graph G. If there is an
edge e ∈ OPT ending in vi, then e receives 1 credit. Now consider the case when no edge
of OPT ends in vi. If exactly one edge from OPT ends in vi+1 or vi−1 then the credit is
transferred to that edge. If there are no edges ending there then the credit is not transferred
at all. Finally, if there is an edge e ∈ OPT ending at vi−1 and another edge e′ ∈ OPT ending
at vi+1, then for the time being neither e nor e′ receives the credit. In such a situation we
say that the node vi is between the streak containing e and the streak containing e′, call
the credit uncertain and defer deciding whether it should be transferred to e or e′. Observe
that the only case when an edge e ∈ ALG overlapping with a streak s does not transfer the
credit to s is when the endpoint of e is between two streaks s and s′, see Figure 4. Note that
two credits can be transferred from e to s if both endpoints of e transfer its credits to s.
The remaining ε

2 credits are not transferred to any specific edge yet. We will aggregate and
redistribute them using a more global argument, but first need some definitions.

Gaps and balance. Define the balance of a streak s from OPT as the number of credits
obtained in the described scheme (ignoring the uncertain credits) minus the number of edges
in s. A gap is an edge of OPT that has not received any credits yet and gaps(s) is the number
of gaps in s. Observe that the balance of a streak s is at least −gaps(s). After running the
greedy algorithm and BoundedSizeImprovements(t), even a stronger property holds:

I Lemma 4. The balance of every streak is at least −2.

Proof. Consider a streak s. If there are less than 2 gaps in s then the claim holds. Otherwise,
let g1 and g2 be the first and the last gap in s, so that we can write s = Ag1Mg2B, see
Figure 5. Note that the balance of both A and B is non-negative, as from the definition
there are no gaps inside, so every edge there receives at least one credit. However, there
might be multiple gaps in M . Suppose that the balance of M is negative. But the size of
M is smaller than k < t, so BoundedSizeImprovements(t) would have replaced a subset
of edges from ALG with M to increase size of the solution. Therefore, the balance of M is
nonnegative. Finally, observe that the balance of s is equal to the sum of balances of A,M
and B minus 2 (for the gaps g1 and g2), so it is at least −2 in total. J

The following corollary that follows from the above proof will be useful later:

I Corollary 5. Every streak s with balance −2 can be represented as s = Ag1Mg2B where g1
and g2 are the first and last gap of s, respectively. The balance of Ag1 and g2B is −1 while
the balance of M is 0.

Analysis of the scheme. We construct an auxiliary multi-graph H, where the vertices are
streaks of OPT with balance at least −1. Streaks with balance −2 are split into two smaller

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:11

s

g1 ︸ ︷︷ ︸
M

g2︸ ︷︷ ︸
A

︸︷︷︸
B

Figure 5 Black dots denote endpoints of edges from ALG, g1 and g2 is the first and the last gap,
respectively.

s1 s2e

x

Figure 6 If there is an endpoint x of edge e ∈ ALG that is between two streaks s1, s2 of OP T

then we add an edge between s1 and s2 in H.

streaks (called substreaks) with balance −1 as explained in Corollary 5. We create an edge
between two streaks in H when they both overlap with an endpoint of an edge from ALG.
In other words, when edge e from ALG has an endpoint x overlapping with two streaks of
OPT , then there is an edge in H between the vertices corresponding to these streaks, see
Figure 6. Observe that then there is no edge of OPT ending in x and there can be at most
two edges between any pair of streaks.

Now we will show that for every connected component of H there are enough credits
to distribute at least one credit to every edge from OPT in the component. The intuition
behind considering the connected components of H is that we have deferred distribution of
the uncertain credits, and now a connected component is a set of streaks that needs to decide
together how to spend those uncertain credits. At a high level, for every connected component
C of H there will be two cases two consider. First, if the balance of C is non-negative, then
we are done. Otherwise, we will show that the balance of C is equal to −1. We also know
that the component is so big that BoundedSizeImprovements was not able to increase
the solution. From this we will conclude that, by gathering the remaining ε

2 credits together,
it is possible to cover the deficit.

Consider one connected component C on w vertices. We want to prove that there are at
least w credits transferred to all edges of C in total. From the construction we have that
every vertex of C has balance at least −1. Moreover, as the component is connected, there
are at least w − 1 edges, each adding one uncertain credit. Thus, the total balance of the
whole component (including the uncertain credits) is at least −1. Observe that the only case
when the total balance of the component is −1 is a tree (with exactly w − 1 edges) where
every node has balance −1. In all other cases the balance is non-negative already.

We denote byKC the set of edges of OPT from all vertices of C (recall that they correspond
to original streaks with balance -1 and substreaks). We also define an auxiliary set MC that
consists of the middle parts M of the original streaks. More precisely, for every streak s of
balance −2, if it was a part of C (due to the substreak Ag1 or g2B, where s = Ag1Mg2B),
we add to MC all edges from M . From Corollary 5, the balance of every such M is 0. Now
consider the following set of edges XC = KC ∪MC . There are two cases to consider depending
on how many credits have been transferred to XC :
1. If there are at least c ≥ 4

ε credits transferred to the edges of XC (each credit from an
endpoint of an edge from ALG), then we can use half of the remaining ε

2 credit of each

CPM 2017

10:12 A Family of Approximation Algorithms for the MPSM Problem

s

A
g1

M
g2

B

x y

M
Ag1 g2Bx y

C C′

Figure 7 As there is an uncertain credit between streaks x and Ag1, there will be an edge between
them in H, so they will be in a connected component C of H. Similarly for g2B and y in C′. Observe
that the middle part M of the split streak s is accounted for in both MC and MC′ .

endpoint and transfer it to the component. Note that for each credit from those c already
assigned to XC there is one endpoint still having additional ε

4 credit that can be spent on
XC . We can use only half of the remaining ε

2 credit because some edges (from the middle
parts of original streaks) can belong to both XC and XC′ for two different components C
and C′, see Figure 7, and they might need to transfer additional credit to both of them.
Thus, for each of the c credits we transfer additional ε

4 credit, so in total we transfer at
least one full credit, which is enough to cover the deficit of the component.

2. In the second case, the edges from XC received less than 4
ε credits, so there are less than

4
ε + 1 edges from OPT (recall that the overall balance of the component is −1). Note
that if we add all edges from XC and remove all edges from ALG that have transferred
credits to the edges from XC , the size of the solution will increase as earlier the overall
balance was negative. The solution will still be valid, because we have removed all edges
from ALG overlapping with the edges of XC . Also for the split streaks, we took edges up
to (but not including) a gap which from the definition does not share an endpoint with
an edge from ALG. Furthermore, as the size of XC is at most 4

ε + 1 ≤ t, it would have
been considered as the set Eadd of edges to be checked by our algorithm. Thus, this case
is impossible, as we would have been able to improve the current solution.

To conclude, every connected component containing w edges receives at least w credits,
so (2 + ε) · |ALG| ≥ |OPT |. As the approximation ratio of the first greedy part is also (2 + ε),
as explained before the overall algorithm is an (2 + ε)-approximation for MPSM. It remains
to analyse its time complexity. Let m denote the number of edges of G′. There are at most
n steps of the algorithm, as in each of them size of the solution increases by at least one and
is bounded by n. There are

(
m
t

)
∈ O(mt) candidates for Eadd and Eremove and we can check

in O(m) time if a given solution is valid. In total, substituting t = d 4
εe+ 1 the total time

complexity is O(m2t+1) = O(n4t+2) = O(n 16
ε +6) = nO(1/ε).

I Theorem 6. Combining the greedy algorithm with local improvements yields a (2 + ε)-
approximation for MCBM in nO(1/ε) time, for any ε > 0.

I Corollary 7. There exists a (2 + ε)-approximation algorithm for MPSM running in nO(1/ε)

time, for any ε > 0.

References
1 Stefano Beretta, Mauro Castelli, and Riccardo Dondi. Parameterized tractability of the

maximum-duo preservation string mapping problem. Theor. Comput. Sci., 646:16–25, 2016.
doi:10.1016/j.tcs.2016.07.011.

2 Nicolas Boria, Gianpiero Cabodi, Paolo Camurati, Marco Palena, Paolo Pasini, and Stefano
Quer. A 7/2-approximation algorithm for the maximum duo-preservation string mapping
problem. In Roberto Grossi and Moshe Lewenstein, editors, Proceedings of the 27th Annual

http://dx.doi.org/10.1016/j.tcs.2016.07.011

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:13

Symposium on Combinatorial Pattern Matching (CPM 2016), volume 54 of LIPIcs, pages
11:1–11:8. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
CPM.2016.11.

3 Nicolas Boria, Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. Improved ap-
proximation for the maximum duo-preservation string mapping problem. In Daniel G.
Brown and Burkhard Morgenstern, editors, Proceedings of the 14th International Work-
shop on Algorithms in Bioinformatics (WABI 2014), volume 8701 of LNCS, pages 14–25.
Springer, 2014. doi:10.1007/978-3-662-44753-6_2.

4 Brian Brubach. Further improvement in approximating the maximum duo-preservation
string mapping problem. In Martin C. Frith and Christian Nørgaard Storm Pedersen,
editors, Proceedings of the 16th International Workshop on Algorithms in Bioinformat-
ics (WABI 2016), volume 9838 of LNCS, pages 52–64. Springer, 2016. doi:10.1007/
978-3-319-43681-4_5.

5 Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz, and Irena Rusu. A fixed-
parameter algorithm for minimum common string partition with few duplications. In
Aaron E. Darling and Jens Stoye, editors, Proceedings of the 13th International Work-
shop on Algorithms in Bioinformatics (WABI 2013), volume 8126 of LNCS, pages 244–258.
Springer, 2013. doi:10.1007/978-3-642-40453-5_19.

6 Laurent Bulteau and Christian Komusiewicz. Minimum common string partition parameter-
ized by partition size is fixed-parameter tractable. In Chandra Chekuri, editor, Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pages
102–121. SIAM, 2014. doi:10.1137/1.9781611973402.8.

7 Wenbin Chen, Zhengzhang Chen, Nagiza F. Samatova, Lingxi Peng, Jianxiong Wang, and
Maobin Tang. Solving the maximum duo-preservation string mapping problem with linear
programming. Theor. Comput. Sci., 530(Complete):1–11, 2014. doi:10.1016/j.tcs.2014.
02.017.

8 Marek Chrobak, Petr Kolman, and Jiří Sgall. The greedy algorithm for the minimum
common string partition problem. ACM Trans. Algorithms, 1(2):350–366, October 2005.
doi:10.1145/1103963.1103971.

9 Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with
moves. ACM Trans. Algorithms, 3(1):2:1–2:19, 2007. doi:10.1145/1219944.1219947.

10 Peter Damaschke. Minimum common string partition parameterized. In Keith A. Crandall
and Jens Lagergren, editors, Proceedings of the 8th International Workshop on Algorithms
in Bioinformatics (WABI 2008), volume 5251 of LNCS, pages 87–98. Springer, 2008. doi:
10.1007/978-3-540-87361-7_8.

11 Bin Fu, Haitao Jiang, Boting Yang, and Binhai Zhu. Exponential and polynomial time
algorithms for the minimum common string partition problem. In Weifan Wang, Xuding
Zhu, and Ding-Zhu Du, editors, Proceedings of the 5th International Conference on Com-
binatorial Optimization and Applications (COCOA 2011), volume 6831 of LNCS, pages
299–310. Springer, 2011. doi:10.1007/978-3-642-22616-8_24.

12 Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum common string partition
problem: Hardness and approximations. Electron. J. Comb., 12, 2005. URL: http://www.
combinatorics.org/Volume_12/Abstracts/v12i1r50.html.

13 Isaac Goldstein and Moshe Lewenstein. Quick greedy computation for minimum common
string partition. Theor. Comput. Sci., 542:98–107, July 2014. doi:10.1016/j.tcs.2014.
05.006.

14 Dan He. A novel greedy algorithm for the minimum common string partition problem.
In Ion I. Mandoiu and Alexander Zelikovsky, editors, Proceedings of the 3rd International
Symposium on Bioinformatics Research and Applications (ISBRA 2007), volume 4463 of
LNCS, pages 441–452. Springer, 2007. doi:10.1007/978-3-540-72031-7_40.

CPM 2017

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://dx.doi.org/10.1007/978-3-662-44753-6_2
http://dx.doi.org/10.1007/978-3-319-43681-4_5
http://dx.doi.org/10.1007/978-3-319-43681-4_5
http://dx.doi.org/10.1007/978-3-642-40453-5_19
http://dx.doi.org/10.1137/1.9781611973402.8
http://dx.doi.org/10.1016/j.tcs.2014.02.017
http://dx.doi.org/10.1016/j.tcs.2014.02.017
http://dx.doi.org/10.1145/1103963.1103971
http://dx.doi.org/10.1145/1219944.1219947
http://dx.doi.org/10.1007/978-3-540-87361-7_8
http://dx.doi.org/10.1007/978-3-540-87361-7_8
http://dx.doi.org/10.1007/978-3-642-22616-8_24
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://dx.doi.org/10.1016/j.tcs.2014.05.006
http://dx.doi.org/10.1016/j.tcs.2014.05.006
http://dx.doi.org/10.1007/978-3-540-72031-7_40

10:14 A Family of Approximation Algorithms for the MPSM Problem

15 Haitao Jiang, Binhai Zhu, Daming Zhu, and Hong Zhu. Minimum common string partition
revisited. J. Comb. Optim., 23(4):519–527, 2012. doi:10.1007/s10878-010-9370-2.

16 Haim Kaplan and Nira Shafrir. The greedy algorithm for edit distance with moves. Inf.
Process. Lett., 97(1):23–27, 2006. doi:10.1016/j.ipl.2005.08.010.

17 Dana Shapira and James A. Storer. Edit distance with move operations. J. Discrete
Algorithms, 5(2):380–392, 2007. doi:10.1016/j.jda.2005.01.010.

http://dx.doi.org/10.1007/s10878-010-9370-2
http://dx.doi.org/10.1016/j.ipl.2005.08.010
http://dx.doi.org/10.1016/j.jda.2005.01.010

	Introduction
	Preliminaries
	Greedy Algorithm
	Algorithm for Small k
	3-approximation Based on Maximum Matching for k
	2.67-approximation for k

	(2+eps)-approximation

