Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

Position Heaps for Parameterized Strings*

Diptarama!, Takashi Katsura?, Yuhei Otomo?,
Kazuyuki Narisawa?, and Ayumi Shinohara®

1 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
diptarama@shino.ecei.tohoku.ac. jp

2 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
katsura@shino.ecei.tohoku.ac.jp

3 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
otomo@shino.ecei.tohoku.ac.jp

4 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
narisawaQecei.tohoku.ac. jp

5 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
ayumi@Qecei.tohoku.ac. jp

—— Abstract

We propose a new indexing structure for parameterized strings, called parameterized position
heap. Parameterized position heap is applicable for parameterized pattern matching problem,
where the pattern matches a substring of the text if there exists a bijective mapping from the
symbols of the pattern to the symbols of the substring. We propose an online construction
algorithm of parameterized position heap of a text and show that our algorithm runs in linear
time with respect to the text size. We also show that by using parameterized position heap, we
can find all occurrences of a pattern in the text in linear time with respect to the product of the
pattern size and the alphabet size.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases string matching, indexing structure, parameterized pattern matching,
position heap

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.8

1 Introduction

String matching problem is to find occurrences of a pattern string in a text string. Formally,
given a text string ¢ and a pattern string p over an alphabet 3, output all positions at which
p occurs in t. Suffix tree and suffix array are most widely used data structures and provide
many applications for various string matchings (see e.g. [11, 6]).

Ehrenfeucht et al. [8] proposed an indexing structure for string matching, called a position
heap. Position heap uses less memory than suffix tree does, and provides efficient search
of patterns by preprocessing the text string, similarly to suffix tree and suffix array. A
position heap for a string ¢ is a sequence hash tree [4] for the ordered set of all suffixes
of ¢t. In [8], the suffixes are ordered in the ascending order of length, and the proposed
construction algorithm processes the text from right to left. Later, Kucherov [13] considered
the ordered set of suffixes in the descending order of length and proposed a linear-time

* This work is supported by Tohoku University Division for Interdisciplinary Advance Research and
Education, InPACT Program of Council for Science, Technology and Innovation (Cabinet Office,
Government of Japan), and JSPS KAKENHI Grant Number JP15H05706.

© Diptarama, Takashi Katsura, Yuhei Otomo, Kazuyuki Narisawa, and Ayumi Shinohara;
37 licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).

Editors: Juha Kérkkéinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 8; pp. 8:1-8:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/84869082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2

Position Heaps for Parameterized Strings

online construction algorithm based on the Ukkonen’s algorithm [16]. Nakashima et al. [14]
proposed an algorithm to construct a position heap for a set of strings, where the input is
given as a trie of the set. Gagie et al. [10] proposed a position heap with limited height and
showed some relations between position heap and suffix array.

The parameterized pattern matching that focuses on a structure of strings is introduced
by Baker [2]. Let ¥ and II be two disjoint sets of symbols. A string over ¥ UII is called a
parameterized string (p-string for short). In the parameterized pattern matching problem,
given p-strings t and p, find positions of substrings of ¢ that can be transformed into p by
applying one-to-one function that renames symbols in II. The parameterized pattern matching
is motivated by applying to the software maintenance [1, 2, 3], the plagiarism detection [9],
the analysis of gene structure [15], and so on. Similar to the basic string matching problem,
some indexing structures that support the parameterized pattern matching are proposed,
such as parameterized suffix tree [2], structural suffix tree [15], and parameterized suffix
array [7, 12].

In this paper, we propose a new indexing structure called parameterized position heap for
the parameterized pattern matching. The parameterized position heap is a sequence hash tree
for the ordered set of prev-encoded [2] suffixes of a parameterized string. We give an online
construction algorithm of a parameterized position heap based on Kucherov’s algorithm [13]
that runs in O(nlog (|2| + |II])) time and an algorithm that runs in O(mlog (|| + |I|) +
m|II| + oce) time to find the occurrences of a pattern in the text, where n is the length of the
text, m is the length of the pattern, |X| is the number of constant symbols, |X| is the number
of parameter symbols, and occ is the number of occurrences of the pattern in the text.

2 Notation

Let ¥ and IT be two disjoint sets of symbols. X is a set of constant symbols and II is a set of
parameter symbols. An element of ¥* is called a string, and an element of (X UII)* is called
a parameterized string, or p-string for short. For a p-string w = zyz, z, y, and z are called
prefiz, substring, and suffiz of w, respectively. |w| denotes the length of w, and w[i] denotes
the i-th symbol of w for 1 < i < |w|. The substring of w that begins at position ¢ and ends
at position j is denoted by w[i : j] for 1 < i < j < |w|. Moreover, let w[: i] = w[1 : 7] and
wli ;] = wli : |w|] for 1 < i < |w|. The empty p-string is denoted by ¢, that is |¢| = 0. For
convenience, let w(i : j] = ¢ if i > j. Let N denote the set of all non-negative integers.

Given two p-strings wy and we, wy and wsy are a parameterized match or p-match, denoted
by wy &~ ws, if there exists a bijection f from the symbols of w; to the symbols of ws, such
that f is identity on the constant symbols [2]. We can determine whether w; & wy or not by
using an encoding called prev-encoding defined as follows.

» Definition 1 (Prev-encoding [2]). For a p-string w over ¥ U TI, the prev-encoding for w,
denoted by prev(w), is a string z of length |w| over ¥ U N defined by

wli] if wli] € ¥,
zli] =40 if w(i] € II and w[i] # w[j] for 1 < j < 4,
i —max{j | w[j] = w[i] and 1 < j < i} otherwise.

For any p-strings w; and ws, wy ~ we if and only if prev(w;) = prev(wsy). For example,
given ¥ = {a,b} and II = {u,v,z,y}, s1 = vvuvauuvb and s; = ryxryararyb are p-matches
where prev(w) = prev(wy) = 0022a314b.

The parameterized pattern matching is a problem to find occurrences of a p-string pattern
in a p-string text defined as follows.

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara

1. abb
2. ab
3. bba
4. baa
5. aaba
1234567 891011121314 123456 7891011121314
6. baaba
a bbaabaabaabahb a b baabaabaabahb

(b) (c)

Figure 1 (a) A sequence hash tree for (aab, ab, bba, baa, aaba, baaba). (b) A position heap for
a string abbaabaabaabab, (¢) An augmented position heap for a string abbaabaabaabab. Maximal-
reach pointers for mrp(i) # i are illustrated by doublet arrows.

» Definition 2 (Parameterized pattern matching [2]). Given two p-strings, text ¢ and pattern
p, find all positions ¢ in ¢ such that ¢[i : i + |p| — 1] = p.
For example, let us consider a text t = uvaubuavbv and a pattern p = xayby over ¥ = {a, b}

and IT = {u, v, z,y}. Because p ~ t[2: 6] and p = ¢[6 : 10], we should output 2 and 6.
Throughout this paper, let t be a text of length n and p be a pattern of length m.

3 Position Heap

In this section, we briefly review the position heap for strings. First we introduce the sequence
hash tree that is a trie for hashing proposed by Coffman and Eve [4]. Each edge of the
trie is labeled by a symbol and each node can be identified with the string obtained by
concatenating all labels found on the path from root to the node.

» Definition 3 (Sequence Hash Tree). Let W = (wy,...,w,) be an ordered set of strings
over ¥ and W; = (wy,...,w;) for 1 <i <n. A sequence hash tree SHT (W) = (V,,, E,,) for
W is a trie over ¥ defined recursively as follows. Let SHT(W,;) = (V;, E;). Then,

({e}, 0) (ifi =0),
(VicaoUdpi}, Eio1 U{(qis ¢, pi)}) (if1<i<n).

where p; is the shortest prefix of w; such that p; & V;_1, and ¢; = w;[1 : |p;|—1], ¢ = wy[|ps]].
If no such p; exists, then V; =V,;_y and E; = E;_1.

SHT(W;) = {

Each node in a sequence hash tree stores one or several indices of strings in the input set.
An example of a sequence hash tree is shown in Figure 1 (a).

The position heap proposed by Ehrenfeucht et al. [8] is a sequence hash tree for the
ordered set of all suffixes of a string. Two types of position heap are known. The first
one is proposed by Ehrenfeucht et al. [8], that constructed by the ordered set of suffixes in
ascending order of length and the second one is proposed by Kucherov [13], which constructed
in descending order. We adopt the Kucherov [13] type and his online construction algorithm
for constructing position heaps for parameterized strings in Section 4. Here we recall the
definition of the position heap by Kucherov.

» Definition 4 (Position Heap [13]). Given a string t € £, let S, = (¢[1 :],¢[2:],...,¢[n:])
be the ordered set of all suffixes of ¢ except € in descending order of length. The position
heap PH(t) for t is SHT(S:).

8:3

CPM 2017

8:4 Position Heaps for Parameterized Strings

S
IS
b
=

x

pooflo o

o onfx w
cooo

SR |x v

S o PP PPk o

IS SIS I)

IS S S SIS)

® oY AW —
=Y

=Y
B L)
0

o
coo kbbb Rx
Cw LW W W W W W W[

=Y
O O O O O SO S S

oo
N N S S S N N S S SN SIS

gy
o

Figure 2 Let X = {a}, Il = {z,y} and t = zazyzryryyazyz. (a) A parameterized position heap
PPH(t). Broken arrows denote suffix pointers. (b) An augmented parameterized position heap
APPH (t). Parameterized maximal-reach pointers for pmrp(i) # i are illustrated by doublet arrows.

Each node except the root in a position heap stores either one or two integers those
are beginning positions of corresponding suffixes. We call them regular node and double
node respectively. Assume that ¢ and j are positions stored by a double node v in PH ()
where ¢ < 7, i and j are called the primary position and the secondary position respectively.
Figure 1 (b) shows an example of a position heap.

In order to find occurrences of the pattern in O(m + occ) time, Ehrenfeucht et al. [§]
and Kucherov [13] added additional pointer called mazimal-reach pointer to the position
heap and called this extended data structure as augmented position heap. An example of an
augmented position heap is showed in Figure 1 (c).

4 Parameterized Position Heap

In this section, we propose a new indexing structure called parameterized position heap. It is
based on the position heap proposed by Kucherov [13].

4.1 Definition and Property of Parameterized Position Heap

The parameterized position heap is a sequence hash tree [4] for the ordered set of prev-encoded
suffixes in the descending order of length.

» Definition 5 (Parameterized Position Heap). Given a p-string ¢ € (X UII)", let S; =
(prev(t[1:]), prev(t[2 :]),. .., prev(t[n :])) be the ordered set of all prev-encoded suffixes of the
p-string ¢ except € in descending order of length. The parameterized position heap PPH (t)
for t is SHT'(S¢).

Figure 2 (a) shows an example of a parameterized position heap. A parameterized position
heap PPH(t) for a p-string ¢ of length n consists of the root and nodes that corresponds to
prev(t[1 :]), prev(t[2 :]), ..., prev(t[n :]), so PPH(t) has at most n + 1 nodes. Each node in
PPH (t) holds either one or two of beginning positions of corresponding p-suffixes similar to
the standard position heaps. We can specify each node in PPH (t) by its primary position,
its secondary position, or the string obtained by concatenating labels found on the path from
the root to the node.

Different from standard position heap, prev(t[i :]) = prev(t)[i :] does not necessarily hold
for some cases. For example, for ¢ = xaxyxyxyyaxyxy, prev(t[3 :]) = 0022221a4322 while
prev(t)[3 ;] = 0222221a4322. Therefore, the construction and matching algorithms for the

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara

standard position heaps cannot be directly applied for the parameterized position heaps.
However, we can similar properties to construct parameterized position heaps efficiently.

» Lemma 6. For i and j, where 1 < i < j <mn, if prev(t[i: j]) is represented in PPH(t),
then a prev-encoded string for any substring of t[i : j] is also represented in PPH(t).

Proof. First we will show that prev-encoding of any prefix of ¢[i : j] is represented in PPH (t).
From the definition of prev-encoding, prev(t[i : j])[1 : ¢ — j] = prev(t[i : j — 1]). In other
words, prev(t[i : j — 1]) is a prefix of prev(t[i : j]). From the definition of PPH (t), prefixes of
prev(t[i : j]) are represented in PPH (t). Therefore, prev(t[i : j — 1]) is represented in PPH (t).

Similarly, prev(t[i : j —2]), - -+, prev(t[i : i]) are represented in PPH(t).
Next, we will show that prev-encoding of any suffix of ¢[i : j] is represented in PPH(t).
From the above discussion, there are positions by < by < --- < bj_; = 4 in t such that

prev(t[by : by + k]) = prev(t[i : i + k]). From the definition of parameterized position heap,
prev(t[by + 1 : by + 1]) is represented in PPH(t). Since prev(t[by + 1 : by + k]) is a prefix of
prev(tlbgr1 + 1 : b1 + k+ 1)) for 0 < k < j — 4, if prev(t[by + 1 : by + k]) is represented in
PPH (t) then prev(t[bgy1 + 1 : bg1 + k + 1]) is also represented in PPH (t) recursively. There-
fore, prev(t[bj—; +1:bj_; +j —i]) = prev(t[i + 1 : j]) is represented in PPH(t). Similarly,
prev(t[i +2: 4]), -+, prev(t[j : j]) are represented in PPH (t).

Since any prefix and suffix of prev(¢[i : j]) is represented in PPH(t), we can say that any
substring of prev(t[i : j]) is represented in PPH(t) by induction. <

4.2 Online Construction Algorithm of Parameterized Position Heap

In this section, we propose an online algorithm that constructs parameterized position heaps.
Our algorithm is based on Kucherov’s algorithm, although it cannot be applied easily. The
algorithm updates PH (¢[1 : k]) to PH(¢t[1 : k 4+ 1]) when t[k+ 1] is read, where 1 < k <n—1.
Updating of the position heap begins from a special node, called the active node. A position
specified by the active node is called the active position. At first, we show that there exists a
position similar to the active position in the parameterized position heap.

» Lemma 7. If j is a secondary position of a double node in a parameterized position heap,
then j 4+ 1 is also a secondary position.

Proof. Let i be the primary position and j be the secondary position of node v, where ¢ < j.
This means there is a position h such that prev(t[i : h]) = prev(¢[j :]). By Lemma 6, there is
a node that represents prev(t[i + 1 : h]). Since prev(t[j + 1:]) = prev(t[i + 1 : h]), then j + 1
will be the secondary positions of node prev(t[i + 1 : h]). <

Lemma 7 means that there exists a position s which splits all positions in ¢[1 : n] into two
intervals, similar to the active position in [13]. Positions in [1 : s — 1] and [s : n] are called
primary and secondary positions, respectively. We also call the position s as active position.

Assume we have constructed PPH (¢[1 : k]) and we want to construct PPH(t[1 : k + 1])
from PPH(t[1:k]). The primary positions 1,...,s — 1 in PPH(t[1 : k]) become primary
positions also in PPH(t[1 : k + 1]), because prev(t[i : k]) = prev(t[i : k+1])[1 : k — 1+ 1]
holds for 1 < ¢ < s — 1. Therefore, we do not need to update the primary positions.

On the other hand, the secondary positions s, ...,k require some modifications. When
inserting a new symbol, two cases can occur. The first case is that prev(t[i : k + 1]) is not
represented in PPH (t[1 : k]). In this case, a new node prev(t[i : k + 1]) is created as a child
node of prev(t[i : k]) and position ¢ becomes the primary position of the new node. The
second case is that prev(t[i : k 4+ 1]) was already represented in PPH (t[1 : k]). In this case,

8:5

CPM 2017

8:6

Position Heaps for Parameterized Strings

Figure 3 An example of updating a parameterized position heap, from (a) PPH (zazyyxyz) to
(b) PPH (zazyyxyzx). The updated positions are colored red. The secondary positions 6 and 7 in
PPH (zazyyxyx) are become primary positions in PPH (razyyzryzz), while the secondary position
8 in PPH(zazyyzyx) is become a secondary position of another node in PPH (razyyzyzz). The
active position is updated from 6 to 8.

the secondary position ¢ that is stored in prev(t[i : k]) currently should be moved to the child
node prev(t[i : k + 1]), and position i becomes the secondary position of this node.

From Lemma 6, if the node prev(t[i : k]) has an edge to the node prev(t[i: k + 1]),
prev(t[i + 1 : k]) also has an edge to prev(t[i + 1 : k + 1]). Therefore, there exists r, with
1 < s <r <k, that splits the interval [s : k] into two subintervals [s : — 1] and [r : k], such
that the node prev(t[i : k]) does not have an edge to prev(t[i : k + 1]) for s <i¢ <r —1, and
does have such an edge for r <1i < k.

The above analysis leads to the following lemma that specifies the modifications from
PPH(t[1: k]) to PPH(t[1: k + 1]).

» Lemma 8. Given t € (X UII)", consider PPH(t[1:k]|) for k < n. Let s be the active
position, stored in the node prev(t[s : k]). Let r > s be the smallest position such that node
prev(t[r : k]) has an outgoing edge labeled with prev(t[r : k + 1])[k —r +2]. PPH(t[1: k+ 1])
can be obtained by modifying PPH(t[1 : k]) in the following way:

1. For each node prev(t[i: k]), s <i <r, create a new child prev(t[i : k + 1]) linked by an
edge labeled prev(t[i : k + 1])[k — i + 2]. Delete the secondary position i from the node
prev(t[i : k]) and assign it as the primary position of the new node prev(t[i : k + 1]),

2. For each node prev(t[i : k]), r < i < k, move the secondary position i from the node
prev(t[i : k]) to the node prev(t]i : k + 1]).

Moreover, r will be the active position in PPH(t[1: k + 1]).

Proof. Consider the first case that i be a secondary position in PPH(¢[1: k]) and s <i <.
From the definition of r, there is no node prev(t[i : k + 1]) in PPH(t[i : k]). Therefore, i will
be a primary position of the node prev(t[i : k + 1]) in PPH(¢[1 : k + 1]). We can update the
position heap from PPH(t[1: k]) to PPH(t[1 : k + 1]) by delete i from secondary position
of the node prev(t[i : k]) and create a new node prev(t[i : k + 1]) and assign ¢ to its primary
position for the case s <i < r.

Next case, ¢ be a secondary position in PPH(t[1 : k]) and r < i < k. In this case, there is
a node prev(t[i : k + 1]) in PPH(t[i : k]) and the node prev(t[i : k + 1]) is also represented in
PPH(t[i : k + 1]). Therefore, ¢ will be a secondary position of the node prev(t[i : k + 1]) in

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara

PPH(t[1 : k4 1]). We can update the position heap from PPH(t[1: k]) to PPH(¢[1 : k + 1])
by delete ¢ from secondary position of the node prev(t[i : k]) and assign ¢ as secondary
position of the node prev(t[i : k + 1]) for the case r <i < k.

Since position ¢ for 1 <i < r be a primary position in PPH(t[1 : k + 1]) and position 4
for r < ¢ < k41 be a secondary position in PPH(t[1: k + 1]), r will be the active position
in PPH(t[1: k+1)). <

Figure 3 show an example of updating a parameterized position heap. The modifications
specified by Lemma 8 need to be applied to all secondary positions. In order to perform
these modifications efficiently, we use parameterized suffix pointers.

» Definition 9 (Parameterized Suffix Pointer). For each node prev(t[i : j]) of PPH(t), the
parameterized suffiz pointer of prev(t[i : j]) is defined by psp(prev(t[i : j])) = prev(t[i + 1 : j]).

By Lemma 6, whenever the node prev(t[i : j]) exists, the node prev(t[i + 1 : j]) exists too.
This means that psp(prev(t[i : j])) always exists. During the construction of the parameterized
position heap, let L be the auxiliary node that works as the parent of root and is connected
to root with an edge labeled with any symbol ¢ € £ U 0. We define psp(root) = L.

When s is the active position in PPH (¢[1 : k]), we call prev(t[s : k]) the active node. If no
node holds a secondary position, root becomes the active node and the active position is set
to k + 1. The nodes for the secondary positions s, s + 1, ..., k can be visited by traversing
with the suffix pointers from the active node. Thus, the algorithm only has to memorize the
active position and the active node in order to visit any other secondary positions.

Updating PPH(t[1 : k]) to PPH(¢[1 : k 4 1]) specified by Lemma 8 is processed as the
following procedures. The algorithm traverses with the suffix pointers from the active node
till the node that has the outgoing edge labeled with prev(t[i : k + 1])[k — i + 2] is found,
which is ¢ = r. For each traversed node, a new node is created and linked by an edge
labeled with prev(t[i : k 4+ 1])[k — i 4+ 2] to each node. A suffix pointer to this new node is
set from the previously created node. When the node that has the outgoing edge labeled
with prev(t[i : k + 1])[k — i + 2] is traversed, the algorithm moves to the node that is led to
by this edge, and a suffix pointer to this node is set from the last created node, then the
algorithm assigns this node to be the active node.

A pseudocode of our proposed construction algorithm is given as Algorithm 1. prim(v) and
sec(v) denotes primary and secondary positions of v, respectively. From the property of prev-
encoding, prev(t[i +1: k + 1])[k — i+ 1] = prev(t[i : k4 1]))[k — i + 2] if prev(t[i : k + 1])[k —
i+2]€Xorprev(tfi: k+ 1))[k—i+2] < k—iand prev(t[i + 1 : k])[k — i+ 1] = 0 otherwise.
Therefore, we use a function normalize(c, j) that returns c if ¢ € ¥ or ¢ < j and returns 0
otherwise.

The construction algorithm consists of n iterations. In the i-th iteration, the algorithm
read t[i] and make PPH(¢[1 : i]). In the i-th iteration, the traversal of the suffix pointers as
explained above is done. Since the depth of the current node decreases by traversing a suffix
pointer, the number of the nodes that can be visited by traversal is O(n). For each traversed
node, all the operations such as creating a node, an edge and updating position can be done
in O(log (|X| + |II|)). Therefore, the total time for the traversals is O(nlog (|X| + |II])).

From the above discussion, the following theorem is obtained.

» Theorem 10. Given t € (X UII)™, Algorithm 1 constructs PPH(t) in O(nlog (|X] + |II|))
time and space.

8:7

CPM 2017

8:8 Position Heaps for Parameterized Strings

Algorithm 1: Parameterized position heap online construction algorithm
Input: A p-string t € (X UII)"
Output: A parameterized position heap PPH (t)

1 create root and L nodes;

2 psp(root) = L;

3 child(L,c) = root for ¢ € ¥ U {0};

4 currentNode = root;

5 s=1;

6 for i =1 ton do

7 ¢ = normalize(prev(t)[i], depth(currentNode));

8 lastCreateNode = undefined;

9 while child(currentNode, ¢) = null do
10 create newnode;
11 prim(newnode) = s;
12 child(currentNode, ¢) = newnode;

13 if lastCreateNode # undefined then psp(lastCreateNode) = newnode;
14 lastCreateNode = newnode;

15 currentNode = psp(currentNode);

16 ¢ = normalize(prev(t)[i], depth(currentNode));
17 s=s+1;

18 currentNode = child(currentNode, ¢);

19 if lastCreateNode # undefined then psp(lastCreateNode) = currentNode;
20 while s <n do
21 sec(currentNode) = s;
22 currentNode = psp(currentNode);
23 s=s+1;

4.3 Augmented Parameterized Position Heaps

We will describe augmented parameterized position heaps, the parameterized position heaps
with an additional data structure called the parameterized maximal-reach pointers similar to
the maximal-reach pointers for the position heap [8]. The augmented parameterized position
heap gives an efficient algorithm for parameterized pattern matching.

» Definition 11 (Parameterized Maximal-Reach Pointer). For a position i on ¢, a parameterized
mazximal-reach pointer of pmrp(i) is a pointer from node 4 to the deepest node whose path
label is a prefix of prev(t[i :]).

Obviously, if ¢ is a secondary position, then pmrp(i) is node 7 itself. We assume that the
parameterized maximal-reach pointer for a double node applies to the primary position of
this node. Figure 2 (b) shows an example of an augmented parameterized position heap.
Given a prev-encoded p-string prev(w) represented in an augmented parameterized position
heap APPH(t) and a position 1 < i < n, we can determine whether prev(w) is a prefix of
prev(t[i :]) or not in O(1) time by checking whether pmrp(i) is a descendant of prev(w) or
not. It can be done in O(1) time by appropriately preprocessing APPH (t) [5].

Parameterized maximal-reach pointers can be computed by using parameterized suffix
pointers, similar to [13]. Algorithm 2 shows an algorithm to compute parameterized maximal-
reach pointers. pmrp(i) is computed iteratively for ¢ = 1,2 --- n. Assume that we have
computed pmrp(i) for some i. Let pmrp(i) = prev(t[i : I]). Obviously, prev(t[i +1:1]) is a

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara

Algorithm 2: Augmented parameterized position heap construction algorithm
Input: A p-string t € (X UII)"™ and PPH(t)
Output: An augmented parameterized position heap APPH (t)

1 let t[n + 1] = $ where $ is a symbol that does not appear in ¢ elsewhere;
2 currentNode = root;

31=1;

4 fori=1ton do

5 ¢ = normalize(prev(t)[l],1 — 7);

6 while child(currentNode, ¢) # null do

7 currentNode = child(currentNode, ¢);
8 l=1+1;

9 ¢ = normalize(prev(t)[l],l —i);
10 pmrp(i) = currentNode;
11 currentNode = psp(currentNode);

prefix of the string represented by pmrp(i + 1). Thus, in order to compute pmrp(i + 1), we
should extend the prefix prev(t[i + 1 : I]) = psp(prev(t[i : I])) in PPH (t) until we found !’ such
that node prev(t[i + 1 : I']) does not have outgoing edge labeled with prev(t[i + 1 :])[I' —i+1]
and set pmrp(i + 1) = prev(t[i + 1 : I']). In this time, we need re-compute prev(t[i + 1 :]) by
replacing prev(t[i + 1 :])[j] with 0 if we found that prev(t[i + 1 :])[j] > j. The total number
of extending prev(t[¢ + 1 :!]) in the algorithm is at most n because both i and | always
increase in each iteration. In each iteration, operations such as traversing a child node can
be done in O(log (|X| 4 |I1])). Therefore, we can get the following theorem.

» Theorem 12. Parameterized mazimal-reach pointers for PPH(t) can be computed in
O(nlog (|| + |I1])) time.

4.4 Parameterized Pattern Matching with Augmented Parameterized
Position Heaps

Ehrenfeucht et al. [8] and Kucherov [13] split a pattern p into segments g1, gz, - , gk, then
compute occurrences of gigs---¢q; iteratively for j = 1,.-- k. The correctness depends
on a simple fact that for strings « = t[i : ¢ + |z| — 1] and y = ¢[i + || : i + |2| + |y| — 1]
implies zy = t[i : i + |zvy] — 1]. However, when z, y, and ¢ are p-strings, prev(z) =
prev(tfi : i+ || — 1]) and prev(y) = prev(t[i + || : i + |z| + |y| — 1]) does not necessarily
implies prev(zy) = prev(t[i: i+ |zry| — 1]). Therefore, we need to modify the matching
algorithm for parameterized strings.

Let z, y and w be p-strings such that |w| = |zy|, prev(x) = prev(wl: |z|]) and prev(y) =
prev(w(|z| +1:]). Let us consider the case that prev(zy) # prev(w). From prev(z) =
prev(w[: |z|]) and prev(y) = prev(w[|z| + 1 :]), and y have the same structure of w|[: |z|]
and w(|z| 4+ 1 3], respectively. However, the parameter symbols those are prev-encoded into
0 in prev(y) and prev(w(|z| + 1 :]), might be encoded differently in prev(zy) and prev(w),
respectively. Therefore, we need to check whether prev(zy)||z| + i] = prev(w)||z| + ¢ if
prev(y)[i] = 0. Given prev(xy) and the set of positions of 0 in prev(y), Z = {i | 1 <i <
ly| such that prev(y)[i] = 0}. We need to verify whether prev(zy)[|z| + i] = prev(w)|[|z| + 1]
or not for ¢ € Z. Since the size of Z is at most |II|, this computation can be done in O(|II|)
time.

8:9

CPM 2017

8:10 Position Heaps for Parameterized Strings

Algorithm 3: Parameterized pattern matching algorithm with APPH
Input: t € (SUID)" | p e (XUI)™, and APPH(t)
Output: The list ans of position ¢ such that prev(p) = prev(t[i : i +m — 1])

1 let w be the longest prefix of prev(p) represented in APPH (t) and u be the node
represents w;
2 if |w| = m then
3 v = T100t;
4 for i =1 to m do
5 v = child(v, prev(p)[i]);
6 if pmrp(v) € Desappr)(u) then add prim(v) to ans;
7 add all primary and secondary position of descendants of u to ans;
8 else
9 v = 100t;
10 1=1,7=1;
11 while i < |w| do
12 v = child(v, prev(p)[i]);
13 t=1+1;
14 if pmrp(v) = u then add prim(v) to ans;
15 while i # m do
16 7 =1,V = 100t;
17 Z = empty list;
18 while i # m do
19 ¢ = normalize(prev(p)[i],i — j);
20 if child(v,c) = null then break;
21 if ¢ =0 then add i to Z;
22 v = child(v, ¢);
23 1=1+1;
24 if v = root then return empty list;
25 foreach i’ € ans do
26 if + = m then
27 ‘ if pmrp(i' +j — 1) € Desappu)(v) then remove i’ from ans;
28 else
29 ‘ if pmrp(i’ + j — 1) # v then remove ¢’ from ans;
30 for k=1 to |Z| do
31 if normalize(prev(t)[t’ + Z[k] — 1], Z[k] — 1) # prev(p)[Z[k]] then
32 ‘ remove 7’ from ans;

33 return ans;

A pseudocode of proposed matching algorithm for the parameterized pattern matching
problem is shown in Algorithm 3. Desspp H(t)(u) denotes the set of all descendants of node
uwin APPH(t) including node w itself. The occurrences of p in ¢ have the following properties
on APPH(t).

» Lemma 13. If prev(p) is represented in APPH(t) as a node u then p occurs at position i
iff pmrp(i) is w or its descendant.

Proof. Let u be a node represents prev(p). Assume p occurs at position ¢ in ¢ and represented
in APPH (t) as prev(t[i : k]). Since either prev(t[i : k]) is a prefix of prev(p) or prev(p) is a
prefix of prev(t[i : k]), then i is either an ancestor or descendant of w. For both cases pmrp(7)
is a descendant of u, because p occurs at position 1.

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara

(b)

Figure 4 Examples of finding occurrence positions of a pattern using an augmented parameterized
position heap PPH (raxyzyzyyazyzy). (a) Finding zyzy (prev(zyxy) = 0022). (b) Finding azyz
(prev(azyx) = a002).

Next let ¢ be a node such that pmrp(i) is a descendant of u and represents prev(t[i : k]).

In this case, prev(p) is a prefix of prev(t[i : k]). Therefore p occurs at i. <

» Lemma 14. Assume prev(p) is not represented in APPH(t). We can split p into
q1,92, - ,qr such that q; is the longest prefiz of prev(p[|qr - - - gj—1| + 1 :]) that is represented
in APPH(t). If p occurs at position i in t, then pmrp(i + |qi - - - g;—1|) is the node prev(q;)
for1 <j <k and pmrp(i + |q1 -+ - qr—1|) is the node prev(qy) or its descendant.

Proof. Let p = q1¢2 - - - qr. occurs at position ¢ in ¢. Since prev(qq) is a prefix of prev(p), then
pmrp(i) is the node that represents prev(qy) or its descendant. However, if pmrp(i) is a
descendant of node prev(q;), then we can extend g; which contradicts with the definition of
g1. Therefore, pmrp(i) is the node represents prev(qs).

Similarly for 1 < j < k, prev(q;) is a prefix of prev(p[|qi ---¢;—1| + 1 :]) and occurs at

position i+ ¢ - - - gj—1| in ¢t. Therefore, pmrp(i+ |q1 - - - ¢;—1|) is the node represents prev(g;).

Last, since g, is a suffix of p, then pmrp(i + |¢1 ---¢j—1|) can be the node prev(g) or its
descendant. <

Algorithm 3 utilizes Lemmas 13 and 14 to find occurrences of p in ¢ by using APPH(t).

First, if prev(p) is represented in APPH (t) then the algorithm will output all position ¢ such
that pmrp(¢) is a node prev(p) or its descendant. Otherwise, it will split p into g1g2 - - g
and find their occurrences as described in Lemma 14. The algorithm also checks whether
prev(qi - - - ¢;) occurs in ¢t or not in each iteration as described the above.

Examples of parameterized pattern matching by using an augmented position heap are
given in Figure 4. Let t = razyxryzryyazyxry be the text. In Figure 4 (a) we want to find
the occurrence positions of a pattern p; = zyzy in ¢t. In this case, since prev(p;) = 0022 is
represented in PPH (t), The algorithm outputs all positions ¢ such that pmrp(i) is the node
0022 or its descendants, those are 3, 4, 5, and 11. On the other hand, Figure 4 (b) shows how to
find the occurrence positions of a pattern ps = azyx in ¢. In this case, prev(ps) = a002 is not
represented in PPH (t). Therefore, The algorithm finds the longest prefix of prev(ps) that is
represented in PPH (i), which is prev(pz)[1 : 2] = a0. We can see that prmp(2) = pmrp(10) =
a0, then we save positions 2 and 10 as candidates to ans. Next, The algorithm finds the

node that represents the longest prefix of prev(pz[3 :]) = 00 which is prev(p2[3 :]) = 00 itself.

Since both of pmrp(2 + |p2[1 : 2]|) = pmrp(4) and pmrp(10 + |p2[1 : 2])| = pmrp(12) is
descendants of the node 00, prev(t[2: 5][3]) = prev(t[10 : 13][3]) = prev(p2)[[3]] = 0, and
prev(t[2 : 5][4]) = prev(t[10 : 13][4]) = prev(p2)[4] = 2, then the algorithm outputs 2 and 10.

8:11

CPM 2017

8:12

Position Heaps for Parameterized Strings

The time complexity of the matching algorithm is as follow.
» Theorem 15. Algorithm 3 runs in O(mlog (|X| + |II|) + m|II| + occ) time.

Proof. It is easily seen that we can compute line 4 to 7 in O(mlog (|X| + |TI|) + occ) time.
Assume that p can be decomposed into q1, ¢o, - -+, gi such that ¢, is the longest prefix of p
and g¢; is the longest prefix of prev(p[|q: ---¢;—1| + 1 :]) represented in APPH(t). The loop
for line 15 consists of & — 1 iterations. In the loop line 18 in j-th iteration, ¢;4+1 is extended
up to reach |g; 1] length. This can be computed in O(|g;+1|log (|X] + |II])) time. After k—1
iterations, the total number of extending of ¢;41 does not exceed m, because E§:2|qj| <m.
In the loop for line 25, the algorithm verifies elements of ans. In j-th iteration, the size of
ans is at most |g;|. Thus, after & — 1 iterations, the total number of elements verified in
line 25 does not exceed m by the same reason for that of line 18. In each verification in
line 25, the number of checks for line 27 and 29 is at most |g;|. Therefore, it can be computed
from line 25 to 32 in O(m/|II|) time. |

5 Conclusion and Future Work

For the parameterized pattern matching problem, we proposed an indexing structure called
a parameterized position heap. Given a p-string t of length n over a constant size alphabet,
the parameterized position heap for ¢ can be constructed in O(nlog (|X] + |II|)) time by
our construction algorithm. We also proposed an algorithm for the parameterized pattern
matching problem. It can be computed in O(mlog (|Z| + |II|) + m|II| 4+ occ) time using
parameterized position heaps with parameterized maximal-reach pointers. Gagie et al. [10]
showed an interesting relationship between position heap and suffix array of a string. We will
examine this relation for parameterized position heap and parameterized suffix array [7, 12]
as a future work.

—— References

1 Brenda S. Baker. A program for identifying duplicated code. In H. Joseph Newton, editor,
Proceedings of the 24th Symposium on the Interface of Computing Science and Statistics:
Graphics and Visualization, volume 24, pages 49-57. Interface Foundation of North America,
1992. URL: http://www.dtic.mil/dtic/tr/fulltext/u2/a266571.pdf.

2 Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications.
In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the 25th
Annual ACM Symposium on Theory of Computing (STOC 1993), pages 71-80. ACM, 1993.
doi:10.1145/167088.167115.

3 Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. J. Com-
put. Syst. Sci., 52(1):28-42, 1996. doi:10.1006/jcss.1996.0003.

4 Edward G. Coffman Jr. and James Eve. File structures using hashing functions. Commun.
ACM, 13(7):427-432, 1970. doi:10.1145/362686.362693.

5 Thomas H. Cormen, Charies E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. MIT press, 2009. URL: https://mitpress.mit.edu/books/
introduction-algorithms.

6 Maxime Crochemore and Wojciech Rytter. Jewels of Stringology: Text Algorithms. World
Scientific, 2002. doi:10.1142/9789812778222.

7 Satoshi Deguchi, Fumihito Higashijima, Hideo Bannai, Shunsuke Inenaga, and Masayuki
Takeda. Parameterized suffix arrays for binary strings. In Jan Holub and Jan Zdéarek, edit-
ors, Proceedings of the Prague Stringology Conference 2008, pages 84—94, Czech Technical

http://www.dtic.mil/dtic/tr/fulltext/u2/a266571.pdf
http://dx.doi.org/10.1145/167088.167115
http://dx.doi.org/10.1006/jcss.1996.0003
http://dx.doi.org/10.1145/362686.362693
https://mitpress.mit.edu/books/introduction-algorithms
https://mitpress.mit.edu/books/introduction-algorithms
http://dx.doi.org/10.1142/9789812778222

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara

10

11

12

13

14

15

16

University in Prague, Czech Republic, 2008. URL: http://www.stringology.org/event/
2008/p08.html.

Andrzej Ehrenfeucht, Ross M. McConnell, Nissa Osheim, and Sung-Whan Woo. Posi-
tion heaps: A simple and dynamic text indexing data structure. J. Discrete Algorithms,
9(1):100-121, 2011. doi:10.1016/j.jda.2010.12.001.

Kimmo Fredriksson and Maxim Mozgovoy. Efficient parameterized string matching. Inf.
Process. Lett., 100(3):91-96, 2006. doi:10.1016/j.1ipl.2006.06.009.

Travis Gagie, Wing-Kai Hon, and Tsung-Han Ku. New algorithms for position heaps. In
Johannes Fischer and Peter Sanders, editors, Proceedings of the 24th Annual Symposium on
Combinatorial Pattern Matching (CPM 2013), volume 7922 of LNCS, pages 95-106, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-38905-4_11.
Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. doi:10.1017/CB09780511574931.
Tomohiro I, Satoshi Deguchi, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda.
Lightweight parameterized suffix array construction. In Jiri Fiala, Jan Kratochvil, and
Mirka Miller, editors, Proceedings of the 20th International Workshop on Combinatorial
Algorithms (IWOCA 2009), volume 5874 of LNCS, pages 312-323, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-10217-2_31.

Gregory Kucherov. On-line construction of position heaps. J. Discrete Algorithms, 20:3-11,
2013. StringMasters 2011 Special Issue. doi:10.1016/j.jda.2012.08.002.

Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
The position heap of a trie. In Liliana Calderén-Benavides, Cristina N. Gonzalez-Caro,
Edgar Chéavez, and Nivio Ziviani, editors, Proceedings of the 19th International Sym-
posium on String Processing and Information Retrieval (SPIRE 2012), volume 7608 of
LNCS, pages 360-371, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-34109-0_38.

Tetsuo Shibuya. Generalization of a suffix tree for RNA structural pattern matching. Al-
gorithmica, 39(1):1-19, 2004. doi:10.1007/s00453-003-1067-9.

Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.
doi:10.1007/BF01206331.

8:13

CPM 2017

http://www.stringology.org/event/2008/p08.html
http://www.stringology.org/event/2008/p08.html
http://dx.doi.org/10.1016/j.jda.2010.12.001
http://dx.doi.org/10.1016/j.ipl.2006.06.009
http://dx.doi.org/10.1007/978-3-642-38905-4_11
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1007/978-3-642-10217-2_31
http://dx.doi.org/10.1016/j.jda.2012.08.002
http://dx.doi.org/10.1007/978-3-642-34109-0_38
http://dx.doi.org/10.1007/978-3-642-34109-0_38
http://dx.doi.org/10.1007/s00453-003-1067-9
http://dx.doi.org/10.1007/BF01206331

	Introduction
	Notation
	Position Heap
	Parameterized Position Heap
	Definition and Property of Parameterized Position Heap
	Online Construction Algorithm of Parameterized Position Heap
	Augmented Parameterized Position Heaps
	Parameterized Pattern Matching with Augmented Parameterized Position Heaps

	Conclusion and Future Work

