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Abstract
Tree-adjoining grammars are a generalization of context-free grammars that are well suited to
model human languages and are thus popular in computational linguistics. In the tree-adjoining
grammar recognition problem, given a grammar Γ and a string s of length n, the task is to
decide whether s can be obtained from Γ. Rajasekaran and Yooseph’s parser (JCSS’98) solves
this problem in time O(n2ω), where ω < 2.373 is the matrix multiplication exponent. The best
algorithms avoiding fast matrix multiplication take time O(n6).

The first evidence for hardness was given by Satta (J. Comp. Linguist.’94): For a more general
parsing problem, any algorithm that avoids fast matrix multiplication and is significantly faster
than O(|Γ|n6) in the case of |Γ| = Θ(n12) would imply a breakthrough for Boolean matrix
multiplication.

Following an approach by Abboud et al. (FOCS’15) for context-free grammar recognition, in
this paper we resolve many of the disadvantages of the previous lower bound. We show that, even
on constant-size grammars, any improvement on Rajasekaran and Yooseph’s parser would imply
a breakthrough for the k-Clique problem. This establishes tree-adjoining grammar parsing as a
practically relevant problem with the unusual running time of n2ω, up to lower order factors.
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1 Introduction

Introduced in [14, 15], tree-adjoining grammars (TAGs) are a system to manipulate certain
trees to arrive at strings, see Section 2 for a definition. TAGs are more powerful than context-
free grammars, capturing various phenomena of human languages which require more formal
power; in particular TAGs have an “extended domain of locality” as they allow “long-distance
dependencies” [16]. These properties, and the fact that TAGs are efficiently parsable [29],
make them highly desirable in the field of computer linguistics. This is illustrated by the large
literature on variants of TAGs (see, e.g., [30, 21, 24, 9]), their formal language properties
(see, e.g., [29, 16]), as well as practical applications (see, e.g., [25, 13, 26, 2]), including the
XTAG project which developed a tree-adjoining grammar for the English language [10]. In
fact, TAGs are so fundamental to computer linguistics that there is a biannual meeting called
“International Workshop on Tree-Adjoining Grammars and Related Formalisms” [7], and
they are part of the undergraduate curriculum (at least at Saarland University).
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12:2 Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

The prime algorithmic problem on TAGs is parsing (sometimes called recognition): Given
a TAG Γ and a string s of length n, decide whether Γ can generate s. The first TAG parsers
ran in time1 O(n6) [29, 23], which was improved by Rajasekaran and Yooseph [20] to O(n2ω),
where ω < 2.373 is the exponent of (Boolean) matrix multiplication.

A limited explanation for the complexity of TAG parsing was given by Satta [22], who
designed a reduction from Boolean matrix multiplication to TAG parsing, showing that
any TAG parser running faster than O(|Γ|n6) on grammars of size |Γ| = Θ(n12) yields a
Boolean matrix multiplication algorithm running faster than O(n3). This result has several
shortcomings: (1) It holds only for a more general parsing problem, where we need to
determine for each substring of the given string s whether it can be generated from Γ. (2) It
gives a matching lower bound only in the unusual case of |Γ| = Θ(n12), so that it cannot
exclude time, e.g., O(|Γ|2n4). (3) It gives matching bounds only restricted to combinatorial
algorithms, i.e., algorithms that avoid fast matrix multiplication2. Thus, so far there is no
satisfying explanation of the complexity of TAG parsing.

1.1 Context-free grammars
The classic problem of parsing context-free grammars, with important applications in
programming languages, was in a very similar situation as tree-adjoining grammar parsing
until very recently. Parsers in time O(n3) were known since the 60s [8, 31, 17, 11]. In a
breakthrough, Valiant [27] improved this to O(nω). Finally, a reduction from Boolean matrix
multiplication due to Lee [18] showed a matching lower bound for combinatorial algorithms
for a more general parsing problem in the case that the grammar size is Θ(n6).

Abboud et al. [1] gave the first satisfying explanation for the complexity of context-free
parsing, by designing a reduction from the classic k-Clique problem, which asks whether
there are k pairwise adjacent vertices in a given graph G. For this problem, for any fixed k
the trivial running time of O(nk) can be improved to O(nωk/3) for any k divisible by 3 [19]
(see [12] for the case of k not divisible by 3). The fastest combinatorial algorithm runs in time
O(nk/ logk n) [28]. The k-Clique hypothesis states that both running times are essentially
optimal, specifically that k-Clique has no O(n(ω/3−ε)k) algorithm and no combinatorial
O(n(1−ε)k) algorithm for any k ≥ 3, ε > 0. The main result of Abboud et al. [1] is a reduction
from the k-Clique problem to context-free grammar recognition on a specific, constant-size
grammar Γ, showing that any O(nω−ε) algorithm or any combinatorial O(n3−ε) algorithm
for context-free grammar recognition would break the k-Clique hypothesis, and thus improve
decades-old algorithms. This matching conditional lower bound removes all disadvantages of
Lee’s lower bound at the cost of introducing a hypothesis, see [1] for further discussions.

1.2 Our contribution
We extend the approach by Abboud et al. to the more complex setting of TAGs. Specifically,
we design a reduction from the 6k-Clique problem to TAG recognition:

I Theorem. There is a tree-adjoining grammar Γ of constant size such that if we can decide
in time T (n) whether a given string of length n can be generated from Γ, then 6k-Clique can
be solved in time O

(
T (nk+1 logn)

)
, for any fixed k ≥ 1. This reduction is combinatorial.

1 In most running time bounds we ignore the dependence on the grammar size, as we are mostly interested
in constant-size grammars in this paper.

2 There is no agreed upon formal definition of combinatorial algorithms.
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Via this reduction, any O(n2ω−ε) algorithm for TAG recognition would prove that
6k-Clique is in time Õ(n(2ω−ε)(k+1)) = O(n(ω/3−ε/9)6k), for sufficiently large3 k. Furthermore,
any combinatorial O(n6−ε) algorithm for TAG recognition would yield a combinatorial
algorithm for 6k-Clique in time Õ(n(6−ε)(k+1)) = O(n(1−ε/9)6k), for sufficiently large k. As
both implications would violate the 6k-Clique conjecture, we obtain tight conditional lower
bounds for TAG recognition. As our result (1) works directly for TAG recognition instead of
a more general parsing problem, (2) holds for constant size grammars, and (3) does not need
the restriction to combinatorial algorithms, it overcomes all shortcomings of the previous
lower bound based on Boolean matrix multiplication, at the cost of using the well-established
k-Clique hypothesis, which has also been used in [1, 5, 6, 3, 4].

We thus establish TAG parsing as a practically relevant problem with the quite unusual
running time of n2ω, up to lower order factors. This is surprising, as the authors are aware of
only one other problem with a (conjectured or conditional) optimal running time of n2ω±o(1),
namely 6-Clique.

1.3 Techniques
The essential difference of tree-adjoining and context-free grammars is that the former can
grow strings at four positions, see Figure 3a. Writing a vertex v1 in one position of the string,
and writing the neighborhoods of vertices v2, v3, v4 at other positions in the string, a simple
tree-adjoining grammar can test whether v1 is adjacent to v2, v3, and v4. Extending this
construction, for k-cliques C1, C2, C3, C4 we can test whether C1 ∪C2, C1 ∪C3, and C1 ∪C4
form 2k-cliques. Using two permutations of this test, we ensure that C1 ∪C2 ∪C3 ∪C4 forms
an almost-4k-clique, i.e., only the edges C3 × C4 might be missing (in Figure 2b below this
situation is depicted for cliques C2, C5, C1, C6 instead of C1, C2, C3, C4). Finally, we use that
a 6k-clique can be decomposed into 3 almost-4k-cliques, see Figure 2a.

In the constructed string we essentially just enumerate 6 times all k-cliques of the given
graph G, as well as their neighborhoods, with appropriate padding symbols (see Section 3).
We try to make the constructed tree-adjoining grammar as easily accessible as possible by
defining a certain programming language realized by these grammars, and phrasing our
grammar in this language, which yields subroutines with an intuitive meaning (see Section 4).

2 Preliminaries on tree-adjoining grammars

In this section we define tree-adjoining grammars and give examples. Fix a set T of terminals
and a set N of non-terminals. In the following, conceptually we partition the nodes of any
tree into its leaves, the root, and the remaining inner nodes. An initial tree is a rooted tree
where

the root and each inner node is labeled with a non-terminal,
each leaf is labeled with a terminal, and
each inner node can be marked for adjunction.

See Figure 1a for an example; nodes marked for adjunction are annotated by a rectangle.
An auxiliary tree is a rooted tree where

the root and each inner node is labeled with a non-terminal,
exactly one leaf, called the foot node, is labeled with the same non-terminal as the root,
each remaining leaf is labeled with a terminal, and
each inner node can be marked for adjunction.

3 For this and the next statement it suffices to set k > 18/ε.

CPM 2017
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(a) An initial tree (left) and an auxiliary tree
(right); the internal nodes labeled A and B are
marked for adjunction.
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(b) Resulting tree after adjoining the auxiliary
tree into the initial tree.

Figure 1 The basic building blocks and operation of tree-adjoining grammars.

Initial trees are the starting points for derivations of the tree-adjoining grammar. These
trees are then extended by repeatedly replacing nodes marked for adjunction by auxiliary
trees. Formally, given an initial or auxiliary tree t that contains at least one inner node v
marked for adjunction and given an auxiliary tree a whose root r has the same label as v,
we can combine these trees with the following operation called adjunction, see Figure 1 for
an example.
1. Replace a’s foot node by the subtree rooted at v.
2. Replace the node v with the tree obtained from the last step, which is rooted at r.
Note that these steps make sense, since r and v have the same label. Note that adjunction
does not change the number leaves labeled with a non-terminal symbol, i.e., an initial tree
will stay an initial tree and an auxiliary tree will stay an auxiliary tree.

A tree-adjoining grammar is now defined as a tuple Γ = (I, A, T,N) where
I is a finite set of initial trees and
A is a finite set of auxiliary trees,

using the same terminals T and non-terminals N as labels. The set D of derived trees of Γ
consists of all trees that can be generated by starting with an initial tree in I and repeatedly
adjoining auxiliary trees in A. (Note that each derived tree is also an initial tree, but not
necessarily in I.) Finally, a string s over alphabet T can be generated by Γ, if there is a
derived tree t in D such that

t contains no nodes marked for adjunction and
s is obtained by concatenating the labels of the leaves of t from left to right.

The language L(Γ) is then the set of all strings that can be generated by Γ.

3 Encoding graphs

Given a graph G = (V,E), we construct a string GGk(G) that encodes its k-cliques, over the
terminal alphabet T = {0, 1, $,#, |, §, e, l1, . . . , l6, r1, . . . , r6} of size 19. In the next section
we then design a tree-adjoining grammar Γ that generates GGk(G) if and only if G contains
a 6k-clique. We assume that V = [|V |], and we denote the binary representation of any
v ∈ V by v and the neighborhood of v by N(v). For two strings a and b, we use a ◦ b to
denote their concatenation and aR to denote the reverse of a.

We start with node and list gadgets, encoding a vertex and its neighborhood, respectively:

NG(v) := $ v $ and LG(v) := ©
u∈N(v)

NG(u) = ©
u∈N(v)

$u $
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C1

C6

C2

C5

C3

C4

(a) Each Ci is a k-clique and there is an edge
between two k-cliques of some highlighting style
if the clique gadgets of that style ensure that these
two cliques together form a 2k-clique.

C1

C6

C2

C5

(b) We will generate an almost-4k-clique as in (a)
by generating two claws. (This tests the edges
(C1, C6), (C2, C5), and (C3, C4) in (a) twice.)

Figure 2 Structure of our test for 6k-cliques.

Note that u and v are adjacent iff NG(u) is a substring of LG(v).
Next, we build clique versions of these gadgets, that encode a k-clique C and its neigh-

borhood, respectively:

CNG(C) := ©
v∈C

(# NG(v) #)k and CLG(C) :=
(
©

v∈C
# LG(v) #

)k

Note that two k-cliques C and C ′ form a 2k-clique if and only if CNG(C) is a subsequence
of CLG(C ′), since every pair of a vertex in C and a vertex in C ′ is tested for adjacency.
We will later show how to implement this test for forming a 2k-clique with a tree-adjoining
grammar.

Conceptually, we split any 6k-clique into six k-cliques. Thus, let Ck be the set of all
k-cliques in G. Our final encoding of the graph is:

GGk(G) := ©
C∈Ck

| CNG(C) § CLG(C)R l1 r1 CLG(C) § CLG(C)R |

◦ ©
C∈Ck

| CNG(C) § CLG(C)R l2 r2 CLG(C) § CLG(C)R |

◦ ©
C∈Ck

| CNG(C) § CLG(C)R l3 r3 CLG(C) § CLG(C)R |

◦ e
◦ ©

C∈Ck

| CLG(C) § CLG(C)R l4 r4 CNG(C) § CLG(C)R |

◦ ©
C∈Ck

| CLG(C) § CLG(C)R l5 r5 CNG(C) § CLG(C)R |

◦ ©
C∈Ck

| CLG(C) § CLG(C)R l6 r6 CNG(C) § CLG(C)R |

As we will show, there is a tree-adjoining grammar of constant size that generates the string
GGk(G) iff G contains a 6k-clique. The structure of this test is depicted in Figure 2. The
clique-gadgets of the same highlighting style together allow us to test for an almost-4k-clique,
as it is depicted in Figure 2a. The two gadgets of the same highlighting style then test for
two claws of cliques, as depicted in Figure 2b.

As the graph has n nodes, for any node u the node and list gadgets NG(u),LG(u) have a
length of O(n logn), and for a k-clique C the clique neighborhood gadgets CNG(C),CLG(C)
thus have a length of O(k2n logn). As our encoding of the graph consists of O(nk) clique
neighborhood gadgets, the resulting string length is O(k2nk+1 logn) = O(nk+1 logn). It is

CPM 2017
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NIn

NOut

NIn

n2n1 n3 n4

(a) A normal tree N .

NIn

NOut

MOut

NOut

NIn

n2m2m1n1 n3 m3 m4 n4

(b) The tree resulting after adjoining M into N .

Figure 3 Adjoining normal trees.

easy to see that it is also possible to construct all gadgets and in particular the encoding of
a graph in linear time with respect to their length.

4 Programming with trees

It remains to design a clique-detecting tree-adjoining grammar. To make our reduction more
accessible, we will think of tree-adjoining grammars as a certain programming language. In
the end, we will then present a “program” that generates (a suitable superset of) the set all
strings that represent a graph containing a 6k-clique. We start by defining programs.

A normal tree N with input NIn and output NOut is an auxiliary tree where:
the root is labeled with NIn,
exactly one node is marked for adjunction, and
this node lies on the path from the root to the foot node and is labeled NOut.

See Figure 3a for an illustration. The special structure of a normal tree N allows us to split
its nodes into four categories (excluding the path from N ’s root to its foot node): subtrees
of left children of the path from N ’s root to NOut, subtrees of left children of the path from
NOut to N ’s foot node, subtrees of right children of the path from NOut to N ’s foot node,
and the remaining nodes (i.e., subtrees of right children of the path from N ’s root to NOut).
The concatenation of all terminal symbols in N ’s leaves from left to right can then be split
into four parts n1, n2, n3, n4 where each part contains symbols from exactly one category.
We say that the normal tree N generates the tuple (n1, n2, n3, n4).

I Lemma 4.1. Given normal trees N with input NIn, output NOut and M with input
MIn = NOut, outputMOut, the derived tree N ·M obtained by adjoiningM into N is a normal
tree with input NIn and output MOut. Further, if N and M generate the tuples (n1, n2, n3, n4)
and (m1,m2,m3,m4), then N ·M generates the tuple (n1 ◦m1,m2 ◦ n2, n3 ◦m3,m4 ◦ n4).

Proof. See Figure 3. J

We now define a program P with input PIn and output POut as a set of normal trees that
contains a tree with input PIn and a tree with output POut. Note that all trees derived by
starting with a tree in P and repeatedly adjoining trees from P are normal, by Lemma 4.1. An
execution of the program P is a derived tree of P with input PIn and output POut. Further,
the set computed by P, denoted by L(P), is the set of all tuples generated by P’s executions.

We will later use programs as subroutines of tree-adjoining grammars. Let N(P) be the
set of non-terminals of P. Formally, we say that P is a subroutine of a grammar Γ if
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the set of trees P is a subset of the auxiliary trees of Γ, and
no remaining auxiliary tree of Γ has a root label in N(P) \ {POut}.

These restrictions ensure that any “call” to the program P terminates at POut. Indeed,
consider any sequence of adjunctions in Γ ending in a tree without nodes marked for
adjunction. If this sequence contains an adjunction of a node labeled PIn, meaning that
program P is called, then this adjunction must be followed by an execution of P, i.e., it must
generate a derived tree of P with output POut. Indeed, any derived tree of P is normal and
thus contains exactly one node marked for adjunction. To get rid of this node, we have to
adjoin some auxiliary tree, but the remaining auxiliary trees can only adjoin to POut. We
will frequently make use of this observation that ensures coherence of programs.

We now show how to perform two programs sequentially one after another. To avoid
interference, we ensure that the two programs have disjoint non-terminals, except for their
input and output. In particular, we will model two sequential calls to the same program by
creating two copies of the program.

I Lemma 4.2 (Combining programs). For programs P and Q, let Q′ denote the program
obtained from Q by replacing each non-terminal by a fresh copy, ensuring that P and Q′ have
disjoint non-terminals. Further, let Q′′ denote the program obtained from Q′ by replacing
Q′In by POut. Then P · Q := P ∪ Q′′ is a program computing the set

L(P · Q) := {(a ◦ a′, b′ ◦ b, c ◦ c′, d′ ◦ d) | (a, b, c, d) ∈ L(P), (a′, b′, c′, d′) ∈ L(Q)}.

Proof. As every execution of P and Q” is a normal tree, the claim follows from Lemma 4.1. J

We can think of · as an operator on programs; the above lemma shows that it is associative.

4.1 Basic programs

We now present some easy programs that will later be used as subroutines.

4.1.1 Writing characters

We start by demonstrating a program that writes exactly one character to each of the four
positions. Formally, given a 4-tuple of characters (a, b, c, d), let the program W(a, b, c, d) be
defined by the following auxiliary tree:

W(a, b, c, d)In

dW(a, b, c, d)Out

cW(a, b, c, d)Inb

a

Clearly, this tree is normal with input W(a, b, c, d)In and output W(a, b, c, d)Out, so that
W(a, b, c, d) is a program. The tree itself is an execution of the program, and it is the only
execution. Thus, this program computes the set L(W(a, b, c, d)) = {(a, b, c, d)}. We write
W(a) to denote the program W(a, a, a, a).

CPM 2017
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4.1.2 Testing equality
We give a program that tests equality of four strings, by writing the same arbitrary string to
all four positions. Formally, for any terminal alphabet Σ, let the program Eq(Σ) be defined
by the following set of |Σ|+ 1 auxiliary trees:

Eq(Σ)In

Eq(Σ)Out

Eq(Σ)In

Eq(Σ)In

σEq(Σ)In

σEq(Σ)Inσ

σ ∀σ ∈ Σ

A simple induction shows that L(Eq(Σ)) = {(v, vR, v, vR) | v ∈ Σ∗}.

4.1.3 Writing anything
We will need to write appropriate strings surrounding some carefully constructed substrings.
As it turns out, being able to write anything will be sufficient; this is achieved by the following
program. Given an alphabet Σ, let the program A(Σ) be defined by the following set of
4|Σ|+ 1 trees:

A(Σ)In

A(Σ)Out

A(Σ)In

A(Σ)In

σA(Σ)In

A(Σ)In

A(Σ)In

A(Σ)In

A(Σ)In

σ

A(Σ)In

A(Σ)In

A(Σ)Inσ

A(Σ)In

A(Σ)In

σA(Σ)In

∀σ ∈ Σ

As this program allows writing anything, it is easy to see that A(Σ) computes the set (Σ∗)4.

4.2 Detecting Cliques
With the help of the above programs, we now design programs that detect a 6k-clique.

4.2.1 Detecting claws
Our next program can detect whether four nodes form a claw graph.

NC := W(#) · A({0, 1, $}) ·W($) · Eq({0, 1}) ·W($) · A({0, 1, $}) ·W(#)

I Lemma 4.3. For any nodes v1, v2, v3, v4, the program NC generates the tuple

(a, b, c, d) := (# NG(v1) #, # LG(v2)R #, # LG(v3) #, # LG(v4)R #)

and any of its cyclic rotations (i.e., (b, c, d, a), (c, d, a, b), and (d, a, b, c)) if and only if v1 is
adjacent to each one of v2, v3, and v4.

Proof. By Lemma 4.2 and the properties of basic programs, we see that NC computes all
tuples of the form

(# α1 $ v $ α2 #,# α3 $ vR $ α4 #,# α5 $ v $ α6 #,# α7 $ vR $ α8 #)
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where v ∈ {0, 1}∗ and α1, . . . , α8 ∈ {0, 1, $}∗. From the construction of node and list gadgets
we see that all tuples (#NG(v1)#,#LG(v2)R#,#LG(v3)#,#LG(v4)R#) are of this form.

For the other direction, for any generated tuple (a, b, c, d), where a is # $ v $ #, it holds
that $ v $ or its reverse is a substring of b, c, and d. Hence, NG(v1) is a substring of
LG(v2),LG(v3), and LG(v4). This implies that v1 is adjacent to v2, v3, and v4. J

4.2.2 Detecting claws of cliques
We now extend NC to a program that can detect claws of k-cliques, see Figure 2b. We define
the program CC by the following set of 3 trees (additional to the trees of NC):

CCIn

NCOut

CCIn

NCOut

NCIn

NCOut

NCOut

CCOut

NCOut

Each execution of CC starts with the first tree, then repeatedly adjoins the second tree
followed by some execution of NC, and finally adjoins the last tree. As the number of
repetitions is arbitrary, the program CC can perform any number of sequential calls to NC.4

I Lemma 4.4. For any k-cliques C1, C2, C3, C4 in G, the program CC generates the tuple
(a, b, c, d) := (CNG(C1),CLG(C2)R,CLG(C3),CLG(C4)R) and all of its cyclic rotations
(i.e., (b, c, d, a), (c, d, a, b), and (d, a, b, c)) if and only if C1 ∪C2, C1 ∪C3, and C1 ∪C4 each
form a 2k-clique in G.

Proof. For any nodes vj
i , with i ∈ [4], j ∈ [m],m ≥ 1, set

ni := ©
j∈[m]

#NG(vj
i ) # and `i := ©

j∈[m]
#LG(vj

i ) #.

As program CC can perform any number of calls to NC, and by Lemma 4.3, program CC
generates the tuple (n1, `2, `3, `4) if and only if vj

1 is adjacent to vj
2, v

j
3, and v

j
4 for all j.

Observe that for any k-cliques C1 = {v1, . . . , vk}, C2 = {u1, . . . , uk}, both CNG(C) and
CLG(C) can be split into k2 blocks by splitting between two consecutive #-characters:

CNG(C1) = # NG(v1) ## NG(v1) # · · ·# NG(v1) ## NG(v2) # · · ·
CLG(C2) = # LG(u1) ## LG(u2) # · · ·# LG(uk) ## LG(u1) # · · ·

This layout is chosen so that each node vi in C1 is paired up with each node uj in C2 exactly
once. The claim follows from these two insights. J

4.2.3 Detecting almost-4k-cliques
We now use CC twice to test for two claws, thus detecting “almost-4k-cliques”, as depicted
in Figure 2b:

C := CC ·W(§) · CC.

Lemmas 4.4 and 4.2 directly imply the following, see Figure 2b.

4 Actually, we already know how many calls to NC we want to perform, namely k2. However, encoding
this number into the grammar would result in a grammar size depending on k, which we want to avoid.
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I Lemma 4.5. For any k-cliques Ca, Cb, Cc, Cd the program C generates the tuple

(CNG(Ca) § CLG(Ca)R, CLG(Cb) § CLG(Cb)R, CLG(Cc) § CLG(Cc)R, CNG(Cd) § CLG(Cd)R)

if and only if Ca ∪ Cb ∪ Cd and Ca ∪ Cc ∪ Cd both form a 3k-clique. A similar statement
holds if we pick any two other positions in the tuple for the CNG(·) gadgets.

4.2.4 Detecting 6k-cliques
As in Figure 2a, we now want to test for three almost-4k-cliques to detect a 6k-clique. Recall
that T = {0, 1, $,#, |, §, e, l1, . . . , l6, r1, . . . , r6} is the terminal alphabet that we constructed
our strings over. The following programs will generate the highlighted groups in Figure 2a:

P(1, 3, 4, 6) := A(T ) · W(|) · C · W(l1, r3, l4, r6)
P(1, 2, 5, 6) := W(r1, l2, r5, l6) · C · W(|) · A(T ),
P(2, 3, 4, 5) := W(r2, l3, r4, l5) · C · W(|) · A(T ),

We now deviate from our notion of normal trees by explicitly not marking P(1, 2, 5, 6)Out and
P(2, 3, 4, 5)Out for adjunction. Our final tree-adjoining grammar Γ consists of the following
initial and auxiliary trees (as well as all auxiliary trees used by its subroutines):

S

P(1, 3, 4, 6)In

e

P(1, 3, 4, 6)Out

P(1, 2, 5, 6)In

P(2, 3, 4, 5)In

P(1, 3, 4, 6)Out

Note that the latter tree is the only one in Γ that has more than one node marked for
adjunction, so it needs special treatment.

I Lemma 4.6. For any graph G, the grammar Γ generates the encoding GGk(G) if and only
if G contains a 6k-clique. Moreover, Γ has constant size (independent of k).

Proof. First, assume that Γ can generate GGk(G). Then there is a derived tree whose leaves,
if read from left to right, yield GGk(G). All derivations of Γ start with the single initial
tree, and then adjoin an execution of the program P(1,3,4,6) into it. (As P(1,3,4,6) is a
subroutine, only a full execution can be adjoined.) This execution generates some tuple
of strings (x1 , x2 , x3 , x4 ) and leaves exactly the node labeled P(1, 3, 4, 6)Out as the sole
node marked for adjunction. Therefore, in the next step the auxiliary tree rooted with that
node will be adjoined, which in turn leaves exactly the nodes P(1, 2, 5, 6)In and P(2, 3, 4, 5)In

as nodes marked for adjunction. Again, these are input nodes of subroutines, therefore
at both nodes one (complete) execution of the corresponding programs must be adjoined.
The program execution of program P(1, 2, 5, 6) generates a tuple of strings (y1 , y2 , y3 , y4 ),
and the execution of P(2, 3, 4, 5) generates ( z1 , z2 , z3 , z4 ). The grammar Γ ensures that
these tuples will be placed in the order (x1 , y1 , y2 , z1 , z2 , x2 , x3 , z3 , z4 , y3 , y4 , x4 ), see
Figure 4 for a visualization. At this point, no more adjunctions are possible, since we
explicitly forced P(1, 2, 5, 6)Out and P(2, 3, 4, 5)Out not to be marked for adjunction. (Also
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S

P(1, 3, 4, 6)In

P(1, 3, 4, 6)Out

P(1, 2, 5, 6)In

P(1, 2, 5, 6)Out

P(1, 2, 5, 6)In

P(2, 3, 4, 5)In

P(2, 3, 4, 5)Out

P(2, 3, 4, 5)In

P(1, 3, 4, 6)Out

P(1, 3, 4, 6)In

er3 (C3) | . . .. . . | (C3) l3r2 (C2) | . . .. . . | (C2) l2r1 (C1) | . . .. . . | (C1) l1 . . . | (C4) l4 r4 (C4) | . . . . . . | (C5) l5 r5 (C5) | . . . . . . | (C6) l5 r6 (C6) | . . .

Figure 4 Global structure of a parsing of GGk(G) by Γ. (Clique gadgets are abbreviated.)

note that this structure is the only possibility to obtain a tree containing no more nodes
marked for adjunction.) Hence, GGk(G) can be partitioned as:

GGk(G) = x1 ◦ y1 ◦ y2 ◦ z1 ◦ z2 ◦ x2 ◦ x3 ◦ z3 ◦ z4 ◦ y3 ◦ y4 ◦ x4 .

Consider the strings x1 and y1 . By the definitions of P(1,3,4,6) and P(1,2,5,6), and
Lemma 4.2, we know that x1 must end with the terminal symbol l1 and that y1 must start
with the symbol r1. Whenever l1 r1 occurs in GGk(G), it does so in the string

| CNG(C1) § CLG(C1)R l1 r1 CLG(C1) § CLG(C1)R |,

for some k-clique C1. Since x1 ◦ y1 is a substring of GGk(G), and the program C cannot pro-
duce a |-terminal, but the W(|) part of P(·, ·, ·, ·) will always write such a |-character, x1 must
have | CNG(C1) § CLG(C1)R l1 as a suffix and y1 must have r1 CLG(C1) § CLG(C1)R |
as a prefix. This also means that the program C must generate the string between | and l1
in x1 and between | and r1 in y1 .

Similar statements hold for the other ten strings. In total we obtain that the program C
generates the following tuples for some k-cliques C1, . . . , C6:

t1 := (CNG(C1) § CLG(C1)R , CLG(C3) § CLG(C3)R ,

CLG(C4) § CLG(C4)R , CNG(C6) § CLG(C6)R ) in P(1,3,4,6),
t2 := (CLG(C1) § CLG(C1)R , CNG(C2) § CLG(C2)R ,

CNG(C5) § CLG(C5)R , CLG(C6) § CLG(C6)R ) in P(1,2,5,6), and
t3 := ( CLG(C2) § CLG(C2)R , CNG(C3) § CLG(C3)R ,

CNG(C4) § CLG(C4)R , CLG(C5) § CLG(C5)R ) in P(2,3,4,5).

By Lemma 4.5, this implies that all Ci ∪Cj form a 2k-clique and thus C1 ∪ . . .∪C6 forms
a 6k-clique (see Figure 2a to check that all pairs are covered).

For the other direction, consider a graph G that contains a 6k-clique C∗. Then we can
split C∗ into 6 vertex-disjoint k-cliques C1, . . . , C6. Further we know that every three of these
six k-cliques together form a 3k-clique. Thus, the program C generates the tuples t1, t2, t3 as
above. We can then use the three programs P(·, ·, ·, ·) to generate such tuples surrounded
with symbols |, li, and ri at appropriate positions. Adding the surrounding strings by A(T )
and following the global structure of Γ generates the encoding GGk(G).
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To see that Γ is of constant size, note that we only use constantly many programs. Thus
using a new set of terminal symbols for every instance of a program will still yield a constant
total number of non-terminal symbols. Further, we only use 19 terminal symbols. J

The above lemma and the bound |GGk(G)| = O(nk+1 logn) imply the main theorem.
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