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Abstract
Given a string S, the compressed indexing problem is to preprocess S into a compressed rep-
resentation that supports fast substring queries. The goal is to use little space relative to the
compressed size of S while supporting fast queries. We present a compressed index based on the
Lempel-Ziv 1977 compression scheme. Let n, and z denote the size of the input string, and the
compressed LZ77 string, respectively. We obtain the following time-space trade-offs. Given a
pattern string P of length m, we can solve the problem in
(i) O(m+ occ lg lgn) time using O(z lg(n/z) lg lg z) space, or
(ii) O(m(1 + lgε z

lg(n/z) ) + occ(lg lgn+ lgε z)) time using O(z lg(n/z)) space, for any 0 < ε < 1
In particular, (i) improves the leading term in the query time of the previous best solution from
O(m lgm) to O(m) at the cost of increasing the space by a factor lg lg z. Alternatively, (ii)
matches the previous best space bound, but has a leading term in the query time of O(m(1 +

lgε z
lg(n/z) )). However, for any polynomial compression ratio, i.e., z = O(n1−δ), for constant δ > 0,
this becomes O(m). Our index also supports extraction of any substring of length ` in O(` +
lg(n/z)) time. Technically, our results are obtained by novel extensions and combinations of
existing data structures of independent interest, including a new batched variant of weak prefix
search.
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1 Introduction

Given a string S, the compressed indexing problem is to preprocess S into a compressed
representation that supports fast substring queries, that is, given a string P , report all
occurrences of substrings in S that match P . Here the compressed representation can be any
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compression scheme or measure (kth order entropy, smallest grammar, Lempel-Ziv, etc.). The
goal is to use little space relative to the compressed size of S while supporting fast queries.
Compressed indexing is a key computational primitive for querying massive data sets and
the area has received significant attention over the last decades with numerous theoretical
and practical solutions, see e.g. [25, 12, 29, 23, 13, 14, 21, 22, 15, 34, 30, 9, 27, 18, 24, 4] and
the surveys [34, 32, 33, 19].

The Lempel-Ziv 1977 compression scheme (LZ77) [37] is a classic compression scheme
based on replacing repetitions by references in a greedy left-to-right order. Numerous variants
of LZ77 have been developed and several widely used implementations are available (such as
gzip [20]). Recently, LZ77 has been shown to be particularly effective at handling highly-
repetitive data sets [30, 32, 27, 8, 3] and LZ77 compression is always at least as powerful as
any grammar representation [36, 7].

In this paper, we consider compressed indexing based on LZ77 compression. Relatively
few results are known for this version of the problem. Let n, z, and m denote the size of the
input string, the compressed LZ77 string, and the pattern string, respectively. Kärkkäinen
and Ukkonen introduced the problem in 1996 [25] and gave an initial solution that required
read-only access to the uncompressed text. Interestingly, this work is among the first results
in compressed indexing [34]. More recently, Gagie et al. [17, 18] revisited the problem and
gave a solution using space O(z lg(n/z)) and query time O(m lgm+ occ lg lgn), where occ
is the number of occurrences of P in S. Note that these bounds assume a constant sized
alphabet.

1.1 Our Results
We show the following main result.

I Theorem 1. Given a string S of length n from a constant sized alphabet compressed using
LZ77 into a string of length z we can build a compressed-index supporting substring queries
in:
(i) O(m+ occ lg lgn) time using O(z lg(n/z) lg lg z) space, or
(ii) O(m(1 + lgε z

lg(n/z) ) + occ(lg lgn+ lgε z)) time using O(z lg(n/z)) space, for any 0 < ε < 1

Compared to the previous bounds Theorem 1 obtains new interesting trade-offs. In
particular, Theorem 1 (i) improves the leading term in the query time of the previous best
solution from O(m lgm) to O(m) at the cost of increasing the space by only a factor lg lg z.
Alternatively, Theorem 1 (ii) matches the previous best space bound, but has a leading term
in the query time of O(m(1 + lgε z

lg(n/z) )). However, for any polynomial compression ratio, i.e.,
z = O(n1−δ), for constant δ > 0, this becomes O(m).

Gagie et al. [18] also showed how to extract an arbitrary substring of S of length ` in time
O(`+ lgn). We show how to support the same extraction operation and slightly improve the
time to O(`+ lg(n/z)).

Technically, our results are obtained by new variants and extensions of existing data
structures in novel combinations. In particular, we consider a batched variant of the weak
prefix search problem and give the first non-trivial solution to it. We also generalize the
well-known bidirectional compact trie search technique [28] to reduce the number of queries
at the cost of increasing space. Finally, we show how to combine this efficiently with range
reporting and fast random-access in a balanced grammar leading to the result.

As mentioned all of the above bounds hold for a constant size alphabet. However,
Theorem 1 is an instance of full time-space trade-off that also supports general alphabets.
We discuss the details in Section 8 and Appendix 8.1.
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2 Preliminaries

We assume a standard unit-cost RAM model with word size w = Θ(lgn) and that the input
is from an integer alphabet Σ = {1, 2, . . . , nO(1)} and measure space complexity in words
unless otherwise specified.

A string S of length n = |S| is a sequence S[1] . . . S[n] of n characters drawn from Σ.
The string S[i] . . . S[j] denoted S[i, j] is called a substring of S. ε is the empty string
and S[i, i] = S[i] while S[i, j] = ε when i > j. The substrings S[1, i] and S[j, n] are the
ith prefix and the jth suffix of S respectively. The reverse of the string S is denoted
rev(S) = S[n]S[n− 1] . . . S[1].

Let D be a set of k strings and let TD be the compact trie storing all the strings of D.
str(v) denotes the prefix corresponding to the vertex v. The depth of vertex v is the number
of edges on the path from v to the root. We assume each string in D is terminated by a
special character $ /∈ Σ such that each string in D corresponds to a leaf. The children of
each vertex are sorted from left to right in increasing lexicographical order, and therefore the
left to right order of the leaves corresponds to the lexicographical order of the strings in D.
Let rank(s) denote the rank of the string s ∈ D in this order. The skip interval of a vertex
v ∈ TD with parent u is (|str(u)|, |str(v)|] denoted skip(v) and skip(v) = ∅ if v is the root.
The locus of a string s in TD, denoted locus(s), is the minimum depth vertex v such that s
is a prefix of str(v). If there is no such vertex, then locus(s) = ⊥. In order to reduce the
space used by TD we only store the first character of every edge and in every vertex v we
store |str(v)| (This variation is also known as a PATRICIA tree [31]). We navigate TD by
storing a dictionary in every internal vertex mapping the first character of the label of an
edge to the respective child. The size of TD is O(k).

A Karp-Rabin fingerprinting function [26] is a randomized hash function for strings. We
use a variation of the original definition appearing in Porat and Porat [35]. The fingerprint
for a string S of length n is defined as: φ(S) =

∑n
i=1 S[i] ·ri−1 mod p, where p is a prime and

r is a random integer in Zp (the field of integers modulo p). Storing the values n, rn mod p
and r−n mod p along with a fingerprint allows for efficient composition an subtraction of
fingerprints. Using this we can compute and store the fingerprints of each of the prefixes
of a string S of length n in O(n) time and space such that we afterwards can compute
the fingerprint of any substring S[i, j] in constant time. We say that the fingerprints of
the strings x and y collide when φ(x) = φ(y) and x 6= y. A fingerprinting function φ is
collision-free for a set of strings if there are no fingerprint collisions between any of the
strings. Porat and Porat [35] show that if x and y are different strings of length at most n
and p = Θ(n2+α) for some α > 0, then the probability that φ(x) = φ(y) is less than 1/n1+α.

The LZ77 parse of a string S of length n is a sequence Z of z subsequent substrings of S
called phrases such that S = Z[1]Z[2], . . . , Z[z]. Z is constructed in a left to right pass of
S: Assume that we have found the sequence Z[1, i] producing the string S[1, j − 1] and let
S[j, j′ − 1] be the longest prefix of S[j, n− 1] that is also a substring of S[1, j′ − 2]. Then
Z[i + 1] = S[j, j′]. The occurrence of S[j, j′ − 1] in S[1, j′ − 2] is called the source of the
phrase Z[i]. Thus a phrase is composed by the contents of its possibly empty source and
a trailing character which we call the phrase border and is typically represented as a triple
Z[i] = (start, len, c) where start is the starting position of the source, len is the length of
the source and c ∈ Σ is the border. For a phrase Z[i] = S[j, j′] we denote the position of
its border by border(Z[i]) = j′ and its source by source(Z[i]) = S[j, j′ − 1]. For example,
the string abcabcabc . . . abc of length n has the LZ77 parse |a|b|c|abcabcabc . . . abc| of length
4 which is represented as Z = (0, 0, a)(0, 0, b)(0, 0, c)(0, n− 4, c).

CPM 2017
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3 Prefix Search

The prefix search problem is to preprocess a set of strings such that later, we can find all
the strings in the set that are prefixed by some query string. Belazzougui et al. [2] consider
the weak prefix search problem, a relaxation of the prefix search problem where we are only
requested to output the ranks (in lexicographic order) of the strings that are prefixed by the
query pattern and we only require no false negatives. Thus we may answer arbitrarily when
no strings are prefixed by the query pattern.

I Lemma 2 (Belazzougui et al. [2], appendix H.3). Given a set D of k strings with average
length l, from an alphabet of size σ, we can build a data structure using O(k(lg l + lg lg σ))
bits of space supporting weak prefix search for a pattern P of length m in O(m lg σ/w+ lgm)
time where w is the word size.

The term m lg σ/w stems from preprocessing P with an incremental hash function such that
the hash of any substring P [i, j] can be obtained in constant time afterwards. Therefore
we can do weak prefix search for h substrings of P in O(m lg σ/w + h lgm) time. We now
describe a data structure that builds on the ideas from Lemma 2 but obtains the following:

I Lemma 3. Given a set D of k strings, we can build a data structure taking O(k) space
supporting weak prefix search for h substrings of a pattern P of length m in time O(m +
h(m/x+ lg x)) where x is a positive integer.

If we know h when building our data structure, we set x to h and obtain a query time of
O(m+ h lg h) with Lemma 3.

Before describing our data structure we need the following definition: The 2-fattest
number in a nonempty interval of strictly positive integers is the number in the interval
whose binary representation has the highest number of trailing zeroes.

3.1 Data Structure
Let TD be the compact trie representing the set D of k strings and let x be a positive integer.
Denote by fat(v) the 2-fattest number in the skip interval of a vertex v ∈ TD. The fat prefix
of v is the length fat(v) prefix of str(v). Denote by Dfat the set of fat prefixes induced by the
vertices of TD. The x-prefix of v is the shortest prefix of str(v) whose length is a multiple
of x and is in the interval skip(v). If v’s skip interval does not span a multiple of x, then v
has no x-prefix. Let Dx be the set of x-prefixes induced by the vertices of TD. The data
structure is the compact trie TD augmented with:

A fingerprinting function φ.
A dictionary G mapping the fingerprints of the strings in Dfat to their associated vertex.
A dictionary H mapping the fingerprints of the strings in Dx to their associated vertex.
For every vertex v ∈ TD we store the rank in D of the string represented by the leftmost
and rightmost leaf in the subtree of v, denoted lv and rv respectively.

The data structure is similar to the one by Belazzougui et al. [2] except for the dictionary H,
which we use in the first step of our search. There are at most k strings in each of Dfat and
Dx thus the total space of the data structure is O(k).

Let i be the start of the skip interval of some vertex v ∈ TD and define the pseudo-fat
numbers of v to be the set of 2-fattest numbers in the intervals [i, p] where i ≤ p < fat(v).
We require that the fingerprinting function φ is collision-free for the strings in Dfat, the
strings in Dx and all the length l-prefixes of the strings in D where l is a pseudo-fat number
in the skip interval of some vertex v ∈ TD.
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Observe that the range of strings in D that are prefixed by some pattern P of length m is
exactly [lv, rv] where v = locus(P ). Answering a weak prefix search query for P is comprised
by two independent steps. First step is to find a vertex v ∈ TD such that str(v) is a prefix of
P and m− |str(v)| ≤ x. We say that v is in x-range of P . Next step is to apply a slightly
modified version of the search technique from Belazzougui et al. [2] to find the exit vertex for
P , that is, the deepest vertex v′ ∈ TD such that str(v′) is a prefix of P . Having found the
exit vertex we can find the locus in constant time as it is either the exit vertex itself or one
of its children.

Finding an x-range Vertex. We now describe how to find a vertex in x-range of P . If
m < x we simply report that the root of TD is in x-range of P . Otherwise, let v be the root
of TD and for i = 1, 2, . . . bm/xc we check if ix > |str(v)| and φ(P [1, ix]) is in H in which
case we update v to be the corresponding vertex. Finally, if |str(v)| ≥ m we report that v is
locus(P ) and otherwise we report that v is in x-range of P . In the former case, we report
[lv, rv] as the range of strings in D prefixed by P . In the latter case we pass on v to the next
step of the algorithm.

We now show that the algorithm is correct when P prefixes a string in D. It is easy to
verify that the x-prefix of v prefixes P at all time during the execution of the algorithm.
Assume that |str(v)| ≥ m by the end of the algorithm. We will show that in that case
v = locus(P ), i.e., that v is the highest node prefixed by P . Since P prefixes a string in
D, the x-prefix of v prefixes P , and |str(v)| ≥ m, then P prefixes v. Since the x-prefix of v
prefixes P , P does not prefix the parent of v and thus v is the highest node prefixed by P .

Assume now that |str(v)| < m. We will show that v is in x-range of P . Since P prefixes a
string in D and the x-prefix of v prefixes P , then str(v) prefixes P . Let P [1, ix] be the x-prefix
of v. Since v is returned, either φ(P [1, jx]) 6∈ H or jx ≤ |str(v)| for all i < j ≤ bm/xc. If
φ(P [1, jx]) 6∈ H then P [1, jx] is not a x-prefix of any node in TD. Since P prefixes a string
in D this implies that jx is in the skip interval of v, i.e., jx ≤ |str(v)|. This means that
jx ≤ |str(v)| for all i < j ≤ bm/xc. Therefore bm/xcx ≤ |str(v)| < m and it follows that
m− |str(v)| < x. We already proved that str(v) prefixes P and therefore v is in x-range of P .

In case P does not prefix any string in D we either report that v = locus(P ) even though
locus(P ) = ⊥ or report that v is in x-range of P because m− |str(v)| ≤ x even though str(v)
is not a prefix of P due to fingerprint collisions. This may lead to a false positive. However,
false positives are allowed in the weak prefix search problem.

Given that we can compute the fingerprint of substrings of P in constant time the
algorithm uses O(m/x) time.

From x-range to Exit Vertex. We now consider how to find the exit vertex of P hereafter
denoted ve. The algorithm is similar to the one presented in Belazzougui et al. [2] except
that we support starting the search from not only the root, but from any ancestor of ve.

Let v be any ancestor of ve, let y be the smallest power of two greater than m− |str(v)|
and let z be the largest multiple of y no greater than |str(v)|. The search progresses by
iteratively halving the search interval while using G to maintain a candidate for the exit
vertex and to decide in which of the two halves to continue the search.

Let vc be the candidate for the exit vertex and let l and r be the left and right boundary
for our search interval. Initially vc = v, l = z and r = z + 2y. When r − l = 1, the search
terminates and reports vc. In each iteration, we consider the mid b = (l+ r)/2 of the interval
[l, r] and update the interval to either [b, r] or [l, b]. There are three cases:

CPM 2017
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1. b is out of bounds
a. If b > m set r to b.
b. If b ≤ |str(vc)| set l to b.

2. P [1, b] ∈ Dfat, let u be the corresponding vertex, i.e. G(φ(P [1, b])) = u.
a. If |str(u)| < m, set vc to u and l to b.
b. If |str(u)| ≥ m, report u = locus(P ) and terminate.

3. P [1, b] /∈ Dfat and thus φ(P [1, b]) is not in G, set r to b.

Observe that we are guaranteed that all fingerprint comparisons are collision-free in case
P prefixes a string in D. This is because the length of the prefix fingerprints we consider are
all either 2-fattest or pseudo-fat in the skip interval of locus(P ) or one of its ancestors and
we use a fingerprinting function that is collision-free for these strings.

Correctness. We now show that the invariant l ≤ |str(vc)| ≤ |str(ve)| < r is satisfied and
that str(vc) is a prefix of P before and after each iteration. After O(lg x) iterations r − l = 1
and thus l = |str(ve)| = |str(vc)| and therefore vc = ve. Initially vc is an ancestor of ve and
thus str(vc) is a prefix of P , l = z ≤ |str(vc)| and r = z + 2y > m > |str(ve)| so the invariant
is true. Now assume that the invariant is true at the beginning of some iteration and consider
the possible cases:
1. b is out of bounds

a. b > m then because |str(ve)| ≤ m, setting r to b preserves the invariant.
b. b ≤ |str(vc)| then setting l to b preserves the invariant.

2. P [1, b] ∈ Dfat, let u = G(φ(P [1, b])).
a. |str(u)| ≤ m then str(u) is a prefix of P and thus b = fat(u) ≤ |str(u)| ≤ |str(ve)| so

setting l to b and vc to u preserves the invariant.
b. |str(u)| ≥ m yet u = G(φ(P [1, b])). Then u is the locus of P .

3. P [1, b] /∈ Dfat, and thus φ(P [1, b]) is not in G. As we are not in any of the out of bounds
cases we have |str(vc)| < b < m. Thus, either b > |str(ve)| and setting r to b preserves
the invariant. Otherwise b ≤ |str(ve)| and thus b must be in the skip interval of some
vertex u on the path from vc to ve excluding vc. But skip(u) is entirely included in (l, r)
and because b is 2-fattest in (l, r)1 it is also 2-fattest in skip(u). It follows that fat(u) = b

which contradicts P [1, b] /∈ Dfat and thus the invariant is preserved.

Thus if P prefixes a string in D we find either the exit vertex ve or the locus of P . In the
former case the locus of P is the child of ve identified by the character P [|str(v′)|+1]. Having
found the vertex u = locus(P ) we report [lu, ru] as the range of strings in D prefixed by P .
In case P does not prefix any strings in D, the fact that the fingerprint of a prefix of P match
the fingerprint of some fat prefix in Dx does not guarantee equality of the strings. There are
two possible consequences of this. Either the search successfully finds what it believes to be
the locus of P even though locus(P ) = ⊥ in which case we report a false positive. Otherwise,
there is no child identified by P [|str(v′)|+ 1] in which case we can correctly report that no
strings in D are prefixed by S, a true negative. Recall that false positives are allowed as we
are considering the weak prefix search problem.

1 If b − a = 2i, i > 0 and a is a multiple of 2i−1 then the mid of the interval (a + b)/2 is 2-fattest in (a, b).
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Complexity. The size of the interval [l, r] is halved in each iteration, thus we do at most
O(lg(m− |str(v)|)) iterations, where v is the vertex from which we start the search. If we
use the technique from the previous section to find a starting vertex in x-range of P , we do
O(lg x) iterations. Each iteration takes constant time. Note that if P does not prefix a string
in D we may have fingerprint collisions and we may be given a starting vertex v such that
str(v) does not prefix P . This can lead to a false positive, but we still have m− |str(v)| ≤ x
and therefore the time complexity remains O(lg x).

Multiple Substrings. In order to answer weak prefix search queries for h substrings of a
pattern P of length m, we first preprocess P in O(m) time such that we can compute the
fingerprint of any substring of P in constant time. We can then answer a weak prefix search
query for any substring of P in total time O(m/x+ lg x) using the techniques described in
the previous sections. The total time is therefore O(m+ h(m/x+ lg x)).

4 Distinguishing Occurrences

The following sections describe our compressed-index consisting of three independent data
structures. One that finds long primary occurrences, one that finds short primary occurrences
and one that finds secondary occurrences.

Let Z be the LZ77 parse of length z representing the string S of length n. If S[i, j] is a
phrase of Z then any substring of S[i, j − 1] is a secondary substring of S. These are the
substrings of S that do not contain any phrase borders. On the other hand, a substring
S[i, j] is a primary substring of S when there is some phrase S[i′, j′] where i′ ≤ i ≤ j′ ≤ j,
these are the substrings that contain one or more phrase borders. Any substring of S is
either primary or secondary. A primary substring that match a query pattern P is a primary
occurrence of P while a secondary substring that match P is a secondary occurrence [25].

5 Long Primary Occurrences

For simplicity, we assume that the data structure given in Lemma 3 not only solves the
weak prefix problem, but also answers correctly when the query pattern does not prefix any
of the indexed strings. Later in Section 5.3 we will see how to lift this assumption. The
following data structure and search algorithm is a variation of the classical bidirectional
search technique for finding primary occurrences [25].

5.1 Data Structure
For every phrase S[i, j] the strings S[i, j + k], 0 ≤ k < τ are relevant substrings unless there
is some longer relevant substring ending at position j + k. If S[i′, j′] is a relevant substring
then the string S[j′ + 1, n] is the associated suffix. There are at most zτ relevant substrings
of S and equally many associated suffixes. The primary index is comprised by the following:

A prefix search data structure TD on the set of reversed relevant substrings.
A prefix search data structure TD′ on the set of associated suffixes.
An orthogonal range reporting data structure R on the zτ × zτ grid. Consider a relevant
substring S[i, j]. Let x denote the rank of rev(S[i, j]) in the lexicographical order of the
reversed relevant substrings, let y denote the rank of its associated suffix S[j + 1, n] in
the lexicographical order of the associated suffixes. Then (x, y) is a point in R and along
with it we store the pair (j, b), where b is the position of the rightmost phrase border
contained in S[i, j].

CPM 2017
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Note that every point (x, y) in R is induced by some relevant substring S[i, j] and its
associated suffix S[j+1, n]. If some prefix P [1, k] is a suffix of S[i, j] and the suffix P [k+1,m]
is a prefix of S[j+ 1, n] then S[j−k+ 1, j−k+m] is an occurrence of P and we can compute
its exact location from k and j.

5.2 Searching
The data structure can be used to find the primary occurrences of a pattern P of lengthm when
m > τ . Consider the O(m/τ) prefix-suffix pairs (P [1, iτ ], P [iτ + 1,m]) for i = 1, . . . , bm/τc
and the pair (P [1,m], ε) in case m is not a multiple of τ . For each such pair, we do a prefix
search for rev(P [1, iτ ]) and P [iτ + 1,m] in TD and TD′ , respectively. If either of these two
searches report no matches, we move on to the next pair. Otherwise, let [l, r], [l′, r′] be the
ranges reported from the search in TD and TD′ respectively. Now we do a range reporting
query on R for the rectangle [l, r] × [l′, r′]. For each point reported, let (j, b) be the pair
stored with the point. We report j − iτ + 1 as the starting position of a primary occurrence
of P in S.

Finally, in case m is not a multiple of τ , we need to also check the pair (P [1,m], ε). We
search for rev(P [1,m]) in in TD and ε in TD′ . If the search for rev(P [1,m]) reports no match
we stop. Otherwise, we do a range reporting query as before. For each point reported, let
(j, b) be the pair stored with the point. To check that the occurrence has not been reported
before we do as follows. Let k be the smallest positive integer such that j −m+ kτ > b. If
kτ > m we report j −m+ 1 as the starting position of a primary occurrence.

Correctness. We claim that the reported occurrences are exactly the primary occurrences
of P . We first prove that all primary occurrences are reported correctly. Let P = S[i′, j′] be
a primary occurrence. As it is a primary occurrence, there must be some phrase S[i∗, j∗]
such that i∗ ≤ i′ ≤ j∗ ≤ j′. Let k be the smallest positive integer such that i′ + kτ − 1 ≥ j∗.
There are two cases: kτ ≤ m and kτ > m. If kτ ≤ m then P [1, kτ ] is a suffix of the relevant
substring ending at i′ + kτ − 1. Such a relevant substring exists since i′ + kτ − 1 < j∗ + τ .
Thus its reverse rev(P [1, kτ ]) prefixes a string s in D, while P [kτ + 1,m] is a prefix of the
associated suffix S[i′ + kτ, n] ∈ D′. Therefore, the respective ranks of s and S[i′ + kτ, n] in
D and D′ are plotted as a point in R which stores the pair (i′ + kτ − 1, b). We will find this
point when considering the prefix-suffix pair (P [1, kτ ], P [kτ + 1,m]), and correctly report
(i′ + kτ − 1)− kτ + 1 = i′ as the starting position of a primary occurrence. If kτ > m then
P [1,m] is a suffix of the relevant substring ending in i′ +m− 1. Such a relevant substring
exists since i′ +m− 1 < i′ + kτ − 1 < j∗ + τ . Thus its reverse prefixes a string in D and
trivially ε is a prefix of the associated suffix. It follows as before that the ranks are plotted
as a point in R storing the pair (i′ +m− 1, b) and that we find this point when considering
the pair (P [1,m], ε). When considering (P [1,m], ε) we report (i′ +m− 1)−m+ 1 = i′ as
the starting position of a primary occurrence if kτ > m, and thus i′ is correctly reported.

We now prove that all reported occurrences are in fact primary occurrences. Assume
that we report j − iτ + 1 for some i and j as the starting position of a primary occurrence
in the first part of the procedure. Then there exist strings rev(S[i′, j]) and S[j + 1, n] in
D and D′ respectively such that S[i′, j] is suffixed by P [1, iτ ] and S[j + 1, n] is prefixed by
P [iτ + 1,m]. Therefore j − iτ + 1 is the starting position of an occurrence of P . The string
S[i′, j] is a relevant suffix and therefore there exists a border b in the interval [j − τ + 1, j].
Since i ≥ 1 the occurrence contains the border b and it is therefore a primary occurrence.
If we report j −m + 1 for some j as the starting position of a primary occurrence in the
second part of the procedure, then rev(P [1,m]) is a prefix of a string rev(S[i′, j]) in D. It
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follows immediately that j −m+ 1 is the starting point of an occurrence. Since m > τ we
have j −m+ 1 < j − τ + 1, and by the definition of relevant substring there is a border in
the interval [j − τ + 1, j]. Therefore the occurrence contains the border and is primary.

Complexity. We now consider the time complexity of the algorithm described. First we
will argue that any primary occurrence is reported at most once and that the search finds at
most two points in R identifying it. Let S[i′, j′] be a primary occurrence reported when we
considered the prefix-suffix pair (P [1, kτ ], P [kτ + 1,m]) as in the proof of correctness. None
of the pairs (P [1, iτ ], P [iτ + 1,m]), where i < k will identify this occurrence as i′+ iτ − 1 < j.
None of the pairs (P [1, hτ ], P [hτ + 1,m]), where h > k, will identify this occurrence. This is
the case since i′ + hτ − 1 > j + τ − 1, and from the definition of relevant substrings it follows
that if S[i, j] is a phrase, S[a, b] is a relevant substring and a < i, then b < i+ τ − 1. Thus
there are no relevant substrings that end after j + τ − 1 and start before i′ < j. Therefore,
only one of the pairs (P [1, iτ ], P [iτ + 1,m]) for i = 1, . . . , bm/xc identifies the occurrence. If
(k + 1)τ > m then we might also find the occurrence when considering the pair (P [1,m], ε),
but we do not report i′ as kτ ≤ m.

After preprocessing P in O(m) time, we can do the O(m/τ) prefix searches in total time
O(m+m/τ(m/x+lg x)) where x is a positive integer by Lemma 3. Using the range reporting
data structure by Chan et al. [6] each range reporting query takes (1 + k) · O(B lg lg(zτ))
time where 2 ≤ B ≤ lgε(zτ) and k is the number of points reported. As each such point in
one range reporting query corresponds to the identification of a unique primary occurrence of
P , which happens at most twice for every occurrence we charge O(kB lg lg(zτ)) to reporting
the occurrences. The total time to find all primary occurrences is thus O(m+ m

τ (mx + lg x+
B lg lg(zτ)) + occ B lg lg(zτ)) where occ is the number of primary and secondary occurrences
of P .

5.3 Prefix Search Verification
The prefix data structure from Lemma 3 gives no guarantees of correct answers when the
query pattern does not prefix any of the indexed strings. If the prefix search gives false-
positives, we may end up reporting occurrences of P that are not actually there. We show
how to solve this problem after introducing a series of tools that we will need.

Straight line programs. A straight line program (SLP) for a string S is a context-free
grammar generating the single string S.

I Lemma 4 (Rytter [36], Charikar et al. [7]). Given an LZ77 parse Z of length z producing a
string S of length n we can construct a SLP for S of size O(z lg(n/z)) in time O(z lg(n/z)).

The construction from Rytter [36] produces a balanced grammar for every consecutive
substring of length n/z of S after a preprocessing step transforms Z such that no compression
element is longer than n/z. The height of this balanced grammar is O(lgn) and this
immediately yields extracting of any substring S[i, j] in time O(lg(n) + j − i). We give a
simple solution to reduce this to O(lg(n/z) + j − i), that also supports computation of the
fingerprint of a substring in O(lg(n/z)) time.

I Lemma 5. Given an LZ77 parse Z of length z producing a string S of length n we can
build a data structure that for any substring S[i, j] can extract S[i, j] in O(lg(n/z) + j − i)
time and compute the fingerprint φ(S[i, j]) in O(lg(n/z)) time. The data structure uses
O(z lg(n/z)) space and O(n) construction time.
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Proof. Assume for simplicity that n is a multiple of z. We construct the SLP producing S
from Z. Along with every non-terminal of the SLP we store the size and fingerprint of its
expansion. Let s1, s2, . . . sz be consecutive length n/z substrings of S. We store the balanced
grammar producing si along with the fingerprint φ(S[1, (i− 1)n/z]) at index i in a table A.

Now we can extract si in O(n/z) time and any substring si[j, k] in time O(lg(n/z)+k−j).
Also, we can compute the fingerprint φ(si[j, k]) in O(lg(n/z)) time. We can easily do a
constant time mapping from a position in S to the grammar in A producing the substring
covering that position and the corresponding position inside the substring. But then any
fingerprint φ(S[1, j]) can be computed in time O(lg(n/z)). Now consider a substring S[i, j]
that starts in sk and ends in sl, k < l. We extract S[i, j] in O(lg(n/z) + j − i) time by
extracting the appropriate suffix of sk, all of sm for k < m < l and the appropriate prefix of
sl. Each of the fingerprints stored by the data structure can be computed in O(1) time after
preprocessing S in O(n) time. Thus table A is filled in O(z) time and by Lemma 4 the SLPs
stored in A uses a total of O(z lg(n/z)) space and construction time. J

Verification of fingerprints. We need the following lemma for the verification.

I Lemma 6 (Bille et al. [5]). Given a string S of length n, we can find a fingerprinting
function φ that is collision-free for all length l substrings of S where l is a power of two in
O(n lgn) expected time.

5.3.1 Verification Technique
Our verification technique is identical to the one given by Gagie et al. [18] and involves a
simple modification of the search for long primary occurrences. By using Lemma 5 instead of
bookmarking [18] for extraction and fingerprinting and because we only need to verify O(m/τ)
strings, the verification procedure takes O(m + m/τ lg(n/z)) time and uses O(z lg(n/z))
space. See Appendix A.1 for details.

6 Short Primary Occurrences

We now describe a simple data structure that can find primary occurrences of P in time
O(m+ occ) using space O(zτ) whenever m ≤ τ where τ is a positive integer.

Let Z be the LZ77 parse of the string S of length n. Let Z[i] = S[si, ei] and define F
to be the union of the strings S[k,min{ei + τ, n}] where max{1, si, ei − τ} ≤ k ≤ ei for
i = 1, 2, . . . z. There are at most zτ such strings, each of length O(τ) and they are all suffixes
of the z length 2τ substrings of S starting τ positions before each border position. We store
these substrings along with the compact trie TF over the strings in F . The edge labels of
TF are compactly represented by storing references into one of the substrings. Every leaf
stores the starting position in S of the string it represents and the position of the leftmost
border it contains.

The combined size of TF and the substrings we store is O(zτ) and we simply search for
P by navigating vertices using perfect hashing [16] and matching edge labels character by
character. Now either locus(P ) = ⊥ in which case there are no primary occurrences of P
in S; otherwise, locus(P ) = v for some vertex v ∈ TF and thus every leaf in the subtree of
v represents a substring of S that is prefixed by P . By using the indices stored with the
leaves, we can determine the starting position for each occurrence and if it is primary or
secondary. Because each of the strings in F start at different positions in S, we will only find
an occurrence once. Also, it is easy to see that we will find all primary occurrences because
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of how the strings in F are chosen. It follows that the time complexity is O(m+ occ) where
occ is the number of primary and secondary occurrences.

7 The Secondary Index

Let Z be the LZ77 parse of length z representing the string S of length n. We find
the secondary occurrences by applying the most recent range reporting data structure by
Chan et al. [6] to the technique described by Kärkkäinen and Ukkonen [25]. This gives us a
secondary index using O(z lg lg z) space and O(occ lg lgn) time for reporting all secondary
occurrences. For details see Appendix A.2.

8 The Compressed Index

We obtain our final index by combining the primary index, the verification data structure
and the secondary index. We use the transformed LZ77 parse generated by Lemma 4 when
building our primary index. Therefore no phrase will be longer than n/z and therefore any
primary occurrence of P will have a prefix P [1, k] where k ≤ n/z that is a suffix of some
phrase. It then follows that we need only consider the multiples (P [1, iτ ], P [iτ + 1,m]) for
i < bn/zτ c when searching for long primary occurrences. This yields the following complexities:

O(m + min{m,n/z}
τ (mx + lg x + B lg lg(zτ)) + occ B lg lg(zτ)) time and O(zτ lgB lg(zτ))

space for the index finding long primary occurrences where x and τ are positive integers
and 2 ≤ B ≤ lgε(zτ).
O(m+ occ) time and O(z lg(n/z)) space for the index finding short primary occurrences.
O(m+m/τ lg(n/z)) time and O(z lg(n/z)) space for the verification data structure.
O(occ lg lgn) time and O(z lg lg z) space for the secondary index.

If we fix x at n/z we have min{m,n/z}
τ

m
x ≤ m in which case we obtain the following trade-off

simply by combining the above complexities.

I Theorem 7. Given a string S of length n from an alphabet of size σ compressed using
LZ77 to a string of length z we can build a compressed-index supporting substring queries
in O(m + m

τ (lg(n/z) + B lg lg(zτ)) + occ(B lg lg(zτ) + lg lgn)) time using O(z(lg(n/z) +
τ lgB lg(zτ) + lg lg z)) space for any query pattern P of length m where 2 ≤ B ≤ lgε(zτ),
0 < ε < 1 and τ is a positive integer.

We note that none of our data structures assume constant sized alphabet and thus
Theorem 7 holds for any alphabet size.

Due to lack of space the description and analysis of the preprocessing have been moved
to Appendix 8.2.

8.1 Trade-offs
Theorem 7 gives rise to a series of interesting time-space trade-offs.

I Corollary 8. Given a string S of length n from an alphabet of size σ compressed using
LZ77 into a string of length z we can build a compressed-index supporting substring queries
in
(i) O(m(1 + lg lg z

lg(n/z) ) + occ lg lgn) time using O(z lg(n/z) lg lg z) space, or
(ii) O(m(1 + lgε z

lg(n/z) ) + occ(lg lgn+ lgε z)) time using O(z lg(n/z)) space, or
(iii) O(m lgε(n/z) + occ lg lgn) time using O(z lg(n/z)) space, or
(iv) O(m+ occ lg lgn) time using O(z(lg(n/z) lg lg z + lg lg2 z)) space, or
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(v) O(m+ occ(lg lgn+ lgε z)) time using O(z(lg(n/z) + lgε
′
z)) space.

for any 0 < ε < 1 and 0 < ε′ < 1.

Proof. For (i) set B = 2 and τ = lg(n/z), for (ii) set B = lgε z and τ = lg(n/z), for (iii) set
B = 2 and τ = lgε

′
n/z for some 0 < ε′ < 1, for (iv) set B = 2 and τ = lg(n/z) + lg lg z, for

(v) set B = lgε
′
(z) and τ = lg(n/z) + lgε z. J

The leading term in the time complexity of Corollary 8 (i) is O(m) whenever lg lg(z) =
O(lg(n/z)) which is true when z = O(n/ lgn), i.e. for all strings that are compressible by at
least a logarithmic fraction. For σ = O(1) we have z = O(n/ lgn) all strings [34] and thus
Theorem 1 (i) follows immediately. Corollary 8 (ii) matches previous best space bounds
but obtains a leading term of O(m) for any polynomial compression rate. Theorem 1 (ii) is
a weaker version of this because it assumes constant sized alphabet and therefore follows
immediately. Corollary 8 (iii) matches the space and time for reporting occurrences of
previous best bounds by Gagie et al. [18] but with a leading term of O(m lgε(n/z)) compared
to a leading term of O(m lgm). Corollary 8 (iv) and (v) show how to guarantee the fast
query times with leading term O(m) without the assumptions on compression ratio that (i)
and (ii) require to match this, but at the cost of increased space.

8.2 Preprocessing

We now consider the preprocessing time of the data structure. Let Z be the LZ77 parse
of the string S of length n let TD and TD′ be the compact tries used in the index for long
primary occurrences. The compact trie TD index O(zτ) substrings of S with overall length
O(nτ). Thus we can construct the trie in O(nτ) time by sorting the strings and successively
inserting them in their sorted order [1]. The compact tries TD′ index zτ < n suffixes of S
and can be built in O(n) time using O(n) space [10]. The index for short primary occurrences
is a generalized suffix tree over z strings of length O(τ) with total length zτ < n and is
therefore also built in O(n) time. The dictionaries used by the prefix search data structures
and for trie navigation contain O(zτ) keys and are built in expected linear time using perfect
hashing [16]. The range reporting data structures used by the primary and secondary index
over O(zτ) points are built in O(zτ lg(zτ)) expected time using Lemma 9.

Building the SLP for our verification data structure takes O(z lg(n/z)) time using
Lemma 4 and finding an appropriate fingerprinting function φ takes O(n lgn) expected
time using Lemma 6. The prefix search data structures TD and TD′ also require that φ is
collision-free for the x-prefixes, fat prefixes and the prefixes with pseudo fat lengths. There
are at most O(zτ lgn) such prefixes [2]. If we compute these fingerprints incrementally while
doing a traversal of the tries, we expect all the fingerprints to be unique. We simply check
this by sorting the fingerprints in linear time and checking for duplicates by doing a linear
scan. If we choose a prime p = Θ(n5) for the fingerprinting function then the probability of a
collision between any two strings is O(1/n4) [35] and by a union bound over the O((n lgn)2)
possible collisions the probability that φ is collision-free is at least 1−1/n. Thus the expected
time to find our required fingerprinting function is O(n+ n lgn).

All in all, the preprocessing time for our combined index is therefore expected O(n lgn+
nτ).
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A Appendix

A.1 Verification Technique

Consider the string S of length n that we wish to index and let Z be the LZ77 parse of
S. The verification data structure is given by Lemma 5. Consider the prefix search data
structure TD′ as given in Section 5.1 and let φ be the fingerprinting function used by the
prefix search, the case for TD is symmetric. We alter the search for primary occurrences
such that it first does the O(m/τ) prefix searches, then verifies the results and discards
false-positives before moving on to do the O(m/τ) range reporting queries on the verified
results. We also modify φ using Lemma 6 to be collision-free for all substrings of the indexed
strings which length is a power of two.

Let Q1, Q2, . . . Qj be the all the suffixes of P for which the prefix search found a locus
candidate, let the candidates be v1, v2, . . . vj ∈ TD′ and let pi be str(vi)[1, |Qi|]. Assume that
|Qi| < |Qi+1|, and let 2-suf(Q) and 2-pre(Q) denote the fingerprints using φ of the suffix
and prefix respectively of length 2blg |Q|c of some string Q. The verification progresses in
iterations. Initially, let a = 1, b = 2 and for each iteration do as follows:
1. 2-suf(Qa) 6= 2-suf(pa) or 2-pre(Qa) 6= 2-pre(pa): Discard va and set a = a + 1 and

b = b+ 1.
2. 2-suf(Qa) = 2-suf(pa) and 2-pre(Qa) = 2-pre(pa), let R = pb[|pa| − |pb|+ 1, |pa|].

a. 2-suf(R) = 2-suf(Qa) and 2-pre(R) = 2-pre(Qa): set a = a+ 1 and b = b+ 1.
b. 2-suf(R) 6= 2-suf(Qa) or 2-pre(R) 6= 2-pre(Qa): discard vb and set b = b+ 1.
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3. b = j + 1: If all vertices have been discarded, report no matches. Otherwise, let vf be the
last vertex considered, that was not discarded. Compare pf to Qf and if equal, report all
non-discarded vertices as verified. Otherwise discard all vertices and report no matches.

Consider the correctness and complexity of the algorithm. In case 1, clearly, pa does not
match Qa and thus va must be a false-positive. Now observe that because Qi is a suffix of
P , it is also a suffix of Qi′ for any i < i′. Thus in case 2 (b), if R does not match Qa then vb
must be a false-positive. In case 2 (a), both va and vb may still be false-positives, yet by
Lemma 6, pa is a suffix of pb because 2-suf(pa) = 2-suf(R) and 2-pre(pa) = 2-pre(R). Finally,
in case 3, vf is a true positive if and only if pf = Qf . But any other non-discarded vertex
vi 6= vf is also only a true positive if pf = Qf because pi is a suffix of pf and Qi is a suffix
of Qp.

The algorithm does j iterations and fingerprints of substrings of P can be computed
in constant time after O(m) preprocessing. Every vertex v ∈ TD′ represents one or more
substrings of S. If we store the starting index in S of one of these substrings in v when
constructing TD′ we can compute the fingerprint of any substring str(v)[i, j] by computing
the fingerprint of S[i′ + i− 1, i′ + j − 1] where i′ is the starting index of one of the substring
of S that v represents. By Lemma 5, the fingerprint computations take O(lg(n/z)) time and
because j ≤ m/τ the total time complexity of the algorithm is O(m+m/τ lg(n/z)).

A.2 Secondary Index
Let Z be the LZ77 parse of length z representing the string S of length n. We find
the secondary occurrences by applying the most recent range reporting data structure by
Chan et al. [6] to the technique described by Kärkkäinen and Ukkonen [25] which is inspired
by the ideas of Farach and Thorup [11].

Let X ⊆ {0, . . . , u}d be a set of points in a d-dimensional grid. The orthogonal range
reporting problem in d-dimensions is to compactly represent X while supporting range
reporting queries, that is, given a rectangle R = [a1, b2]× · · · × [ad, bd] report all points in
the set R ∩X. We use the following results for 2-dimensional range reporting:

I Lemma 9 (Chan et al. [6]). For any set of n points in [0, u]× [0, u] and 2 ≤ B ≤ lgε n, 0 <
ε < 1 we can solve 2-d orthogonal range reporting with O(n lgn) expected preprocessing time,
O(n lgB lgn) space and (1 + k) ·O(B lg lg u) query time where k is the number of occurrences
inside the rectangle.

Let o1, . . . oocc be the starting positions of the occurrences of P in S ordered increasingly.
Assume that oh is a secondary occurrence such that P = S[oh, oh+m−1]. Then by definition,
S[oh, oh +m− 1] is a substring the prefix S[i, j − 1] of some phrase S[i, j] and there must be
an occurrence of P in the source of that phrase. More precise, let S[k, l] = S[i, j − 1] be the
source of the phrase S[i, j] then oh′ = k + oh − i is an occurrence of P for some h′ < h. We
say that oh′ , which may be primary or secondary, is the source occurrence of the secondary
occurrence oh given the LZ77 parse of S. Thus every secondary occurrence has a source
occurrence. Note that it follows from the definition that no primary occurrence has a source
occurrence.

We find the secondary occurrences as follows: Build a range reporting data structure Q
on the n × n grid and if S[i, j] is a phrase with source S[i′, j′] we plot a point (i′, j′) and
along with it we store the phrase start i.

Now for each primary occurrence o found by the primary index, we query Q for the
rectangle [0, o] × [o + m − 1, n]. The points returned are exactly the occurrences having
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o as source. For each point (x, y) and phrase start i reported, we report an occurrence
o′ = i+ o− x and recurse on o′ to find all the occurrences having o′ as source.

Because no primary occurrence have a source, while all secondary occurrences have a
source, we will find exactly the secondary occurrences.

The range reporting structure Q is built using Lemma 9 with B = 2 and uses space
O(z lg lg z). Exactly one range reporting query is done for each primary and secondary
occurrence each taking O((1 + k) lg lgn) where k is the number of points reported. Each
reported point identifies a secondary occurrence, so the total time is O(occ lg lgn).
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