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Abstract
Given two positions i and j in a string T of length N , a longest common extension (LCE)
query asks for the length of the longest common prefix between suffixes beginning at i and j. A
compressed LCE data structure stores T in a compressed form while supporting fast LCE queries.
In this article we show that the recompression technique is a powerful tool for compressed LCE
data structures. We present a new compressed LCE data structure of size O(z lg(N/z)) that
supports LCE queries in O(lg N) time, where z is the size of Lempel-Ziv 77 factorization without
self-reference of T. Given T as an uncompressed form, we show how to build our data structure
in O(N) time and space. Given T as a grammar compressed form, i.e., a straight-line program
of size n generating T, we show how to build our data structure in O(n lg(N/n)) time and
O(n + z lg(N/z)) space. Our algorithms are deterministic and always return correct answers.
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1 Introduction

Given two positions i and j in a text T of length N , a longest common extension (LCE)
query LCE(i, j) asks for the length of the longest common prefix between suffixes beginning at
i and j. Since LCE queries play a central role in many string processing algorithms (see text
book [6] for example), efficient LCE data structures have been extensively studied. If we are
allowed to use O(N) space, optimal O(1) query time can be achieved by, e.g., lowest common
ancestor queries [1] on the suffix tree of T. However, O(N) space can be too expensive
nowadays as the size of strings to be processed becomes quite large. Thus, recent studies
focus on more space efficient solutions.

Roughly there are three scenarios: Several authors have studied tradeoffs among query
time, construction time and data structure size [19, 5, 4, 21]; In [18], Prezza presented
in-place LCE data structures showing that the memory space for storing T can be replaced
with an LCE data structure while retaining optimal substring extraction time; LCE data
structures working on grammar compressed representation of T were studied in [7, 3, 2, 17].

In this article we pursue the third scenario, which is advantageous when T is highly
compressible. In grammar compression, T is represented by a Context Free Grammar (CFG)
that generates T and only T. In particular CFGs in Chomsky normal form, called Straight
Line Programs (SLPs), are often considered as any CFG can be easily transformed into
an SLP without changing the order of grammar size. Let S be an arbitrary SLP of size n

generating T. Bille et al. [2] showed a Monte Carlo randomized data structure of O(n) space
that supports LCE queries in O(lg N + lg2 `) time, where ` is the answer to the LCE query.
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18:2 Longest Common Extensions with Recompression

Because their algorithm is based on Karp-Rabin fingerprints, the answer is correct w.h.p
(with high probability). If we always expect correct answers, we have to verify fingerprints in
preprocessing phase, spending either O(N lg N) time (w.h.p.) and O(N) space or O( N2

n lg N)
time (w.h.p.) and O(n) space.

For a deterministic solution, I et al. [7] proposed an O(n2)-space data structure, which
can be built in O(n2h) time and O(n2) space from S, and supports LCE queries in O(h lg N)
time, where h is the height of S. As will be stated in Theorem 2, we outstrip this result.

Our work is most similar to that presented in [17]. They showed that the signature
encoding [15] of T, a special kind of CFGs that can be stored in O(z lg N lg∗N) space, can
support LCE queries in O(lg N + lg ` lg∗N) time, where z is the size of LZ77 factorization1 of
T and lg∗ is the iterated logarithm. The signature encoding is based on the localy consistent
parsing technique, which determines the parsing of a string by local surrounding. A key
property of the signature encoding is that any occurrence of the same substring of length
` in T is guaranteed to be compressed in almost the same way leaving only O(lg ` lg∗N)
discrepancies in its surrounding. As a result, an LCE query can be answered by tracing the
O(lg ` lg∗N) surroundings created over two occurrences of the longest common extension.
Since the cost O(lg N) is needed anyway to traverse the derivation tree of height O(lg N)
from the root, an LCE query is supported in O(lg N + lg ` lg∗N) time.

In this article we show that CFGs created by the recompression technique exhibit a
similar property that can be used to answer LCE queries in O(lg N) time. In recent years
recompression has been proved to be a powerful tool in problems related to grammar
compression [8, 9, 10, 13] and word equations [11, 12]. The main component of recompression
is to replace some pairs in a string with variables of the CFG. Although we use global
information (like the frequencies of pairs in the string) to determine which pairs to be
replaced, the pairing itself is done very locally, i.e., “all” occurrences of the pairs are replaced
regardless of contexts. Then we can show that recompression compresses any occurrence of
the same substring in T in almost the same way leaving only O(lg N) discrepancies in its
surrounding. This leads to an O(lg N)-time algorithm to answer LCE queries, improving
the O(lg N + lg ` lg∗N)-time algorithm of [17]. We also improve the data structure size from
O(z lg N lg∗N) of [17]2 to O(z lg(N/z)).

In [17], the authors proposed efficient algorithms to build their LCE data structure from
various kinds of input as summarized in Table 1. We achieve a better and cleaner complexity
to build our LCE data structure from SLPs. This has a great impact on compressed string
processing, in which we are to solve problems on SLPs without decompressing the string
explicitly. For instance, we can apply our result to the problems discussed in Section 7 of [17]
and immediately improve the results (other than Theorem 17). It should be noted that the
data structures in [17] also support efficient text edit operations. We are not sure if our data
structures can be efficiently dynamized.

Theorems 1 and 2 show our main results. Note that our data structure is a simple CFG
of height O(lg N) on which we can simulate the traversal of the derivation tree in constant
time per move. Thus, it naturally supports Extract(i, `) queries, which asks for retrieving the
substring T[i..i + `− 1], in O(lg N + `) time.

1 Note that there are several variants of LZ77 factorization. In this article we refer to the one that is
known as the f-factorization without self-reference as LZ77 factorization unless otherwise noted.

2 We believe that the space complexities of [17] can be improved to O(z lg(N/z) lg∗N) by using the same
trick we use in Lemma 13.
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Table 1 Comparison of construction time and space between ours and [17], where N is the length
of T, S is an SLP of size n generating T, z is the size of LZ77 factorization of T, and fA is the time
needed for predecessor queries on a set of z lg N lg∗N integers from an N -element universe.

Input Construction time Construction space Reference
T O(NfA) O(z lg N lg∗N) Theorem 3 (1a) of [17]
T O(N) O(N) Theorem 3 (1b) of [17]
S O(nfA lg N lg∗N) O(n + z lg N lg∗N) Theorem 3 (3a) of [17]
S O(n lg lg n lg N lg∗N) O(n lg∗N + z lg N lg∗N) Theorem 3 (3b) of [17]

LZ77 O(zfA lg N lg∗N) O(z lg N lg∗N) Theorem 3 (2) of [17]
T O(N) O(N) this work, Theorem 1
S O(n lg(N/n)) O(n + z lg(N/z)) this work, Theorem 2

LZ77 O(z lg2(N/z)) O(z lg(N/z)) this work, Corollary 3

I Theorem 1. Given a string T of length N , we can compute in O(N) time and space a
compressed representation of T of size O(z lg(N/z)) that supports Extract(i, `) in O(lg N + `)
time and LCE queries in O(lg N) time.

I Theorem 2. Given an SLP of size n generating a string T of length N , we can compute
in O(n lg(N/n)) time and O(n + z lg(N/z)) space a compressed representation of T of size
O(z lg(N/z)) that supports Extract(i, `) in O(lg N + `) time and LCE queries in O(lg N) time.

Suppose that we are given the LZ77-compression of size z of T as an input. Since we can
convert the input into an SLP of size O(z lg(N/z)) [20], we can apply Theorem 2 to the SLP
and get the next corollary.

I Corollary 3. Given the LZ77-compression of size z of a string T of length N , we can
compute in O(z lg2(N/z)) time and O(z lg(N/z)) space a compressed representation of T of
size O(z lg(N/z)) that supports Extract(i, `) in O(lg N + `) time and LCE queries in O(lg N)
time.

Technically, this work owes very much to two papers [10, 9]. For instance, our construction
algorithm of Theorem 1 is essentially the same as the grammar compression algorithm [10],
which produces an SLP of size O(g∗ lg(N/g∗)), where g∗ is the smallest grammar size to
generate T. Our contribution is in discovering the above mentioned property that can be
used for fast LCE queries. Also, we use the property to upper bound the size of our data
structure in terms of z rather than g∗. Since it is known that z ≤ g∗ holds [20], an upper
bound in terms of z is preferable. The technical issues in our construction algorithm of
Theorem 2 have been tackled in [9], in which the recompression technique is used to solve
the fully-compressed pattern matching problems. However, we make some contributions on
top of it: We give a new observation that simplifies the implementation and analysis of a
component of recompression called BComp (see Section 4.1.2). Also, we achieve a better
construction time O(n lg(N/n)) than what we obtain by straightforwardly applying the
analysis in [9]—O(n lg N).

2 Preliminaries

An alphabet Σ is a set of characters. A string over Σ is an element in Σ∗. For any string
w ∈ Σ∗, |w| denotes the length of w. Let ε be the empty string, i.e., |ε| = 0. Let Σ+ = Σ∗\{ε}.
For any 1 ≤ i ≤ |w|, w[i] denotes the i-th character of w. For any 1 ≤ i ≤ j ≤ |w|, w[i..j]

CPM 2017



18:4 Longest Common Extensions with Recompression

denotes the substring of w beginning at i and ending at j. For convenience, let w[i..j] = ε if
i > j. For any 0 ≤ i ≤ |w|, w[1..i] (resp. w[|w| − i + 1..|w|]) is called the prefix (resp. suffix)
of w of length i. We say that a string x occurs at position i in w iff w[i..i + |x| − 1] = x. A
substring w[i..j] = cd (c ∈ Σ, d ≥ 1) of w is called a block iff it is a maximal run of a single
character, i.e., (i = 1 ∨ w[i− 1] 6= c) ∧ (j = |w| ∨ w[j + 1] 6= c).

The text on which LCE queries are performed is denoted by T ∈ Σ∗ with N = |T|
throughout this paper. We assume that Σ is an integer alphabet [1..NO(1)] and the standard
word RAM model with word size Ω(lg N).

The size of our compressed LCE data structure is bounded by O(z lg(N/z)), where z is
the size of the LZ77 factorization of T defined as follows:

IDefinition 4 (LZ77 factorization). The factorization T = f1f2 · · · fz is the LZ77 factorization
of T iff the following condition holds: For any 1 ≤ i ≤ z, let pi = |f1f2 · · · fi−1| + 1, then
fi = T[pi] if T[pi] does not appear in T[1..pi−1], otherwise fi is the longest prefix of T[pi..N ]
that occurs in T[1..pi − 1].

In this article, we deal with grammar compressed strings, in which a string is represented
by a Context Free Grammar (CFG) generating the string only. In particular, we consider
Straight-Line Programs (SLPs) that are CFGs in Chomsky normal form. Formally, an SLP
that generates a string T is a triple S = (Σ,V,D), where Σ is the set of characters (terminals),
V is the set of variables (non-terminals), D is the set of deterministic production rules whose
righthand sides are in V2 ∪ Σ, and the last variable derives T.3 Let n = |V|. We treat
variables as integers in [1..n] (which should be distinguishable from Σ by having extra one
bit), and D as an injective function that maps a variable to its righthand side. We assume
that given any variable X we can access in O(1) time the information on X, e.g., D(X). We
refer to n as the size of S since S can be encoded in O(n) space. Note that N can be as
large as 2n−1, and so, SLPs have a potential to achieve exponential compression.

We extend SLPs by allowing run-length encoded rules whose righthand sides are of the
form Xd with X ∈ V and d ≥ 2, and call such CFGs run-length SLPs (RLSLPs). Since a
run-length encoded rule can be stored in O(1) space, we still define the size of an RLSLP by
the number of variables.

Let us consider the derivation tree T of an RLSLP S that generates a string T, where we
delete all the nodes labeled with terminals for simplicity. That is, every node in T is labeled
with a variable. The height of S is the height of T . We say that a sequence C = v1 · · · vm of
nodes is a chain iff the nodes are all adjacent in this order, i.e., the beginning position of
vi+1 is the ending position of vi plus one for any 1 ≤ i < m. C is labeled with the sequence
of labels of v1 · · · vm. For any sequence p ∈ V∗ of variables, let valS(p) denote the string
obtained by concatenating the strings derived from all variables in the sequence. We omit S
when it is clear from context. We say that p generates val (p). Also, we say that p occurs at
position i iff there is a chain that is labeled with p and begins at i.

The next lemma, which is somewhat standard for SLPs, also holds for RLSLPs.

I Lemma 5. For any RLSLP S of height h generating T, by storing |val (X)| for every
variable X, we can support Extract(i, `) in O(h + `) time.

3 We treat the last variable as the starting variable.
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3 LCE data structure built from uncompressed texts

In this section, we prove Theorem 1 by showing that the RLSLP obtained by grammar
compression algorithm [9] based on recompression can be used for fast LCE queries. In
Subsection 3.1 we review recompression and introduce notation we use. In Subsection 3.2 we
present a new characterization of recompression, which is a key to our contributions.

3.1 TtoG: Grammar compression based on recompression
In [9] Jeż proposed an algorithm TtoG to compute an RLSLP of T in O(N) time.4 Let
TtoG(T) denote the RLSLP of T produced by TtoG. We use the term letters for variables
introduced by TtoG. In particular, we often refer to an occurrence of a sequence of letters,
for which the readers should recall the definition of an occurrence of a sequence of variables.
Also, we use c (rather than X) to represent a letter.

TtoG consists of two different types of compression, BComp and PComp, which stand for
Block Compression and Pair Compression, respectively.

BComp: Given a string w over Σ = [1..|w|], BComp compresses w by replacing all blocks
of length ≥ 2 with fresh letters. Note that BComp eliminates all blocks of length ≥ 2 in
w. We can conduct BComp in O(|w|) time and space (Lemma 6).
PComp: Given a string w over Σ = [1..|w|] that contains no block of length ≥ 2, PComp
compresses w by replacing all pairs from Σ́Σ̀ with fresh letters, where (Σ́ , Σ̀) is a partition
of Σ, i.e., Σ = Σ́ ∪ Σ̀ and Σ́ ∩ Σ̀ = ∅. We can deterministically compute in O(|w|) time
and space a partition of Σ by which at least (|w| − 1)/4 pairs are replaced (Lemma 7),
and conduct PComp in O(|w|) time and space (Lemma 8).

Let T0 be a sequence of letters obtained by replacing every character c of T with a letter
generating c. TtoG compresses T0 by applying BComp and PComp by turns until the string
gets shrunk into a single letter. Since PComp compresses a given string by a constant factor
3/4, the height of TtoG(T) is O(lg N), and the total running time is bounded by O(N).

In order to give a formal description we introduce some notation below. TtoG transforms
level by level T0 into strings, T1, T2, . . . , Tĥ, where |Tĥ| = 1. For any 0 ≤ h ≤ ĥ, we say that
h is the level of Th. If h is even, the transformation from Th to Th+1 is performed by BComp,
and production rules of the form c→ c̈d are introduced. If h is odd, the transformation from
Th to Th+1 is performed by PComp, and production rules of the form c→ ćc̀ are introduced.
Let Σh be the set of letters appearing in Th. For any even h (0 ≤ h < ĥ), let Σ̈h denote the
set of letters with which there is a block of length ≥ 2 in Th. For any odd h (0 ≤ h < ĥ), let
(Σ́h, Σ̀h) denote the partition of Σh used in PComp of level h.

Figure 1 shows an example of how TtoG compresses T0.
The following four lemmas show how to conduct BComp, PComp, and thus, TtoG,

efficiently, which are essentially the same as respectively Lemma 2, Lemma 5, Lemma 6, and
Theorem 1, stated in [9]. We give the proofs in Appendix for the sake of completeness.

I Lemma 6. Given a string w over Σ = [1..|w|], we can conduct BComp in O(|w|) time and
space.

For any string w ∈ Σ∗ that contains no block of length ≥ 2, let Freqw(c, c̃, 0) (resp.
Freqw(c, c̃, 1)) with c > c̃ ∈ Σ denote the number of occurrences of cc̃ (resp. c̃c) in w. We

4 Indeed, the paper shows how to compute an “SLP” of size O(g∗ lg(N/g∗)), where g∗ is the smallest SLP
size to generate T. In order to estimate the number of SLP’s variables needed to represent run-length
encoded rules, its analysis becomes much involved.
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T0 3
T1
T2
T3
T4

1 1 1 2 3 4 2 2 2 2 21 1 1 13 4 3 42 2 2 2 2 21 1 3 4 4
3 6 2 3 4 7 2 21 1 53 4 3 42 7 2 21 1 3 8
3 13 10 7 9 9 10 1012 7 9 9 11
3 13 10 7 14 10 1012 7 14 11
3 17 15 10 16 15 11
3 17 15 10 16 15 11
3 19 10 18 11
3 19 10 18 11

20 21 11
20 21 11

22 11
22 11
23

T5
T6
T7
T8
T9
T10
T11
T12

Figure 1 An example of how TtoG compresses T0. Below we enumerate non-empty Σ̈h, Σ́h, Σ̀h

and production rules introduced in each level. From T0 to T1: Σ̈0 = {1, 2, 4}, {5 → 12, 6 →
13, 7 → 23, 8 → 42}. From T1 to T2: Σ́1 = {1, 3, 5, 6, 7}, Σ̀1 = {2, 4, 8}, {9 → (1, 2), 10 →
(3, 4), 11 → (3, 8), 12 → (5, 2), 13 → (6, 2)}. From T2 to T3: Σ̈2 = {9}, {14 → 92}. From T3

to T4: Σ́3 = {3, 7, 12, 13}, Σ̀3 = {10, 14}, {15 → (7, 14), 16 → (12, 10), 17 → (13, 10)}. From
T5 to T6: Σ́5 = {3, 10, 11, 16, 17}, Σ̀5 = {15}, {18 → (16, 15), 19 → (17, 15)}. From T7 to T8:
Σ́7 = {3, 10, 11}, Σ̀7 = {18, 19}, {20 → (3, 19), 21 → (10, 18)}. From T9 to T10: Σ́9 = {11, 20},
Σ̀9 = {21}, {22 → (20, 21)}. From T11 to T12: Σ́11 = {22}, Σ̀11 = {11}, {23 → (22, 11)}.

refer to the list of non-zero Freqw(c, c̃, ·) sorted in increasing order of c as the adjacency
list of w. Note that it is a representation of the weighted directed graph in which there
are exactly Freqw(c, c̃, 0) (resp. Freqw(c, c̃, 1)) edges from c to c̃ (resp. from c̃ to c). Each
occurrence of a pair in w is counted exactly once in the adjacency list. Then the problem of
computing a good partition (Σ́ , Σ̀) of Σ reduces to maximum directed cut problem on the
graph. Algorithm 1 is based on a simple greedy 1/4-approximation algorithm of maximum
directed cut problem.

I Lemma 7. Given the adjacency list of size m of a string w ∈ Σ∗, Algorithm 1 computes
in O(m) time a partition (Σ́ , Σ̀) of Σ such that the number of occurrences of pairs from Σ́Σ̀
in w is at least (|w| − 1)/4.

I Lemma 8. Given a string w over Σ = [1..|w|] that contains no block of length ≥ 2, we
can conduct PComp in O(|w|) time and space.

I Lemma 9. Given a string T over Σ = [1..NO(1)], we can compute TtoG(T) in O(N) time
and space.

3.2 Popped sequences
We give a new characterization of recompression, which is a key to fast LCE queries as well as
obtaining the upper bound O(z lg(N/z)) for the size of TtoG(T). For any substring w of T,
we define the Popped Sequence (PSeq), denoted by PSeq(w), of w (formal definition is in the
next paragraph). PSeq(w) is a sequence of letters such that val (PSeq(w)) = w and consists
of O(lg N) blocks of letters. It is not surprising that any substring can be represented by
O(lg N) blocks of letters because the height of TtoG(T) is O(lg N). The significant property
of PSeq(w) is that it occurs at “every” occurrence of w. A similar property has been observed
in CFGs produced by locally consistent parsing and utilized for compressed indexes [14, 16]
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Algorithm 1: How to compute a partition of Σ for PComp to compress w by 3/4.
Input: Adjacency list of w ∈ Σ∗.
Output: (Σ́ , Σ̀) s.t. # occurrences of pairs from Σ́Σ̀ in w is at least (|w| − 1)/4.
/* The information whether c ∈ Σ is in Σ́ or Σ̀ is written in the data

space for c, which can be accessed in O(1) time. */
1 Σ́ ← Σ̀ ← ∅;
2 foreach c ∈ Σ in increasing order do
3 if

∑
c̃∈Σ̀ Freqw(c, c̃, ·) ≥

∑
c̃∈Σ́ Freqw(c, c̃, ·) then

4 add c to Σ́;
5 else
6 add c to Σ̀;

7 if # occurrences of pairs from Σ́Σ̀ < # occurrences of pairs from Σ̀Σ́ then
8 switch Σ́ and Σ̀;
9 return (Σ́ , Σ̀);

w0
w1
w2
w3

1 1 4 2 2 2 2 21 1
4 7 2 21 1

32
32

3 4
3

9 910
10

7
7

Figure 2 PSeq for w0 = [1, 1, 2, 3, 4, 2, 2, 2, 1, 2, 1, 2, 3, 4] under Σ̈h, Σ́h, Σ̀h of Figure 1. At level 0,
a block of 1 (resp. 4) is popped out from the leftend (resp. rightend) of w0 because 1, 4 ∈ Σ̈0. At
level 1, a letter 2 (resp. 3) is popped out from the leftend (resp. rightend) of w1 because 2 ∈ Σ̀1 and
3 ∈ Σ́1. At level 2, a block of 9 is popped out from the rightend of w2 because 9 ∈ Σ̈2. At level
3, a letter 10 (resp. 7) is popped out from the leftend (resp. rightend) of w3 because 10 ∈ Σ̀1 and
7 ∈ Σ́1. Then, PSeq(w0) = [1, 1, 2, 10, 7, 9, 9, 3, 4]. Observe that w0 occurs twice in T0 of Figure 1.
and w0, w1, w2 and w3 are created over both occurrences. As a result, PSeq(w0) occurs everywhere
w0 occurs.

and a dynamic compressed LCE data structure [17]. For example, in [16, 17] the sequence
having such a property is called the common sequence of w but its representation size is
O(lg |w| lg∗N) rather than O(lg N).

PSeq(w) is the sequence of letters characterized by the following procedure. Let w0 be
the substring of T0 that generates w. We consider applying BComp and PComp to w0 exactly
as we did to T but in each level we pop some letters out from both ends if the letters can be
coupled with letters outside the scope. Formally, in increasing order of h ≥ 0, we get wh+1
from wh as follows:

If h is even. We first pop out the leftmost and rightmost blocks of wh if they are blocks
of letter c ∈ Σ̈h. Then we get wh+1 by applying BComp to the remaining string.
If h is odd. We first pop out the leftmost letter and rightmost letter of wh if they
are letters in Σ̀h and Σ́h, respectively. Then we get wh+1 by applying PComp to the
remaining string.

We iterate this until the string disappears. PSeq(w) is the sequence obtained by concatenating
the popped-out letters/blocks in an appropriate order, i.e., the order of the positions they
occur. Note that for any occurrence of w the letters are compressed in the same way at least
until they are popped out. Hence wh is created for every occurrence of w and the occurrence
of PSeq(w) is guaranteed (see also Figure 2).

CPM 2017



18:8 Longest Common Extensions with Recompression

The next lemma formalizes the above discussion.

I Lemma 10. For any substring w of T, PSeq(w) consists of O(lg N) blocks of letters. In
addition, w occurs at position i iff PSeq(w) occurs at i.

The next lemma and corollary are used to prove Lemmas 13 and 14.

I Lemma 11. For any chain C whose label consists of m blocks of letters, the number of
ancestor nodes of C is O(m).

I Corollary 12. For any chain C corresponding to PSeq(T[b..e]) for some interval [b..e], the
number of ancestor nodes of C is O(lg N).

I Lemma 13. The size of TtoG(T) is O(z lg(N/z)).

Proof. We first show the bound O(z lg N) and later improve the analysis to O(z lg(N/z)).
Let f1 . . . fz be the LZ77 factorization of T. For any 1 ≤ i ≤ z, let Li be the set of

letters used in the ancestor nodes of leaves corresponding to the prefix f1f2 . . . fi. Clearly
|L1| = O(lg N). For any 1 < i ≤ z, we estimate |Li \ Li−1|. Since fi occurs in f1 . . . fi−1, we
can see that the letters of PSeq(fi) are in Li−1 thanks to Lemma 10. Let Ci be the chain
corresponding to the occurrence |f1 . . . fi−1 + 1| of PSeq(fi). Then, the letters in Li \ Li−1
are only in the labels of ancestor nodes of Ci. Since PSeq(fi) consists of O(lg N) blocks of
letters, |Li \ Li−1| is bounded by O(lg N) due to Lemma 11. Therefore the size of TtoG(T)
is

∑z
i=1 |Li \ Li−1| = O(z lg N).

In order to improve the bound to O(z lg(N/z)), we employ the same trick that was used
in [20, 9]. Let h = 2 lg4/3(N/z) = 2 lg3/4(z/N). Recall that PComp compresses a given
string by a constant factor 3/4. Since PComp has been applied h/2 times until the level h,
|Th| ≤ N(3/4)h/2 = z, and hence, the number of letters introduced in level ≥ h is bounded
by O(z). Then, we can ignore all the letters introduced in level ≥ h in the analysis of
the previous paragraph, and by doing so, the bound O(lg N) of |Li \ Li−1| is improved to
O(h) = O(lg(N/z)). This yields the bound O(z lg(N/z)) for the size of TtoG(T). J

I Lemma 14. Given TtoG(T), we can answer LCE(i, j) in O(lg N) time.

Proof. We compute LCE(i, j) by matching the common sequence of letters occurring at i

and j from left to right. First we traverse the derivation tree of TtoG(T) from the root down
to the i-th and j-th leaves simultaneously while seeking the common block occurring at i

and j. If there is no such block, LCE(i, j) = 0, and we are done. Otherwise we stop at some
internal nodes that contain the common block in their children. Let `1 be the length of the
string generated by the block. Because LCE(i, j) ≥ `1, we move on matching the next block
by (possibly traversing up first and) traversing down to the (i + `1)-th and (j + `1)-th leaves.
We iterate this procedure until we find no further common block. Then LCE(i, j) =

∑m
k=1 `k,

where `1, `2, . . . , `m is the sequence of lengths of the common blocks we found.
Now we show that the above described algorithm runs in O(lg N) time. Note that

it is bounded by the number of nodes we visit during the computation. In the light of
Lemma 10, PSeq(w) occurs at both i and j, where w is the longest common prefix of two
suffixes beginning at i and j. Let Ci (resp. Cj) be the chain that is labeled with PSeq(w)
and begins at i (resp. j). Since the algorithm matches PSeq(w) or a succincter common
sequence existing above Ci and Cj , we never go down below the parents of Ci or Cj during
the computation. Hence, the number of visited nodes is bounded by the number of nodes
that are ancestors of Ci or Cj , which is O(lg N) by Corollary 12. J

Theorem 1 is immediately from Lemmas 9, 5 and 14.
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4 LCE data structure built from SLPs

In this section, we prove Theorem 2. Input is now an arbitrary SLP S = (Σ,V,D) of size n

generating T. Basically what we consider is to simulate TtoG on S, namely, compute TtoG(T)
without decompressing S explicitly. In Section 4.1, we present an algorithm SimTtoG that
simulates TtoG in O(n lg2(N/n)) time and O(n+z lg(N/z)) space. In Section 4.2, we present
how to modify SimTtoG to get Theorem 2.

4.1 SimTtoG: Simulating TtoG on CFGs
We present an algorithm SimTtoG to simulate TtoG on S. To begin with, we compute the
CFG S0 = (Σ0,V,D0) obtained by replacing, for all variables X ∈ V with D(X) ∈ Σ, every
occurrence of X in the righthand sides of D with the letter generating D(X). Note that Σ0
is the set of terminals of S0, and S0 generates T0. SimTtoG transforms level by level S0 into
CFGs, S1 = (Σ1,V,D1),S2 = (Σ2,V,D2), . . . ,Sĥ = (Σĥ,V,Dĥ), where each Sh generates Th.
Namely, compression from Th to Th+1 is simulated on Sh. We can correctly compute the
letters introduced in each level h + 1 while modifying Sh into Sh+1, and hence, we get all
the letters of TtoG(T) in the end. We note that new “variables” are never introduced and
the modification is done by rewriting righthand sides of the original variables.

Here we introduce the special formation of the CFGs Sh (it is a generalization of SLPs in
a different sense from RLSLPs): For any X ∈ V, Dh(X) consists of an “arbitrary number”
of letters and at most “two” variables. More precisely, the following condition holds:

For any variable X ∈ V with D(X) = X́X̀, Dh(X) is either w1X́w2X̀w3, w1X́w2, w2X̀w3
or w2 with w1, w2, w3 ∈ Σ∗h, where w1 = w3 = ε if X is not the starting variable.

As opposed to SLPs and RLSLPs, we define the size of Sh by the total lengths of righthand
sides and denote it by |Sh|.

4.1.1 PComp on CFGs
We firstly demonstrate that the adjacency list of Th can be computed efficiently.

I Lemma 15 (Lemma 6.1 of [10]). For any odd h (0 ≤ h < ĥ), the adjacency list of Th,
whose size is O(|Sh|), can be computed in O(|Sh|+ n) time and space.

Proof. For any variable X ∈ V , let VOcc(X) denote the number of occurrences of the nodes
labeled with X in the derivation tree of S. It is well known that VOcc(X) for all variables
can be computed in O(n) time and space on the DAG representation of the tree.5 Also, for
any variable X ∈ V, let LML(X) and RML(X) denote the leftmost letter and respectively
rightmost letter of valSh

(X). We can compute LML(X) for all variables in O(|Sh|) time by
a bottom up computation, i.e., LML(X) = LML(Y ) if Dh(X) starts with a variable Y , and
LML(X) = w[1] if Dh(X) starts with a non-empty string w. In a completely symmetric way
RML(X) can be computed in O(|Sh|) time.

Now observe that any occurrence i of a pair ćc̀ in Th can be uniquely associated with a
variable X that is the label of the lowest node covering the interval [i..i + 1] in the derivation
tree of Sh (recall that Sh generates Th). We intend to count all the occurrences of pairs
associated with X in Dh(X). For example, let Dh(X) = X́w2X̀ with w2 ∈ Σ∗h. Then ćc̀

5 It is sufficient to compute VOcc(X) once at the very beginning of SimTtoG.
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appears explicitly in w2 or crosses the boundaries of X́ and/or X̀. If ćc̀ crosses the boundary
of X́, RML(X́) is ć and c̀ follows, i.e., (w2[1] = c̀) ∨ (w2 = ε ∧ LML(X̀) = c̀). Using RML(X́)
and LML(X̀), we can compute in O(|Dh(X)|) time and space a (|Dh(X)| − 1)-size multiset
that lists all the explicit and crossing pairs in Dh(X). Each pair ćc̀ with ć > c̀ (resp. ć < c̀)
is listed by a quadruple (ć, c̀, 0, VOcc(X)) (resp. (c̀, ć, 1, VOcc(X)). VOcc(X) means that
the pair has a weight VOcc(X) because the pair appears every time a node labeled with X

appears in the derivation tree.
We compute such a multiset for every variable, which takes O(|Sh|) time and space

in total. Next we sort the obtained list in increasing order of the first three integers in a
quadruple. Note that the maximum value of letters is O(z lg(N/z)) due to Lemma 13, and
O(z lg(N/z)) = O(n2) since z ≤ n and lg N ≤ n hold. Thus the sorting can be done in O(n)
time and space by radix sort. Finally we can get the adjacency list of Th by summing up
weights of the same pair. The size of the list is clearly O(|Sh|). J

The next lemma shows how to implement PComp on CFGs:

I Lemma 16. For any odd h (0 ≤ h < ĥ), we can compute Sh+1 from Sh in O(|Sh| + n)
time and space. In addition, |Sh+1| ≤ |Sh|+ 2n.

Proof. We first compute the partition (Σ́h, Σ̀h) of Σh, which can be done in O(|Sh| + n)
time and space by Lemmas 15 and 7.

Given (Σ́h, Σ̀h), we can detect all the positions of the pairs from Σ́hΣ̀h in the righthands
of Dh, which are to be compressed. Some of the appearances of the pairs are explicit and
the others are crossing. While explicit pairs can be compressed easily, crossing pairs need
additional treatment. To deal with crossing pairs, we first uncross them by popping out every
LML(Y ) ∈ Σ̀h and RML(Y ) ∈ Σ́h from valSh

(Y ) and popping them into the appropriate
positions in the other rules. More precisely, we do the followings (for technical reason, do
PopInLet first):
PopInLet. For any variable X, if Dh(X)[i] = Y ∈ V with i > 1 (i ≥ 1 if X is the

starting variable) and LML(Y ) ∈ Σ̀h, replace the occurrence of Y with LML(Y )Y ; if
Dh(X)[i] = Y ∈ V with i < |Dh(X)| (i ≤ |Dh(X)| if X is the starting variable) and
RML(Y ) ∈ Σ́h, replace the occurrence of Y with Y RML(Y ).

PopOutLet. For any variable X other than the starting variable, if Dh(X)[1] ∈ Σ̀h, remove
the first letter of Dh(X); and if Dh(X)[|Dh(X)|] ∈ Σ́h, remove the last letter of Dh(X).
In addition, if X becomes empty, we remove all the appearances of X in Dh.

PopOutLet removes LML(Y ) ∈ Σ̀h and RML(Y ) ∈ Σ́h from valSh
(Y ) (which can be a part

of a crossing pair), and PopInLet introduces the removed letters into appropriate positions
in Dh so that the modified Sh keeps to generate Th. Notice that for each variable X the
positions where letters popped in is at most two (four if X is the starting variable) and there
is at least one variable that has no variables below, and hence, no letters popped in. Thus,
the size of Sh increases at most 2n. The uncrossing can be conducted in O(|Sh|+ n) time.

Since all the pairs to be compressed become explicit, we can conduct BComp in O(|Sh|+n)
time as follows. We scan righthand sides in O(|Sh|) time and list all the occurrences of pairs
to be compressed. Each occurrence of pair ćc̀ ∈ Σ́Σ̀ is listed by a triple (ć, c̀, p), where p is
the pointer to the occurrence. Then we sort the list according to the pair of integers (ć, c̀),
which can be done in O(|Sh|+ n) time and space by radix sort because ć and c̀ are O(n2).
Finally, we replace each pair at position p with a fresh letter based on the rank of (ć, c̀). J
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4.1.2 BComp on CFGs
For any even h (0 ≤ h < ĥ), BComp can be implemented in a similar way to PComp of
Lemma 16. A block Th[b..e] of length ≥ 2 is uniquely associated with a variable X that
is the label of the lowest node covering the interval [b − 1..e + 1] in the derivation tree of
Sh (if b = 0 or e = |Th|, the block is associated with the starting variable). Here we take
[b− 1..e + 1] rather than [b..e] to be sure that the block cannot extend outside the variable.
Some blocks are explicitly written in Dh(X) and the others are crossing the boundaries of
variables in Dh(X). The numbers of explicit blocks and crossing blocks in Dh is at most |Sh|
and 2n, respectively. The crossing blocks can be uncrossed in a similar way to uncrossing
pairs. Then BComp can be done by replacing all the blocks with fresh letters on righthand
sides of Dh.

However here we have a problem. In order to give a unique letter to a block cd, we have
to sort the pairs of integers (c, d). Since d might be exponentially larger than |Sh|+ n, radix
sort cannot be executed in O(|Sh|+ n) time and space. In Section 6.2 of [10], Jeż showed
how to solve this problem by tweaking the representation of lengths of long blocks, but its
implementation and analysis are involved.6

We show in Lemma 17 our new observation, which leads to a simpler implementation and
analysis of BComp. We say that a block cd is short if d = O(|Sh|+ n) and long otherwise.
Also, we say that a variable is unary iff its righthand side consists of a single block.

I Lemma 17. For any even h (0 ≤ h < ĥ), a block Th[b..e] = cd is short if it does not
include a substring generated from a unary variable.

Proof. Consider the derivation tree of Sh and the shortest path from Th[b] to Th[e]. Let
X1X2 · · ·Xm′ · · ·Xm be the sequence of labels of internal nodes on the path, where Xm′

corresponds to the lowest common ancestor of Th[b] and Th[e]. Since SLPs have no loops in
the derivation tree, X1, . . . , Xm′ are all distinct. Similarly Xm′+1, . . . , Xm are all distinct.
Since a unary variable is not involved to generate the block, it is easy to see that d ≤∑m

i=1 |Dh(Xi)| ≤ 2|Sh| holds. J

Lemma 17 implies that most of blocks we find during the compression are short, which
can be sorted efficiently by radix sort. If there is a long block in Dh, an occurrence of a unary
variable X must be involved to generate the block. Since BComp at level h pops out all the
letters from X and removes the occurrences of X in Dh, there are at most 2n long blocks
in total. The number of long blocks can also be upper bounded by 2N/n with a different
analysis based on the following fact:

I Fact 18. If a substring of original text T generated from a long block overlaps with that
generated from another long block, one substring must include the other, and moreover, the
shorter block is completely included in “one” letter of the longer block. Hence the length of
the substring of the longer block is at least n times longer than that of the shorter block.

Let us consider the long blocks that generate substrings whose lengths are [ni..ni+1) for a
fixed integer i ≥ 1. By Fact 18, the substrings cannot overlap, and hence, the number of
such long blocks is at most N/ni. Therefore, the total number of long blocks is at most∑

i≥1 N/ni ≤ 2N/n. Thus we get the following lemma.

6 Note that Section 6.2 of [10] also takes care of the case where the word size is Θ(lg n) rather than
Θ(lg N). We do not consider the Θ(lg n)-bits model in this paper because using Θ(lg N) bits to store
the length of string generated by every letter is crucial for extract and LCE queries. However, we believe
that our new observation stated in Lemma 17 will simplify the analysis for the Θ(lg n)-bits model, too.
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I Lemma 19. There are at most O(min(n, N/n)) long blocks found during SimTtoG.

By Lemma 19, we can employ a standard comparison-based sorting algorithm to sort all
long blocks in O(n lg(min(n, N/n))) time in total. In particular, BComp of one level can be
implemented in the following complexities:

I Lemma 20. For any even h (0 ≤ h < ĥ), we can compute Sh+1 from Sh in O(|Sh| +
n + m lg m)) time and O(|Sh|+ n) space, where m is the number of long blocks in Dh. In
addition, |Sh+1| ≤ |Sh|+ 2n.

4.1.3 The complexities of SimTtoG
I Theorem 21. SimTtoG runs in O(n lg2(N/n)) time and O(n lg(N/n)) space.

Proof. Using PComp and BComp implemented on CFGs (see Lemma 16 and 20), SimTtoG
transforms level by level S0 into S1,S2, . . . ,Sĥ. In each level, the size of CFGs can increase
at most 2n by the procedure of uncrossing. Since |Sh| = O(n lg N) for any h (0 ≤ h < ĥ),
we get the time complexity O(n lg2 N) by simply applying Lemmas 16 and 20.

We can improve it to O(n lg2(N/n)) by a similar trick used in the proof of Lemma 13.
At some level h′ where |Th′ | becomes less than n, we decompress Sh′ and switch to TtoG,
which transforms Th′ into Tĥ in O(n) time by Lemma 9. We apply Lemmas 16 and 20 only
for h with 0 ≤ h < h′. Since h′ = O(lg(N/n)), |Sh| = O(n lg(N/n)) for any h (0 ≤ h < h′).
Hence, we get the time complexity O(n lg2(N/n)). The space complexity is bounded by the
maximum size of CFGs S0,S1, . . . ,Sh′ , which is O(n lg(N/n)). J

4.2 GtoG: O(n lg(N/n))-time recompression
We modify SimTtoG slightly to run in O(n lg(N/n)) time and O(n + z lg(N/z)) space. The
idea is the same as what has been presented in Section 6.1 of [10]. The problem of SimTtoG
is that the sizes of intermediate CFGs Sh can grow up to O(n lg(N/n)). If we can keep their
sizes to O(n), everything goes fine. This can be achieved by using two different types of
partitions of Σh for PComp: One is for compressing Th by a constant factor, and the other
for compressing |Sh| by a constant factor (unless |Sh| is too small to compress). Recall that
the former partition has been used in TtoG and SimTtoG, and the partition is computed
from the adjacency list of Th by Algorithm 1. Algorithm 1 can be extended to work on a set
of strings by just inputting the adjacency list from a set of strings. Then, we can compute
the partition for compressing |Sh| by a constant factor by considering the adjacency list from
a set of strings in the righthand sides of Dh. The adjacency list can be easily computed in
O(|Sh|+ n) time and space by modifying the algorithm described in the proof of Lemma 15:
We just ignore the weight VOcc(X), i.e., use a unit weight 1 for every listed pair. Using
the two types of partitions alternately, we can compress strings by a constant factor while
keeping the sizes of the intermediate CFGs to O(n).

We denote the modified algorithm by GtoG and the resulting RLSLP by GtoG(S). Note
that GtoG(S) is not identical to TtoG(T) in general because the partitions used in GtoG
depend on the input S. Still the height of GtoG(S) is O(lg N) and the properties of PSeqs
hold. Hence we can support LCE queries on GtoG(S) as we did on TtoG(T) by Lemma 14.

4.3 Proof of Theorem 2
Proof of Theorem 2. Let S be an input SLP of size n generating T. We compute GtoG(S)
in O(n lg(N/n)) time and O(n + z lg(N/z)) space as described in Section 4.2. Since the
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height of GtoG(S) is O(lg N), we can support Extract(i, `) queries in O(lg N + `) time due
to Lemma 5. GtoG(S) supports LCE queries in O(lg N) time in the same way as what was
described in Lemma 14. J
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A Appendix: Omitted proofs

A.1 Proof of Lemma 6
Proof. We first scan w in O(|w|) time and list all the blocks of length ≥ 2. Each block
cd (c ∈ Σ, d ≥ 2) at position i is listed by a triple (c, d, i) of integers in Σ. Next we sort the
list according to the pair of integers (c, d), which can be done in O(|w|) time and space by
radix sort. Finally, we replace each block cd by a fresh letter based on the rank of (c, d). J

A.2 Proof of Lemma 7
Proof. In the foreach loop, we first run a 1/2-approximation algorithm of maximum “undirec-
ted” cut problem on the adjacency list, i.e., we ignore the direction of the edges here. For each
c in increasing order, we greedily determine whether c is added to Σ́ or to Σ̀ depending on∑

c̃∈Σ̀ Freq(c, c̃, ·) ≥
∑

c̃∈Σ́ Freq(c, c̃, ·). Note that
∑

c̃∈Σ̀ Freq(c, c̃, ·) (resp.
∑

c̃∈Σ́ Freq(c, c̃, ·))
represents the number of edges between c and a character in Σ̀ (resp. Σ́). By greedy choice,
at least half of the edges in question become the ones connecting two characters each from
Σ́ and Σ̀. Hence, in the end, |E| becomes at least (|w| − 1)/2, where let E denote the set
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of edges between characters from Σ́ and Σ̀ (recalling that there are exactly |w| − 1 edges).
Since each edge in E corresponds to an occurrence of a pair from Σ́Σ̀ ∪ Σ̀Σ́ in w, at least
one of the two partitions (Σ́ , Σ̀) and (Σ̀ , Σ́) covers more than half of E. Hence we achieve
our final bound |E|/2 = (|w| − 1)/4 by choosing an appropriate partition at Line 7.

In order to see that Algorithm 1 runs in O(m) time, we only have to care about Line 3
and Line 7. We can compute

∑
c̃∈Σ̀ Freq(c, c̃, ·) and

∑
c̃∈Σ́ Freq(c, c̃, ·) by going through all

Freq(c, ·, ·) for fixed c in the adjacency list, which are consecutive in the sorted list. Since
each element of the list is used only once, the cost for Line 3 is O(m) in total. Similarly the
computation at Line 7 can be done by going through the adjacency list again. Thus the
algorithm runs in O(m) time. J

A.3 Proof of Lemma 8
Proof. We first compute the adjacency list of w. This can be easily done in O(|w|) time
and space by sorting the |w| − 1 size multiset {(w[i], w[i + 1], 0) | 1 ≤ i < |w|, w[i] >

w[i + 1]} ∪ {(w[i + 1], w[i], 1) | 1 ≤ i < |w|, w[i] < w[i + 1]} by radix sort. Then by Lemma 7
we compute a partition (Σ́ , Σ̀) in linear time in the size of the adjacency list, which is O(|w|).
Next we scan w in O(|w|) time and list all the occurrences of pairs to be compressed. Each
pair ćc̀ ∈ Σ́Σ̀ at position i is listed by a triple (ć, c̀, i) of integers in Σ. Then we sort the list
according to the pair of integers (ć, c̀), which can be done in O(|w|) time and space by radix
sort. Finally, we replace each pair with a fresh letter based on the rank of (ć, c̀). J

A.4 Proof of Lemma 9
Proof. We first compute T0 in O(N) by sorting the characters used in T and replacing them
with ranks of characters. Then we compress T0 by applying BComp and PComp by turns
and get T1, T2 . . . Tĥ. One technical problem is that characters used in an input string w

of BComp and PComp should be in [1..|w|], which is crucial to conduct radix sort efficiently
in O(|w|) time (see Lemmas 6 and 8). However letters in Th do not necessarily hold this
property. To overcome this problem, during computation we maintain ranks of letters among
those used in the current Th, which should be in [1..|Th|], and use the ranks instead of letters
for radix sort. If we have such ranks in each level, we can easily maintain them by radix
sort for the next level. Now, in every level h (0 ≤ h < ĥ) the compression from Th to Th+1
can be conducted in O(|Th|) time and space. Since PComp compresses a given string by a
constant factor, the total running time can be bounded by O(N) time. J

A.5 Proof of Lemma 11
Proof. Since a block is compressed into one letter, the number of parent nodes of C is at
most m. As every internal node has two or more children, it is easy to see that there are
O(m) ancestor nodes of the parent nodes of C. J
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