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Abstract
The time-predictable design of computer architectures for the use in (hard) real-time systems is
becoming more and more important, due to the increasing complexity of modern computer archi-
tectures. The design of predictable processor pipelines recently received considerable attention.
The goal here is to find a trade-off between predictability and computing power.

Branches and jumps are particularly problematic for high-performance processors. For one,
branches are executed late in the pipeline. This either leads to high branch penalties (flushing)
or complex software/hardware techniques (branch predictors). Another side-effect of branches is
that they make it difficult to exploit instruction-level parallelism due to control dependencies.

Predicated computer architectures allow to attach a predicate to the instructions in a program.
An instruction is then only executed when the predicate evaluates to true and otherwise behaves
like a simple nop instruction. Predicates can thus be used to convert control dependencies into
data dependencies, which helps to address both of the aforementioned problems.

A downside of predicated instructions is the precise worst-case execution time (WCET) ana-
lysis of programs making use of them. Predicated memory accesses, for instance, may or may not
have an impact on the processor’s cache and thus need to be considered by the cache analysis.
Predication potentially has an impact on all analysis phases of a WCET analysis tool. We thus
explore a preprocessing step that explicitly unfolds the control-flow graph, which allows us to
apply standard analyses that are themselves not aware of predication.
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1 Introduction

Embedded real-time systems, as most computer systems, faced a steady increase in require-
ments [4] during more than three decades. An increase in requirements frequently also
translates into an increased performance need. Simple and predictable micro-controllers
cannot satisfy these needs in many cases. To address this issue new architecture designs
have recently been explored that promise a high degree of (time-)predictability while offering
an acceptable performance level [20, 16, 23, 18]. Due to its high-latency, designs focusing
on the memory hierarchy have been explored extensively [17, 13, 19, 2]. Also the design
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of processor pipelines has recently received considerable attention [3, 20, 16, 24]. The goal
behind all this work is to find a trade-off between time-predictability and computing power.

The handling of branches and jumps is particularly problematic for the design of time-
predictable high-performance processors. The new value of the program counter (PC) can
usually only be computed late in the processor pipeline.1 As the branch advances through the
pipeline the processor is unable to tell which instructions need to be fetched next. A simple
solution is to simply fetch the instructions immediately after the branch. These instructions
are typically flushed from the pipeline, i.e., discarded, once the actual value of the PC is
available. This solution induces a considerable branch penalty. Branch prediction techniques
may be used to guess the branch direction and/or address earlier. Static techniques rely
on the compiler to provide good predictions, while dynamic predictors require additional
hardware. Both approaches allow to reduce the branch penalty. However, the state of
hardware-based branch predictors needs to be taken into consideration during Worst-Case
Execution Time (WCET) analysis. Conflicts between branches of the program itself and
interference from other tasks further complicate the analysis. An alternative solution is
to let the instructions following a branch execute. The instructions in these branch delay
slots might then perform useful work – if the compiler is able to rearrange the instructions
accordingly. This approach has drawbacks, despite being predictable: (a) unused branch
delay slots have to be filled with nop instructions and thus increase code size and (b) tools,
including the compiler and WCET analyzer, have to be aware of the branch delay slots.

Branches, furthermore, introduce control dependencies, i.e., instructions after a branch
can only be executed safely when the branch direction/address has been determined. This
even applies when branch prediction is used: the processor may only execute instructions
speculatively as long as the instructions do not cause any side-effects.2 Inversely, instruc-
tions before the branch can usually not be moved to locations after the branch. Branches
consequently make it more difficult to exploit instruction-level parallelism [7].

One solution to these issues is predication, where an additional predicate is attached
to instructions. The predicate is evaluated at runtime and allows to conditionally nullify
the effect of the instruction, i.e., the instruction is discarded and behaves like a simple nop
instruction when the predicate evaluates to false. The aforementioned problems can be
addressed using predication by moving instructions past branches. The control dependence,
with regard to the original branch instruction, is then effectively transformed into a data
dependence on the predicate. This, for instance, simplifies the compiler’s task to fill branch
delay slots or to exploit instruction-level parallelism. In some cases branches can even be
eliminated completely. This is particularly advantageous for short code sequences, where
the branch penalty often outweighs the cost of executing a few predicated instructions.
Some real-time systems actually take advantage of the possibility to entirely eliminate all
conditional branches. This is known as the single-path programming paradigm [15].

Despite these advantages, predicated instructions can be problematic during WCET ana-
lysis. Side-effects of predicated instructions need to be analyzed, which depend on the
runtime value of the instruction’s predicate. This may have an impact on many analysis
steps, including value range analysis, loop bounds analysis, infeasible path analysis, but also
the cache and pipeline analyses. Predicated memory accesses, for instance, may or may not
have an impact on the processor’s cache, depending on the predicate. The simplest solution

1 After reading register values at the level where regular arithmetic operations are often handled.
2 Visible according to the processor’s programming conventions, which usually does not include hidden

states (caches, branch predictors, . . . ).
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for the analysis would be to ignore predicates and conservatively consider the effect of both
cases. This may result in very conservative results, since the implicit information available
in the program’s original control flow before the elimination of branches is entirely lost. The
analysis could also be extended to be aware of predicates. Note, however, that this may
require changes to virtually all analysis steps in a WCET analyzer and may thus require a
considerable engineering effort. We thus explore a much simpler solution that consists in
recovering the (hidden) control flow. Instructions that define (set) a predicate are handled
similar to branch instructions and lead to a control-flow split. The succeeding instructions
are then duplicated, once assuming that the predicate evaluates to true and once assuming
that the predicate value is false. Subsequent instructions that are predicated with that
predicate are now trivial to handle: an instruction either always corresponds to a nop or
always corresponds to the regular unpredicated instruction.

The remainder of this paper is structured as follows. We will first give some background
regarding the Patmos platform on which our work builds, covering the architecture design as
well as the tool suite (compiler, analyzer). Section 4 then describes a simple algorithm that
allows us to recover the hidden control flow of predicated code. We then present the results
from preliminary experiments in Section 5. Related work, concerning predication in real-time
systems and related analysis techniques, is finally discussed in Section 6 before concluding.

2 Background

Patmos Architecture

The Patmos architecture [20] is intended as a test bed to evaluate and design new time-
predictable computer architecture concepts, covering cache designs [19, 2], on-chip net-
works [12], as well as instruction set architecture design. Among many other features,
Patmos supports predicated execution. An additional predicate operand is attached to each
instruction, which allows to refer to one out of the 8 predicate registers (p0 through p7). The
predicate operand, in addition, allows to invert the predicate value (e.g., !p0). Consequently,
4 bits of the instruction encoding are reserved for the predicate operand (3 bits for the
predicate register, 1 bit for negation). The predicate registers themselves consist of a single
bit each. Predicate register p0 always evaluates to true and cannot be overwritten.

Predicate registers can be defined using dedicated comparison instructions (e.g., cmpeq),
which allow to compare 32-bit integer values from general-purpose register operands and
immediate values. These instructions allow to specify a destination predicate, which sets the
predicate register accordingly. In addition, basic logical operations can be performed on two
predicate register operands using dedicated logical-predicate instructions (e.g., por). The
result of the operation is again written into a predicate register. Note that these instructions
can be predicated themselves, which facilitates the handling of nested if statements.

Patmos is a Very Long Instruction Word (VLIW) architecture that can issue and execute
multiple instructions in parallel in a five-stage, in-order pipeline: fetch (FE), decode (DEC),
execute (EX), memory access (MEM), and register writeback (WB). Instructions are fetched
from a special instruction cache, the so-called method cache [2], which guarantees that an
instruction fetch always hits in the cache. Method cache misses may only occur in the EX stage
during the execution of dedicated branch instructions (e.g., brcf) or function calls (e.g., call,
ret). Several variations of branch and call instructions exist, having (a) no branch delay
slots (e.g., callnd, brcfnd), (b) 2 branch delay slots (e.g., br), and (c) 3 branch delay slots
(e.g., call, brcf). Similarly, misses in the data cache may only occur in the MEM stage. The
FE and DEC pipeline stages are thus free from undesirable side-effects (apart from updating
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the PC), while the EX, MEM, and WB stages may cause side-effects on the processor’s registers or
caches. Predicate registers are read and written in the execute stage (EX). The processor thus
is able to detect whether a predicated instruction needs to be nullified before any undesirable
side-effects may become visible.

Compiler

The Patmos toolchain is based on the LLVM compiler framework,3 which compiles all
source files to an internal bitcode representation. In our case, this also applies to user- and
system libraries, which are also linked together at the bitcode level. The final machine-code
generation is postponed to the very end of the compilation process when all bitcode is
available [1]. The code generator thus has a complete view of the entire program, which can
be optimized and analyzed before the final executable file is generated.

The LLVM code generator is able to produce predicated code at several stages. Firstly,
the instruction selector is able to recognize simple select statements that are directly compiled
to conditional moves. A generic if-conversion optimization is also available, which allows to
eliminate conditional branches of complex control-flow and produce predicated code. Finally,
patmos-specific code transformations are available to generate single-path programs [8].

The Application Binary Interface (ABI) defined by Patmos states that all predicate
registers are callee saved. This means that, during a function call, the called function needs
to save and restore any predicate register that it modifies. Predicate registers cannot be used
to pass arguments to other functions. Predicates are, in terms of the ABI, strictly function
local. Consequently, predicates can be freely used across function calls, while called functions
are independent from predicates computed before entering the function. It is still possible
that call instructions themselves are predicated, i.e., the function is called conditionally.

WCET Analyses

As mentioned above, all code of the final program is available within the compiler. This
enables us to immediately perform machine-code-level analyses covering the entire program
(and all system libraries) before the final code emission. Several such analyses [19] are available
in the compiler whose results can be exported to other WCET analyzers or used within
the compiler itself to perform further analyses or optimizations [10]. The internal analyses
either operate directly on the intermediate representation of the LLVM code generator or an
enriched inter-procedural representation that allows to easily attach various analysis results
to the code generator’s intermediate representation in a context-dependent manner.

3 Motivating Example

Before giving a formal description of our proposed approach, we will give a simple motivating
example. Figure 1 illustrates the implementation of a switch statement using a jump table
and predication. The original C code is shown in Subfigure 1a and the resulting Control-Flow
Graph (CFG) from LLVM in Subfigure 1b. Basic blocks C1 through C3 represent the three
case statements, while basic block DFT corresponds to the default statement. The code of
the switch statement itself can be found in the SWT block, whose machine code is shown in
Subfigure 1c.

3 http://www.llvm.org

http://www.llvm.org
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switch (x) {
case 1: ... break ;
case 2: ... break ;
case 3: ... break ;
default : ... break ;

}

(a) Initial C code

C1 C2 C3 DFT

SWT

(b) Original control-flow graph

cmplt $p1=x, 3
( $p1) shl $r1=x, 2
(! $p1) brcf DFT
( $p1) lwc $r1 =[ $r1+jt]

nop
( $p1) brcfnd $r1

(c) Code of basic block SWT C1 C2 C3

shl $r1=x, 2
nop
lwc $r1=[$r1+jt]
nop
brcfnd $r1

{p0, p1}

nop
brcf DFT
nop
nop
nop

{p0}

DFT

cmplt $p1=x, 3

{p0}

(d) Unfolded control-flow graph

Figure 1 Implementation of a simple switch statement using a jump table, the corresponding
control-flow graph, the predicated machine code of basic block SWT, and the unfolded control flow.

The machine code uses a jump table (jt) that is implemented as an array holding the
addresses of basic blocks C1 through C3. After verifying that the value of variable x is within
the array bounds (cmplt), the address of the destination block is loaded (lwc) and control
is transferred (after a 1 cycle load delay slot) via an indirect branch (brcfnd). If x’s value
exceeds the array bounds, a conditional branch (brcf) immediately transfers control to basic
block DFT. Note that this branch instruction has 3 branch delay slots and that one of these
slots even contains another branch instruction.

The predicated code may pose several challenges in a WCET analyzer. One particular
challenge is the reconstruction of the program’s CFG from the binary machine code, which
usually represents the input to most WCET analysis tools. The compiler placed a branch
instruction in one of the branch delay slots of another branch. In this example it is trivial
to detect that the predicates of the respective branches are disjoint. However, different
predicates might be used, which makes it difficult to reconstruct the actual control flow from
such code. In our case this is not necessary, since the analysis is part of the compiler and
thus has direct access to its intermediate representation.4

Another challenge, as noted before, are potential side-effects on caches or registers caused
by predicated instructions. This issue is resolved by unfolding the hidden control flow from
the predicated code – as depicted by Subfigure 1d. Each time when a predicate register is
defined (cmplt) a control-flow split is performed at the level of the control-flow graph. The
instruction defining the predicate is then treated in a similar way as conditional branches
and subsequent code is duplicated considering both of the potential predicate values (true
or false). The basic block on the left side of the subfigure here corresponds to an execution
where predicate register p1 evaluates to false, while the basic block on the right is executed
only when p1 evaluates to true. In fact, each basic block is associated with a set of predicates
that are known to be true when entering the basic block (indicated in the top corner of
each block). Inversely, predicates that do not appear in this set are known to be false.5
Note that the predicates in the code are no longer needed. Predicated instructions are either
duplicated unconditionally or are otherwise replaced by an explicit nop.

4 Note that this also solves many unrelated issues during the control-flow reconstruction from binary code
such as computed branch targets, function pointers, et cetera.

5 This is safe, since LLVM inserts pseudo definitions on all program paths where a register is not defined.
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In the unfolded control-flow graph it is now much easier to analyze the instructions’
side-effects. The load (lwc) from the jump table, for instance, is only executed when the
variable x is known to be less than 3 (cmplt). This means that any side-effects of this
instruction on the data cache are only visible in basic blocks C1 through C3, but not in basic
block DFT. Another implicit side-effect concerns the value of variable x after the comparison.
Due to the control-flow split at the cmplt instruction, it is very easy for a value range analysis
to show that the value of x has to be larger then 3 when reaching basic block DFT. Delayed
branches and potential redefinitions of register operands make this much more challenging
in the original CFG. The algorithm to construct such an unfolded CFG, while considering
predication and delayed branches, is discussed in the next section.

4 Control-Flow Unfolding

Due to space considerations, Algorithm 1 only shows a simplified version of our approach.
The presented algorithm assumes a single issue architecture, which avoids the need to
handle several parallel uses and (re-)definitions of predicates, parallel branches and predicate
operations, et cetera. The algorithm also assumes that the predicates of branches that
appear in branch delay slots are disjoint, i.e., only a single branch is known to be taken
at any moment at runtime. Lastly, the presented approach only operates on the CFG of a
single function. Extensions to the algorithm, included in the actual implementation, which
allow us to handle these cases are briefly highlighted later. Finally, the algorithm invokes
several helper functions whose code is not shown. We will briefly define these functions in an
informal way before discussing the algorithm in detail.

4.1 Helper Functions

Several helper functions are needed in order to operate on individual instructions in LLVM’s
intermediate representation. The function Next allows to obtain the instruction immediately
following an instruction i in its parent basic block, PKill returns the set of predicate registers
whose live ranges end after instruction i, while the functions PDef and IsPredDef allow
to obtain/test whether an instruction defines a predicate register. The function IsNop is
used to test whether an instruction i is nullified given the current set of predicates P .

Several helper functions are related to branches, allowing to test for branch instructions
(IsBranch), obtain the number of the branche’s delay slots (BranchDelay), and obtain the
successor basic blocks to which control may be transferred by a branch (BranchTargets).
FallThroughTarget is used to obtain the fall-trough target basic block of the last
instruction of a basic block, i.e., control is transferred to another basic block without an
explicit jump or branch instruction.

Finally, three functions are related to the construction of the enriched intermediate
representation of our analysis tool. GetCFNode allows to obtain the control-flow node
associated with a start instruction f , the remaining number of delay slots d, and a set of
predicates P – if such a control-flow node was created before. Nodes are created using the
function MakeCFNode, which duplicates all instructions between the instruction f and e

provided as arguments. The new node is also associated with d, the number of branch delay
slots remaining, and P , the set of predicates. Finally, MakeCFEdge creates control-flow
edges between two control-flow nodes provided as arguments.
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Algorithm 1 Simplified algorithm to recover the hidden control flow from predicated code
by code duplication on a single-issue architecture.
1: function UnFold(MachInstr f , MachInstr l, Pred d, BasicBlockSet T , PredSet P )
2: if n =GetCFNode(f, d, P) then return n . Check if control-flow node exists
3: PredSet L = P ; Pred pd = p0; MachInstr e = f . Initialize variables
4: for each instruction i between l and f do
5: L = L \PKill(i) . Remove dead predicates
6: e = i . Track end of control-flow node
7: if ¬IsNop(i, P ) then . Skip nop instructions
8: if IsPredDef(i) then . Predicate definition
9: pd = PDef(i) . Track defined predicate

10: break . Immediately split control flow
11: else if IsBranch(i) then . Branch instruction
12: d = BranchDelay(i) . Track branch delay slots
13: T = BranchTargets(i) . Track branch target(s)
14: if d = 0 then break . Split control flow after branch delay
15: d = d− 1 . Update remaining branch delay slots

16: CFNode n = MakeCFNode(f, e, d, P ) . Create a new control-flow node
17: if e = l ∧ T = ∅ then . Handle fall-through
18: T = FallThroughTarget(l)
19: else if d 6= 0 ∧ pd 6= p0 then . Handle split due to predicate definition
20: for each P ′ ∈ {L ∪ pd, (L \ pd) ∪ {p0}} do . Compute successor predicates
21: CFNode n′ = UnFold(Next(e), l, d, T, P ′)
22: MakeCFEdge(n, n′)
23: return n

24: for each s ∈ T do . Create successor control-flow nodes
25: for each P ′ ∈ {L ∪ pd, (L \ pd) ∪ {p0}} do . Compute successor predicates
26: Let f ′, l′ be the first/last instruction of s in
27: CFNode n′ = UnFold(f ′, l′,∞, ∅, P ′)
28: MakeCFEdge(n, n′)
29: return n

30: procedure UnFoldCFG(G)
31: Let f , l be the first/last instruction of the entry block of G in UnFold(l, f,∞, ∅, {p0})

4.2 Discussion of the Algorithm

Algorithm 1 consists of two functions: the algorithm’s main function UnFoldCFG and
the recursive function UnFold, which actually constructs the unfolded CFG. The latter
function’s parameters f (first) and l (last) represent machine instructions that need to be
unfolded next. The integer argument d (delay) is needed to track branch delay slots across
control-flow node boundaries. The argument T (targets), likewise, is used to track the set
of potential branch targets during the handling of branch delay slots. The function’s last
argument P (predicates) represents the set of active predicates known to be true.

The algorithm starts off by processing the CFG of a function provided by LLVM (l. 31),
considering the instructions at the function’s entry point, which are not in a branch delay

WCET 2017
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slot (d = ∞) and not executed under any specific predicate condition (P = {p0}). This
triggers the recursive processing of all instructions in the CFG provided by LLVM and the
construction of the unfolded CFG. The actual unfolding then proceeds in two steps.

First, all the instructions between the arguments l and f of function UnFold are
analyzed (l. 4 – 15) in order to find locations where the control-flow needs to be split. A split
may be necessary due to one of the following reasons: (a) the end of the original basic block
of LLVM is reached (fall-through), (b) a branch effectively transfers control to another basic
block after its branch delay slots, or (c) a predicate definition is encountered.

Each instruction is analyzed in turn. Instructions that are nullified under the current
predicate set P (IsNop, l. 7) are ignored. Two instruction classes need special attention, since
they may cause a control-flow split: instructions that define a predicate (IsPredDef) and
branches (IsBranch). Predicate definitions are handled similar to branches in traditional
CFGs and immediately lead to a control-flow split (break), remembering the current end
location (e) and the newly defined predicate (pd). Branches, on the other hand, may cause a
delayed control-flow split (BranchDelay). The variable d tracks the number of remaining
branch delay slots (the variable is initialized to ∞ if the analyzed code is not in a branch
delays slot). Once this counter reaches 0 the actual control-flow split occurs (l .14). Note
that predicate definitions may also appear in branch delay slots. In this case the variable d is
passed as an argument to subsequent recursive calls to the function UnFold. Since a branch
was encountered, the branch targets also need to be remembered and potentially passed on
the recursive calls using variable T . If no control-flow split is encountered by the analysis,
i.e., no instruction defines a predicate or branches, the for loop terminates normally. This
only happens for basic blocks with a fall-through.

The set of live predicates (L) is tracked additionally, while instructions are processed.
This set is initialized with the incoming argument P (l. 3) and updated whenever the live
range of a predicate ends (l. 5). Note that a location, where the live range of a predicate
ends, could be exploited to rejoin the control flow. The algorithm does not take advantage
of this and essentially extends the live ranges of predicates up to a control-flow split.

The second step of the algorithm (l. 17 – 29) is concerned with the actual construction of
the unfolded CFG. After leaving the for loop, a new control-flow node is created representing
the instructions between f and e that are executed under the predicate set P (l. 16). It
remains then to discover and unfold the successor control-flow nodes, depending on the
nature of the control-flow split determined during the first step.

Fall-throughs (case a from above) and completed branches (case b) always transfer
control to another basic block in LLVM’s CFG. The main difference is that no branch
target is known for fall-throughs (case a), which can simply be obtained using the function
FallThroughTarget (l. 18). The remainder of the processing is identical (l. 24 – 29).
Each branch target is analyzed through a recursive call to UnFold, considering the new
set of active predicates P ′ as well as the branch target’s first/last instruction. Note that
a predicate definition (case c) may coincide with cases (a) and (b). The active predicates
are thus computed from the live predicates L and the newly defined predicate pd (l. 25).
The targets are then visited by the algorithm with the predicate true (L ∪ pd) and false
(L \ pd). Note that p0 always remains true and consequently needs to be readded.

The remaining control-flow splits, that are not covered by the previous paragraph, are
due to predicate definitions (case c), which may either occur in the middle of basic blocks
or in a branch delay slot. Both situations require a slightly different handling (l. 19 – 23),
since control is not (yet) transferred to another basic block of LLVM’s CFG. The set of
active predicates P ′ is computed as in the regular case. However, the remaining instructions
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(Next, l. 21) of LLVM’s current basic block need to be analyzed after the control-flow split,
while remembering potentially ongoing branches. This is accomplished by passing the values
of d and T to the recursive invocation of UnFold. This allows the recursive invocation
to correctly track the branch targets and the number of branch delay slots, i.e., if the split
actually occurred in a branch delay slot.

Extensions

The presented algorithm is a somewhat simplified version of the actual implementation.
Most notably, the Patmos processor can fetch and issue multiple operations in parallel using
instruction bundles. This means that corner cases may arise that need to be considered. For
instance, predicate definitions and branches can be combined into the same bundle. The
implemented algorithm considers function calls and returns, whose branch delay slots also
need to be accounted for. The handling of function calls was omitted for brevity. These
extensions slightly complicate the algorithm, but do not impact its overall structure.

Another, more involved extension, is the handling of branches nested within other branch
delay slots. The presented algorithm is only correct as long as the predicates of the nested
branches are disjoint. This can be handled by replacing the arguments d and T of the
function UnFold by a stack data structure. This allows to track all executing branches at
the same time, detect the completion of a branch, and split the control flow accordingly.

Complexity

The UnFold function essentially performs a depth first search on the CFG provided by
LLVM. Each instruction is processed once for every set of potentially active predicates, whose
number can be bounded by 128 (27). Note that p0 is always true and thus cannot impact
this bound. The algorithm thus is linear in the number of instructions and control-flow edges.

5 Preliminary Experiments

The following section presents the results from preliminary experiments measuring the
overhead induced by unfolding. The implementation is part of the analysis framework of
the Patmos compiler, which is based on LLVM 3.5. The unfolded CFG is merely used for
analysis purposes and essentially represents an additional annotation layer on top of the
data structures of LLVM. The binary code of the analyzed programs is thus not modified.
The extended version of the previously described algorithm was applied to a subset of the
TACLe benchmarks [6], i.e., those adopted from the MiBench suite. The programs were
compiled with optimizations enabled (-O2), while varying the issue-width (single-issue vs.
VLIW) and the compiler’s handling of branch delay slots (non-delayed only, delayed only,
mixed). This results in 6 configurations overall. The size of the unfolded CFGs for each of
these configurations is compared against the original instruction count in LLVM’s CFG.

Figure 2 shows the normalized increase in the number of instructions for the three
configurations with VLIW instruction bundles. As can be seen, the overhead induced by
unfolding is usually low, ranging between 10% and 20%. The susan benchmark is the only
exception, showing an increase between 43% and 45%. The if-conversion optimization is
particularly effective for this benchmark, covering larger regions and producing more complex
predicates. Note that the observed overhead does not come as a surprise. It is well known
that the share of conditional branches in typical programs roughly falls into a similar range
as the observed overhead. This indicates that, overall, only a few instructions are duplicated
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Figure 2 Increase in the number of instructions due to unfolding for the delayed ( ), mixed
( ), and non-delayed ( ) configurations with VLIW instruction bundles, normalized to the size of
LLVM’s original CFG (lower is better).

by the unfolding algorithm for each computed condition – despite the fact that the algorithm
artificially extends the live ranges of predicates. The configurations for the single-issue
processor follow a similar trend (not shown for brevity).

The runtime overhead of the proposed algorithm is negligible and amounts to 0.1s on
average, which represents 0.9% of the code generation time (excluding other WCET analysis
steps). Also note that the unfolded CFG allowed us to improve other analyses. The value
range analysis, for instance, is able to take advantage of control-flow splits at predicate
definitions as explained in Section 3.

6 Related Work

Predicated computer architectures received considerable attention in the 1990s with the de-
velopment of VLIW and EPIC architectures that tried to exploit instruction-level parallelism
through static compilation techniques rather than hardware [7].

Various compiler optimizations have been developed targeting the transformation of
regular code into predicated code [14, 25] and the optimization of predicated code [5, 22].
A common problem for these optimizations is the need to understand the relations between
predicates [11, 21], i.e., which predicates can be live at the same time. The underlying
machine code may evolve through optimizations in the compiler, which might require these
analyses to be performed multiple times. The analyses thus need to be fast and only reason
about predicate relations that can be deduced from the structural relations between predicates.
Information on the actual conditions, e.g., the tested values, are not captured. The work
is somewhat orthogonal to our approach and might help to reduce some of the overhead
induced by useless code duplications. The techniques are, in addition, concerned with the
analysis of the predicates themselves and do not allow to obtain other analysis results.

Hu [9] addressed this issue by refining the semantics of predicated code and redefining
several typical concepts used in compilers/static analyzers (e.g., dominance and data depend-
encies). She also showed how predicate-aware data-flow analysis can be realized using the
example of reaching definitions. Similar techniques could be applied to many other analysis
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techniques, including those used in typical WCET analyzers. However, this would require a
considerable engineering effort in order to adapt all existing analyes accordingly.

The single-path programming paradigm, which can often be found in the context of
real-time systems, takes predication to the extreme: (almost) all control-flow is eliminated
from the program and replaced by predicated code [15]. The idea is to avoid WCET analysis
altogether and instead generate code that exhibits the same execution time under all execution
conditions. Geyer et al. [8] propose a code generator that is able to produce single-path code
from a given input program. The proposed approach heavily relies on predication, which
generally leads to constant timing. However, some timing variations can still be encountered
due to variations of the program inputs and due to memory accesses to the data cache.

Starke et al. [24] propose a lightweight approach for predicated execution for their time-
predictable VLIW. The proposed approach consist of only a single predicate register, which
limits the compiler’s ability to handle complex predicate expressions and may also impact
the attainable instruction-level parallelism. The results indicate that predicated execution
is mostly beneficial with regard to the WCET. However, the authors do not describe how
the WCET analysis handles predicated operations. The technique proposed in the previous
section might allow to further improve the estimation of the WCET for their processor.

7 Conclusion

In this work a lightweight approach to the handling of predicated code in WCET analyzers was
presented. Predicate definitions are treated similar to conventional branches and immediately
lead to a control-flow split. Subsequent instructions are then analyzed twice, once assuming
that the predicate evaluates to true and once assuming it evaluates to false. The hidden
control flow in predicated code is recovered and explicitly represented in an unfolded CFG.
The presented algorithm is able to perform the desired control-flow unfolding and keep track
of branch delay slots for a simplified single-issue architecture. The actual implementation is
able to handle parallel instruction bundles, function calls, and nested delayed branches. Our
preliminary evaluation shows that the unfolding does not result in excessive code duplication
and yields a moderate code size increase of about 16% on average.
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