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Abstract
Limited Preemptive Fixed Preemption Point scheduling (LP-FPP) has the ability to decrease
and control the preemption-related overheads in the real-time task systems, compared to other
limited or fully preemptive scheduling approaches. However, existing methods for computing
the preemption overheads in LP-FPP systems rely on over-approximation of the evicting cache
blocks (ECB) calculations, potentially leading to pessimistic schedulability analysis.

In this paper, we propose a novel method for preemption cost calculation that exploits the
benefits of the LP-FPP task model both at the scheduling and cache analysis level. The method
identifies certain infeasible preemption combinations, based on analysis on the scheduling level,
and combines it with cache analysis information into a constraint problem from which less pess-
imistic upper bounds on cache-related preemption delays (CRPD) can be derived.

The evaluation results indicate that our proposed method has the potential to significantly
reduce the upper bound on CRPD, by up to 50% in our experiments, compared to the existing
over-approximating calculations of the eviction scenarios.
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1 Introduction

Preemption-related overheads are of significant importance in real-time scheduling, as they
may have a decisive impact on the overall system schedulability. It has been shown that, in
some cases, the cumulative preemption overhead may increase a task’s execution time up
to 33% [11].

In this context, the Limited Preemptive Scheduling (LPS) paradigm has emerged as a
valuable scheduling approach in order to reduce the overall preemption overhead of such
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systems, and, consequently, to increase their schedulability. In this paper, within LPS we
consider Fixed Preemption Points (LP-FPP) because it provides more predictability with
respect to the calculation of the preemption-related overhead, compared to Preemption
Thresholds Scheduling and Deferred Preemption Scheduling. The dominance considering
the overhead calculation predictability in LP-FPP comes from the fact that the preemption
points are selected off-line, during the design phase of the system, unlike the other two LPS
approaches where the preemption points are known only at runtime.

In order to calculate the preemption-related overhead we need to consider different types
of costs such as: scheduling cost, pipeline cost, bus-related cost, et cetera. However, the
cache-related preemption delay (CRPD) is often the largest part of the preemption-related
overhead [3], and it denotes the time that is needed for reloading the cache lines evicted by
the preempting task.

The basic CRPD calculation needs to consider the following factors: (1) The point P in
the code of the preempted task where the preemption occurs; (2) Cache blocks used until P
that may be evicted by one or more higher priority (preempting) tasks and reused afterwards
in the remaining execution of the preempted task; and finally (3) The evicting cache blocks
of the preempting tasks. Considering this knowledge, we can see that the major difference
between fully preemptive and LP-FPP scheduling comes from the fact that in LP-FPP a
preemption point selection defines the non-preemptive regions between consecutive points
and consequently affects the set of useful cache blocks for each selected preemption point.
Contrary, in a fully preemptive scheduling we cannot control the number of preemption
points and useful cache blocks per preemption point, therefore the CRPD value is defined per
task. Despite the significant research done for the CRPD computation under fully preemptive
scheduling, e.g., [1, 2, 10], relatively little work is done considering the LP-FPP approach.
This led to the bifurcation in the research between scheduling and CRPD analysis, that is
visible in the fact that a majority of the papers considering LP-FPP schedulability tests
e.g., [4, 12] assumed that the upper bound CRPD values are provided for each preemption
point. Such model for CRPDs introduces a considerable overestimation of a cumulative
CRPD value per task, especially in the sporadic task model where we need to assume that
the preempting tasks may be released at any time instant after the minimum inter-arrival
time from their previous deadline. Consequently, we need to assume that each preemption
point may experience the worst case eviction scenarios which is often not feasible for all
preemption points of a task.

Recently, Cavicchio et al. [8] proposed the CRPD computation for the LP-FPP approach
that considers the CRPD for each pair of adjacent preemption points, and it significantly
improves the CRPD estimation under LP-FPP. However, the assumption about the evicting
cache blocks from preempting tasks still remains an overestimation as it assumes that each
pair of adjacent preemption points is affected by all higher priority tasks.

In this paper, we propose the methodology for tightening the upper bounds on the CPRD
values in sporadic task sets, scheduled under the Fixed Priority LP-FPP paradigm, by using
a less pessimistic calculation of the evicting cache blocks of the preempting tasks. In our
proposed approach, we calculate a single CRPD value per preempted task by integrating the
scheduling- and cache level analysis to identify infeasible preemptions and further formulate
a constraint satisfaction models. The preliminary evaluation results indicate that our
methodology can significantly reduce the upper bound of CRPD values up to 50% compared
to the existing methods for ECB calculation.

The remainder of the paper is organised as follows: In Section 2 we introduce the system
model, terminology and notations used in the paper which describe the task and cache model.
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Figure 1 Task model with two selected preemption points (PPi,1 and PPi,2 with respective
CRPD overheads ξi,1 and ξi,2) which form three non-preemptive regions (δi,1, δi,2 and δi,3 with
respective worst case execution times qi,1, qi,2 and qi,3)

In Section 3 we describe the related work and problem formulation of the paper. In Section 4
we describe the proposed methodology for tightening the upper CRPD bound in the LP-FPP
task model. In Section 5 we discuss the preliminary evaluation of the methodology and
Section 6 concludes the paper.

2 System Model

We consider a real-time sporadic task model Γ composed of n tasks τi (1 ≤ i ≤ n) scheduled
under the Fixed Priority (FP) paradigm on a single processor. Tasks are ordered in a
decreasing priority order (and each task τi generates an infinite number of task instances τi,j).
Each task is described with a tuple {Pi, Cnp

i , Di, Ti} where Pi denotes the task’s priority,
Cnp
i denotes the non-preemptive worst case execution time of τi,j . Considering each task

instance, Di denotes a relative deadline, and the minimum inter-arrival time between two
consecutive instances of τi is denoted with Ti.

We also consider the LP-FPP approach and therefore assume the sequential task splitting
model such that each task is divided by d selected preemption points PPi,k (1 ≤ k ≤ d) with
an estimated preemption-related overhead value ξi,k. Furthermore, selection points form d+1
non-preemptive regions δi,k with worst case execution times qi,k such that

∑d+1
k=1 qi,k = Cnp

i

(see Figure 1).
We furthermore extend the system model in order to consider preemption-related overhead

calculation assuming a direct-mapped cache.
As previously mentioned, the preemption-related overhead is primarily caused by the

cache-related preemption delay (CRPD) compared to the other cost types such as scheduling
cost, pipeline cost etc., which we consider as constants that are already included in the
non-preemptive execution time Cnp

i of a task τi. We denote the upper bound on CRPD of a
task τi with γi and furthermore we denote with Cγi the worst case execution time considering
preemptions on τi such that Cγi = Cnp

i + γi.
As γi represents the time needed for reloading the cache blocks of the preempted task

τi that are evicted by the preempting tasks τh, it is bounded by the following equation
γi = g × BRT where g is the upper bound on the number of needed cache block reloads
caused by preemptions, precisely evictions of cache blocks belonging to τi, and BRT is a
cache block reload time. Furthermore, in order to calculate g we define two concepts of cache
blocks considering the preemptions:

Useful cache block (UCB) – As proposed by Lee et al. [10], UCB at preemption point
PPi,k is a memory block m of the preempted task such that: a) m may be cached at PPi,k,
and b) m may be reached from PPi,k and reused at program point P that is reachable
from PPi,k without eviction of m on this path. If the preemption occurs at PPi,k we need
to address only the memory blocks that are cached and may be reused. More formally,
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4:4 Tightening the Bounds on CRPD in Fixed Preemption Point Scheduling

considering a non-preemptive region δi,k we define a set of useful cache blocks UCBi,k

such that m ∈ UCBi,k if and only if non-preemptive region δi,k has m as a useful cache
block at point PPi,k. Furthermore, we define the set of useful cache blocks UCBi per τi:
UCBi =

⋃
δi,k∈τi

UCBi,k (1 ≤ k ≤ d). Notice that we do not consider the useful cache blocks
of the last non-preemptive region δi,d+1 as it cannot be preempted.

Evicting cache block (ECB) – defines a memory block m of the preempting task that may
be accessed during the execution of the preempting task.

In this paper we also consider the evicting cache set ECBi of a task τi such that a memory
block m ∈ ECBi if and only if τi may evict cache block m.

Finally, in some cases we consider the upper bound on the single preemption cost ξi,k at
preemption point PPi,k which is computed considering the useful memory blocks UCBi,k

and the union of the evicting cache blocks ECBh from all possibly preempting tasks:

ξi,k =
∣∣UCBi,k ∩

( ⋃
h∈hp(i)

ECBh

)∣∣× BRT .

3 Related Work

In the seminal paper that considered preemption cost aware schedulabity tests, Busquets et
al. [6] considered an upper bound on the preemption cost of a single job of a preempting task
τh that executes during the response time of a preempted task τi, which is defined by a term
γi,h. This value is calculated for each higher priority job that may be released during the
response time. Later, Petters et al. [13] proposed the more precise analysis considering the
upper bound on the preemption cost of all jobs of τh executing during the response time of τi.
By using this approach they were able to reduce the pessimism from the previously proposed
method that considered the upper bound on preemption cost of each τh’s job separately.
Considering exact γi,h computation there are two dominant approaches: UCB-union and
ECB-union, and both of them assume that the evicting cache blocks of the preempting jobs
are given and will definitely evict intersected useful cache blocks of the preempted task.
However, those approaches do not account for the fact that the additional preemptions may
result in a smaller preemption costs than the prior accounted ones. This fact was accounted
by introducing the multiset-based computation of CRPD, proposed by Staschulat et al. [15]
with a drawback that it over-estimates the number of preemptions that have an impact on the
response time and does not account for the variability in the number of possible intermediate
preemptions. Therefore, Altmeyer et al. [1] proposed ECB/UCB-Union Multiset approaches,
which account for the precise number of possible intermediate preemptions.

Considering periodic task systems, Ramaprasad and Miller [14] analysed the feasible pree-
mptions by analysing each job of a preempted task throughout the hyper-period considering
the worst-case placement of preemptions of preempting tasks. In this paper, they considered
that not every preempting job of τh can cause a preemption on the preempted task τi.

In the LP-FPP approach, the majority of the papers defining the schedulability tests
e.g., [4, 7, 12] assume the upper bound on preemption cost values for each preemption
point. In sporadic task systems this approach can lead to a huge overestimation of the
preemption cost because the release time of the higher priority job is not definitely known,
thus we would need to assume that each point suffers from the worst case eviction scenario.
Improving the assumption of per point preemption cost, Cavicchio et al. [8] proposed the
CRPD computation for the LP-FPP approach that considers the CRPD for each pair of
adjacent preemption points which significantly improved the CRPD estimation under LP-FPP.
However, the assumption about the evicting cache blocks from preempting tasks still remains



F. Markovic, J. Carlson, and R. Dobrin 4:5

Data: Task set Γ
Result: Set of tightened preemption overhead values for each task from Γ

1 for i← 2 to n do
2 V ← Generate a set of variables that represent a preemption affection by τh at PPi,k of τi
3 C ← Generate a set of constraints that define infeasible preemption combinations
4 G← Generate a goal function for the given constraint problem
5 γi ← compute CRPD of τi by solving the constraint problem defined by V,C and G
6 Cγi ← Cnp

i + γi

7 end

Algorithm 1: Algorithm for tightening the upper bound of CRPD in a taskset.

an overestimation as it assumes that each pair of adjacent preemption points is affected by
all higher priority tasks.

Contrasting these methods, we propose an improved method for tightening the bounds
on the preemption cost calculations in sporadic LP-FPP task scheduling, by identifying
infeasible eviction scenarios.

4 Computing CRPD bounds

In order to reduce the CRPD overestimation we propose a method that for each preempted
task τi in a taskset first identifies infeasible preemption combinations, and then calculates
the maximum CRPD considering the remaining preemption combinations. Concretely, the
basic idea of the method is to identify cases where two instances of a higher priority task τh
cannot affect the preemption costs at two preemption points of the same τi instance.

Considering the taskset Γ, we propose an algorithm that computes a CRPD upper bound
γi for each task in a decreasing priority order (see Algorithm 1).

For each task, we first (line 2) generate a set of variables, each representing the case when
a certain higher priority task τh affects the preemption cost of a certain preemption point
PPi,k of the considered task τi. Next (line 3), we generate a set of constraints that capture
identified infeasible preemption combinations, and a goal function (line 4) representing the
preemption cost associated with the different preemption scenarios. Furthermore (line 5),
we compute the upper-bounded cache-related cost γi of the preempting task τi by solving
the constraint problem defined by V , C and G. Next, we compute the execution time of τi
considering the CRPD upper bound Cγi (line 6), to be used in the following iterations. This
is done because the preemptive execution time of the higher priority task may impact the
CRPD computation of the lower priority task and because we need to address the case of
nested preemptions.

We describe in detail each of the computations in the following subsections. To illustrate
the approach, we will use the tasks depicted in Figure 2 as a running example, focusing on the
second iteration of the algorithm, meaning that the preempted task τ3 is being considered.

In the example, we also consider the preempting tasks (τ1 and τ2). Furthermore, τ1 has
the worst case execution time C1 = 30 and the minimum inter-arrival time T1 = 100. Its
set of evicting cache blocks ECB1 consists of two cache blocks presented by integers 1 and
2. The preempted task τ3 is divided by three selected preemption points (PP3,1, PP3,2 and
PP3,2) and it consists of four non-preemptive regions with given WCET values (q3,1 = 20,
q3,2 = 10, etc.). Set of useful cache blocks, e.g., UCB3,1, is defined for each preemption point.

WCET 2017
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Figure 2 Running example: Two higher priority tasks τ1 and τ2 and the preempted task τ3.

4.1 Variable declaration
Considering a preemption point PPi,k of a preempted task τi and a single preempting task
τh, we declare a boolean variable Xh,k which represents the case when τi is preempted at
PPi,k and the associated preemption cost ξi,k is affected by an instance of τh. Consequently,
for τi we generate d× (i− 1) boolean variables Xh,k where d is the number of preemption
points of τi, since (i− 1) is the number of tasks with a higher priority than τi. Formally, the
set V of generated variable declarations is defined as:

V =
{
Xh,k ∈ {0, 1}

∣∣ (1 ≤ h < i) ∧ (1 ≤ k ≤ d)
}
.

The set of variable declarations for τ3 in the running example is:

V =
{
X1,1∈{0, 1}, X1,2∈{0, 1}, X1,3∈{0, 1}, X2,1∈{0, 1}, X2,2∈{0, 1}, X2,3∈{0, 1}

}
.

4.2 Constraint formulation
Considering the constraints, we are interested in identifying infeasible preemption combin-
ations, focusing on preemption scenarios where two instances of a preempting task τh can
directly affect the cost of only one of the two preemption points PPi,k and PPi,l (k < l ≤ d)
of a preempted task τi, but not both.

To formally define the constraint generation, we first define the computation of the
maximum time interval Ik,li from the start time of δi,k until the start time of δi,l+1. Informally,
Ik,li represents the time interval during which the two instances of τh must be released in
order to affect both preemption points.

The definition of Ik,li is based on the traditional response time analysis, but considering
only a subset of the task, from δi,k to δi,l. The longest interval is found by assuming
that the higher priority tasks arrive as early and as often as possible in the considered
interval. Since there is no possibility of blocking by lower priority tasks in this case, we
only sum the execution time of the non-preemptive regions with respective upper-bounded
preemption costs (from k to l) and the interference from the higher priority tasks. Each
upper-bounded preemption cost ξi,w is added to the respective execution time qi,w of the
non-preemptive region δi,w in order to account for the impact of the CRPD on the length of
the non-preemptive region. The iterative computation of Ik,li is defined as follows:

Ik,li (0) =
l∑

w=k
(qi,w + ξi,w) +

∑
h∈hp(τi)

Cγh ,

Ik,li (z) =
l∑

w=k
(qi,w + ξi,w) +

∑
h∈hp(τi)

(⌊
Ik,li (z − 1)

Th

⌋
+ 1
)
Cγh .
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Finally, we define Ik,li to be the least fixed point of the recursion, i.e., Ik,li = Ik,li (z) where z
is the lowest value for which Ik,li (z) = Ik,li (z + 1).

Next, we show how the time interval Ik,li can be used to identify infeasible preemption
combinations.

I Lemma 1. If task τh affects the preemption cost at PPi,k, then an instance of τh was
released between the start of δi,k and the start of δi,k+1.

Proof. An instance of τh released before the start of δi,k will either not preempt τi at all, or
execute during a preemption before the start of δi,k. An instance released after the start of
δi,k+1 clearly did not affect a preemption at PPi,k. J

Note that an instance released after the end of δi,k cannot cause a preemption at PPi,k, but
it can still affect the preemption overhead if it arrives during the execution of some other
task that caused the preemption.

I Corollary 2. If task τh affects the preemptions at both preemption points PPi,k and PPi,l

(where k < l) in the same instance of τi, then two instances of τh were released between the
start of δi,k and the start of δi,l+1.

Proof. A single instance of τh cannot affect both preemptions, and the interval in which
they were released is given by Lemma 1. J

I Proposition 3. If Ik,li ≤ Th then task τh cannot affect one instance of τi at both preemption
points PPi,k and PPi,l.

Proof. Proof by contradiction: Assume that Ik,li ≤ Th and that τh affects one instance of τi
at both preemption points PPi,k and PPi,l. Then, by Corollary 2, two instances of τh were
released between the start of δi,k and the start of δi,l+1, and thus within an interval of length
Ik,li . This contradicts the minimum inter-arrival time Th. J

Finally, per τi we generate a set C of constraints stating that at most one of Xh,k and
Xh,l be true at the same time, for all cases where the inequality Ik,li ≤ Th holds:

C =
{
Xh,k +Xh,l ≤ 1

∣∣ (1 ≤ h < i) ∧ (k + 1 ≤ l ≤ d) ∧ (Ik,li ≤ Th)
}
.

Continuing the running example from Figure 2, we first compute the following Ik,li
values: I1,2

3 = 94, I2,3
3 = 83 and I1,3

3 = 167. In order to generate constraints, we check the
proposed inequality by comparing the derived values with T1 = 100 and T2 = 130 and e.g,
get that: I1,2

3 ≤ 100, therefore, we generate the constraint X1,1 +X1,2 ≤ 1 denoting that τ1
cannot directly affect the preemption cost of both preemption points: PP3,1 and PP3,2. The
complete set of constraints for τ3 of the running example is:

C =
{

X1,1 +X1,2 ≤ 1; X1,2 +X1,3 ≤ 1; X2,1 +X2,2 ≤ 1; X2,2 +X2,3 ≤ 1
}
.

↑ ↑ ↑ ↑
I1,2

3 ≤ 100 I2,3
3 ≤ 100 I1,2

3 ≤ 130 I2,3
3 ≤ 130

4.3 Goal function formulation
For the final part of the constraint problem, we define the following goal function:

G = Maximize :
∑

PPi,k∈τi

∑
m∈UCBi,k

min
(

1,
∑
{Xh,k | τh ∈ hp(τi) ∧m ∈ ECBh}

)
× BRT

WCET 2017
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The minimum function stands for the calculation of the impact of single memory block m
that may be in the ECB set of many higher priority tasks but still only contributes at most
once to the preemption cost of one preemption. During the generation, min functions that
only contain a single Xh,k variable (or none) can be simplified.

The optimized goal function for τ3 of the running example is:

G = Maximize : BRT ×
(

X1,1 + ← k = 1
X1,2 + min(1, X1,2 +X2,2) + X2,2 + ← k = 2

X1,3 + X2,3 + X2,3
)

← k = 3

↑ ↑ ↑ ↑
m = 1 m = 2 m = 3 m = 4

The m and k values indicate the different parts of the nested sum of the goal function by
denoting the actual memory block m and the preemption point k that are considered by the
specified element of the sum. The empty positions in the array come from the definition
of the second sum over m ∈ UCBi,k. For example, since the useful cache block set of the
first preemption point of τ3 is UCB3,1 = {1}, the first row (k = 1) intersects only with the
m = 1 column. In this example, only one min function remained after the simplification,
since memory block m = 2 is the only block that is in the ECB sets of both preempting
tasks τ1 and τ2.

The final result from the solver for the running example corresponds to the preempting
scenario where PP3,2 is affected by τ1 and PP3,3 is affected by τ2. Concretely, τ1 evicts
the useful cache blocks 2 and 3 from UCB3,1, and τ2 evicts useful cache blocks 3 and 4
from UCB3,3. Since the block reload time is BRT = 1, the finally computed upper-bounded
preemption cost of the task τ3 is γ3 = 4.

5 Experimental Results

We conducted two experiments, using the open-source Java constraint programming library
Choco [9], in order to investigate the possibility of tightening the CRPD per taskset using
the proposed method. Each point in the experiment represents an average of applying the
algorithm to 2000 randomly generated tasksets.

In each experimental setup we generate tasksets consisting of the defined number of
tasks. Each taskset is generated with the utilization level of 0.8 and the tasks’ individual
utilizations are generated using the U-unifast algorithm [5]. Then, the minimum inter-arrival
time for each task is generated using a uniform distribution from the range [5ms, 5s], thus
reasonably corresponding to real systems. Next, we calculate the execution times such that
Cnp
i = Ui × Ti and assign priorities in a rate monotonic order. The number of resulting

non-preemptive regions are generated from the uniform distribution in range [1, 10].
Regarding the cache simulation we represent evicting and useful cache block sets using

the integer values from 0 to 256, corresponding to the maximum cache set size CS = 256.
Following the setup used by Altmeyer et al. [3], we use the following values:

BRT = 8µs.
ECBi for each task is generated using the U-unifast algorithm such that the total cache
utilization CU =

∑n
1 |ECBi|/CS . If the utilization of the evicting set is above 1, it means

that it uses all cache sets.
UCBi for each task is generated from the ECBi using the reload factor RF which is
uniformly generated from the range [0, 0.3], thus UCBi = RF × |ECBi| where |ECBi| is
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Figure 3 CRPD estimation per taskset for different levels of cache utilization, calculated as the
average over the 2000 generated tasksets.
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Figure 4 Left: CRPD estimation per taskset, for different taskset sizes, calculated as the average
over the 2000 generated tasksets. Right: Analysis time of the proposed method per taskset, for
different taskset sizes.

the number of cache sets in the ECBi. The reload factor is used to adapt the assumed
reuse factor, thus reflecting systems with a low reuse up to control-based applications
with heavy reuse (up to 0.3).
Each UCBi,k is generated using the uniform distribution from [0, 100× |UCBi|].

In the first experiment, we evaluated the CRPD estimation varying the total cache
utilization from 20% to 90% (see Figure 3). Taskset utilization was fixed to 0.8 and the
number of tasks was fixed to 10. We show the CRPD values computed by the proposed
method, compared to the method where the worst case eviction scenario is assumed for each
preemption point. As expected, the proposed method succeeds in tightening the CRPD value
by identifying infeasible eviction cases. The increase of cache utilization is followed by an
increase of the computed CRPD values. However, we see that the CRPD reduction ratio is
decreasing by the increase of the cache utilization (when CU = 20%, the reduction ratio is
49% and when CU = 90% it is less than 30%). This is the case because of the fact that with
high cache utilization each higher priority task evicts a significant part of the total cache.
Therefore, the benefit of identifying infeasible eviction cases is reduced since the remaining
cases still evict much of the total cache in each point.

In the second experiment, we evaluated the CRPD estimation varying the taskset size
from 3 to 12 (see Figure 4). Taskset utilization was fixed to 0.8 as well as the total cache
utilization, CU = 40%. From 3 to 9 tasks, the ratio between the CRPD estimated by the
proposed method and the over-approximating ECB computation remains roughly the same
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(48% for 3 tasks in a taskset, and 42% for 9 tasks). From this point, the over-approximated
CRPD values drop because the evicting cache blocks of the tasks are significantly reduced as
we fix the total cache utilization per taskset. Therefore, considering 12 tasks in a taskset the
CRPD reduction ratio is 35%. To investigate scalability of the approach, we also measured
the analysis time as the number of tasks increases. We can see that on average the method
needs approximately 12 seconds for tasksets consisting of 12 tasks, and only 48 ms for tasksets
consisting of 3 tasks. Note that the analysis time varies a lot for different tasksets, and in
this experiment there are some cases for which the constraint solver needs several minutes to
solve the given problem. Therefore we used a time limit of 40 seconds, and if the method
failed to provide a value within this time, it instead reported the over-approximated CRPD
value.

6 Conclusions

In this paper we proposed a novel method for computing the cache-related preemption delay
(CRPD) in sporadic task model scheduled under the Fixed Preemption Point approach. The
method identifies infeasible preemption combinations for a given preempted task based on
scheduling level analysis and then calculates the maximum CRPD value considering the
remaining preemption combinations and cache level analysis information. Furthermore, we
defined an algorithm that iteratively estimates the upper bound on CRPD values in a taskset,
using the derived upper bounds for computing the tighter CRPD estimates for lower priority
tasks. In the evaluation of the proposed method, we showed that it can significantly reduce
the CRPD of a preempted task and moreover all tasks in a taskset, up to 50% as shown in
some cases.

For future work, we envision a preemption point selection algorithm that will exploit the
proposed method for CRPD computation to achieve CRPD minimisation by the appropriate
preemption point placement, benefiting from the information of the infeasible evicting
scenarios defined in this paper. We also plan to investigate a way to manage the scalability
limitations by restricting the algorithm to consider only a selected subset of tasks. In
particular, the higher priority tasks since any tightening of their CRPD impacts the response
times of all lower priority tasks, but there might be also other indicators to be included
in the analysis. Another way to manage scalability limitations would be to combine the
multiset-based CRPD estimation approaches with the analysis of infeasible preemption
combinations in order to derive safe but to some extent pessimistic CRPD upper-bounds,
compared to those computed with the constraint solving approach.

Finally, future work will also focus on developing an analogical method for tightening
the CRPD bounds in fully preemptive systems. In this context, we envision a method that
would first virtually divide the preempted task into subsections such that it accounts for
the variability of useful cache blocks throughout the execution of the preempted task. By
analysing the infeasible preemption scenarios among those subsections we would be able to
furthermore tighten the CRPD bounds in such systems as well.
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