
An Empirical Study on Deoptimization in the
Graal Compiler∗

Yudi Zheng1, Lubomír Bulej†2, and Walter Binder3

1 Faculty of Informatics, Università della Svizzera italiana (USI), Switzerland
Yudi.Zheng@usi.ch

2 Faculty of Mathematics and Physics, Charles University, Czech Republic
lubomir.bulej@d3s.mff.cuni.cz

3 Faculty of Informatics, Università della Svizzera italiana (USI), Switzerland
Walter.Binder@usi.ch

Abstract
Managed language platforms such as the Java Virtual Machine or the Common Language Runtime
rely on a dynamic compiler to achieve high performance. Besides making optimization decisions
based on the actual program execution and the underlying hardware platform, a dynamic com-
piler is also in an ideal position to perform speculative optimizations. However, these tend to
increase the compilation costs, because unsuccessful speculations trigger deoptimization and re-
compilation of the affected parts of the program, wasting previous work. Even though speculative
optimizations are widely used, the costs of these optimizations in terms of extra compilation work
has not been previously studied. In this paper, we analyze the behavior of the Graal dynamic
compiler integrated in Oracle’s HotSpot Virtual Machine. We focus on situations which cause
program execution to switch from machine code to the interpreter, and compare application
performance using three different deoptimization strategies which influence the amount of extra
compilation work done by Graal. Using an adaptive deoptimization strategy, we managed to
improve the average start-up performance of benchmarks from the DaCapo, ScalaBench, and
Octane benchmark suites, mostly by avoiding wasted compilation work. On a single-core system,
we observed an average speed-up of 6.4% for the DaCapo and ScalaBench workloads, and a speed-
up of 5.1% for the Octane workloads; the improvement decreases with an increasing number of
available CPU cores. We also find that the choice of a deoptimization strategy has negligible
impact on steady-state performance. This indicates that the cost of speculation matters mainly
during start-up, where it can disturb the delicate balance between executing the program and
the compiler, but is quickly amortized in steady state.

1998 ACM Subject Classification D.3.4 Programming Languages, Processors — Compilers, Op-
timization

Keywords and phrases Dynamic compiler; profile-guided optimization; deoptimization

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.30

∗ The research presented in this paper was supported by Oracle (ERO project 1332), by the
European Commission (contract ACP2-GA-2013-605442), by the Charles University institutional fund-
ing (project SVV-260451), and by project no. LTE117003 (ESTABLISH) from the INTER-EUREKA
LTE117 programme by the Ministry of Education, Youth and Sports of the Czech Republic.

† Major part of the work was conducted while Lubomír Bulej was with Faculty of Informatics, Università
della Svizzera italiana (USI), Switzerland.

© Yudi Zheng, Lubomír Bulej, and Walter Binder;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 30; pp. 30:1–30:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 An Empirical Study on Deoptimization in the Graal Compiler

1 Introduction

Managed language platforms such as the Java Virtual Machine (JVM) or the Common
Language Runtime provide memory-safe and portable execution environments targeted by
many object-oriented programming languages. On these platforms, programs are initially
executed by an interpreter which collects and uses profiling information to schedule frequently
executed methods (or code paths) for compilation into machine code to speed up the execution
of the program. The compilation is handled by a dynamic optimizing compiler (or a hierarchy
of compilers if compilation is tiered). By making a program run faster, the dynamic compiler
frees up computational resources that can be used to perform more optimizations. However,
to actually benefit from faster program execution, the compiler should only consume a
fraction of the computational resources that it has freed up. Because the effects of dynamic
compilation accumulate over time, the goal is to speed up the program as soon as possible,
but without slowing it down by the compilation work. Deciding what to compile, when, and
how then becomes an optimization problem of its own [17].

Besides producing machine-code for the underlying hardware platform, the dynamic
compiler is also in an ideal position to perform speculative optimizations based on the
collected profiling information. While profile-driven and feedback-driven optimizations are
not exclusive to managed platforms with dynamic compilers, a dynamic compiler works with
profiles that reflect the actual behavior of the currently executing program. This provides
the compiler with a more accurate view of the common-case behavior which the compiler
should optimize. If a certain assumption about program behavior turns out to be wrong,
the affected code can be recompiled to reflect the new behavior. This allows the dynamic
compiler to pay less attention to uncommon execution paths, replacing them with traps that
switch from program’s machine code back to the virtual machine’s (VM) runtime which then
decides how to handle the situation. As a result, the compiler needs to do less work and
produces higher-density code for the common code paths. Combined with aggressive inlining
and code specialization based on receiver type feedback, a dynamic compiler can optimize
away a significant portion of the abstraction overhead commonly found in object-oriented
programs that make heavy use of small methods and dynamic binding.

The pioneering work by the authors of the SmallTalk-80 [6] and the Self-93 [11] systems
has laid down the foundations of modern dynamic compilers, and sparked an enormous
body of research [1] on techniques that make managed language platforms fast, such as
selective compilation [11, 15, 4, 16, 17], profiling for feedback-directed optimization and code
generation [22, 2, 25, 21], or dynamic deoptimization and on-stack replacement [10, 19, 7,
14, 12]. As a result, adaptive compilation and speculative optimization techniques are now
widely used. Ideally, speculative optimizations will always turn out to be right and provide
performance gains that outweigh the one-time cost in terms of compilation time before
the program terminates. In reality, some speculations in the machine code will be wrong,
and trigger deoptimization. Besides switching to interpreted (or otherwise less optimized)
execution mode, deoptimization may also trigger recompilation of the affected code, thus
wasting previous compilation work and adding to the overall cost of compilation.

How often does this happen and for what reason? How much compilation effort is
wasted and what is the cost of speculative optimizations? What happens when the compiled
code triggers deoptimization? In fact, these aspects of speculative optimizations have not
been previously studied in the literature—unlike, e.g., the trade-offs involved in selective
compilation. We therefore analyze the deoptimization behavior of code compiled by the
Graal [18] dynamic compiler and the behavior of the VM runtime in response to the

Y. Zheng, L. Bulej, and W. Binder 30:3

deoptimizations. Even though Graal has not (yet) replaced the classic C2 server compiler,
it is integrated in Oracle’s HotSpot Virtual Machine and serves as the basis for the Truffle
framework for self-optimizing interpreters [24]. Truffle allows executing programs written in
modern dynamic languages on the JVM and generally outperforms the original interpreters.
Similarly to the classic C2 compiler, Graal performs feedback-directed optimizations and
generates code that speculates on receiver types and uncommon paths, but is more aggressive
about it. Unlike the C2 compiler, when Graal reaches a deoptimization site in the compiled
code, it switches back to interpreted mode and discards the machine code with the aim to
generate it again using better profiling information. The C2 compiler is more conservative
and in many cases discards the compiled code only after it triggers multiple deoptimizations.
The obvious question is then: which of the two approaches is better, and how often programs
actually violate the assumptions put in the code by the dynamic compiler?

In this paper, we make the following contributions:
1. We characterize the deoptimization causes in the code produced by Graal for the Da-

Capo [3], ScalaBench [20]), and Octane [8] benchmark suites (Section 3). We show
that only a small fraction (∼2%) of deoptimization sites is triggered, most of which
(∼98%) cause reprofiling. We investigate the causes of two types of repeatedly triggered
deoptimizations that appear in the profile.

2. We provide two alternative deoptimization strategies for the Graal compiler. A conser-
vative strategy, which defers invalidation of compiled code until enough deoptimizations
are observed (default HotSpot behavior not used by Graal), and an adaptive strategy
which switches among various deoptimization actions based on a precise deoptimization
profile (Section 4).

3. We evaluate the performance of both deoptimization strategies and compare them to the
default strategy used by Graal (Section 5). We show that the conservative strategy may
cause extra compilation work, while the adaptive strategy reduces compilation work and
provides statistically significant benefits to startup performance on a single-core system
with both static and dynamic languages.

Before presenting our main contributions, we provide a summary of related work and the
necessary background on deoptimization (both general and Graal-specific).

2 Related Work and Background

Dynamic deoptimization as a way to transfer execution from compiled code to interpreted
code was introduced in the Self system to facilitate full source-level debugging of optimized
code [10]. It also introduced techniques such as on-stack-replacement, which were since
adopted and improved by others [19, 7, 14, 12].

Being more interested in the use of deoptimization in the implementation of speculative
optimizations, we trace their origins to partial and deferred compilation in Self [5]. To reduce
compilation time, program code that was predicted to execute infrequently was compiled only
as a stub which invoked the compiler when a particular code path was first executed, thus
deferring the compilation of uncommon code paths until they were actually needed. Many
of the techniques found in Self, such as adaptive compilation, dynamic deoptimization, and
speculative optimizations using deoptimization, were later adopted by Java [19, 14]. Further
improvements to the HotSpot VM target selective compilation [15, 4, 16, 17], phase-based
recompilation [9], and feedback-directed optimization [22, 2, 25, 21].

In general, deoptimization switches to a less optimized execution mode, e.g., interpreted
execution, or execution of machine code generated by a baseline compiler. In Self, de-

ECOOP 2017

30:4 An Empirical Study on Deoptimization in the Graal Compiler

optimization was primarily used to defer compilation and to execute uncommon code in
the interpreter. In a modern HotSpot JVM, especially with Graal enabled, deoptimization
represents a key recovery mechanism for speculative optimizations. However, despite the
role of deoptimization in the implementation of speculative optimizations, we are not aware
of a study that characterizes the actual deoptimization behavior of programs compiled by a
speculating dynamic compiler, and the impact of the deoptimizations on the compiled code.

That does not mean that deoptimization does not receive any attention. In recent
work [23], the authors present a VM implementation technique that allows a deoptimization
triggered in aggressively optimized code to resume execution in (deoptimized) machine code
generated by the same compiler at a different optimization level. In contrast to an interpreter
or baseline compiler, both of which rely on a fixed stack-frame layout, using a single compiler
allows using an optimized stack layout for both the optimized and deoptimized code. This
approach helps reduce the complexity of a VM implementation, because neither an interpreter
nor a baseline compiler are needed.

In the remainder of this section we first provide more background on the use of deoptimiz-
ation in speculative optimizations, and then complement it with details specific to the Graal
compiler.

2.1 Speculation and Deoptimization

Speculative optimizations are aimed at optimizing for the common case, which is approximated
using profiling data collected during program execution. Common speculative optimizations
include implicit null checks, uncommon conditional branch elision, and type specialization.
If a speculation turns out to be wrong, deoptimization allows the VM to ensure that the
program always executes correctly, albeit more slowly.

Deoptimizations are usually triggered synchronously with program execution, either
explicitly by invoking a deoptimization routine of the VM runtime, or implicitly, by performing
an operation which causes a signal (e.g., segmentation fault in the case of a null pointer)
to be sent to the VM, which handles the signal and switches execution to the interpreter.
Deoptimizations can be also triggered asynchronously at the VM level, when the program
invalidates assumptions under which it was compiled, e.g., when the second class implementing
an interface is loaded.

The ability to trigger deoptimization from compiled code allows the compiler to avoid
generating code that will be rarely used, e.g., code that constructs and throws exceptions,
because exceptions should be rare in well-written programs. This applies both to explicitly
thrown exceptions as well as exceptions that can be thrown implicitly by operations such
as array access or division by zero. Based on the profiling feedback, the dynamic compiler
can apply a similar approach to conditional jumps, replacing low-probability branches
with a deoptimization trigger. Hence, the compiler saves computing resources by avoiding
code generation for the uncommon paths. Moreover, this approach helps speed up global
optimizations thanks to the reduced program state, and makes the generated machine code
more compact, resulting in better instruction cache performance.

Another common kind of speculative optimization relies on type feedback, which allows
the compiler to specialize code to most commonly used types. For instance, the targets of a
virtual method invocation may be inlined (or the invocation can be devirtualized) if only a
limited number of receiver types has been observed at a particular callsite. The type-specific
code will be guarded by type-checking conditions, while a generic code path representing an
uncommon branch may trigger deoptimization to handle the invocation in the interpreter.

Y. Zheng, L. Bulej, and W. Binder 30:5

While deoptimization is handled by the VM runtime, the compiler needs to provide the
VM with details on how to handle it. This information is typically provided in form of
parameters passed to the invocation of the deoptimization trigger routine in the generated
code. For example, if recompilation of the code that triggers a deoptimization is unlikely
to make it any better, the VM is instructed to just switch to the interpreter and leave the
compiled code as-is. If a deoptimization does not depend on profiling data and could be
eliminated by recompiling the code, the code is invalidated and the corresponding compilation
unit is immediately scheduled for recompilation. If a deoptimization was caused by insufficient
profiling information, besides invalidating the machine code, the VM also attempts to reprofile
the method thoroughly and recompile it later based on the updated profile. To avoid an
endless cycle of recompilation and deoptimization for pathological cases, per-method counters
are used to stop recompilation of a method if it has been recompiled too many times (yet
did not eliminate the deoptimization).

In state-of-the-art dynamic compilers the mapping between a deoptimization reason and
the corresponding deoptimization action is hard-coded. This makes perfect sense for certain
cases, when there is only a single suitable deoptimization action. However, determining the
most suitable action for situations in which the deoptimization is caused by an incomplete
profile is difficult. For instance, when the compiler inlines potential callee methods based
on the receiver type profile, it inserts a reprofiling deoptimization trigger in the uncommon
(generic) path to cope with previously unseen receiver types. When encountering a very
rare receiver type, deoptimization (including reprofiling) is triggered. However, due to the
(usually) limited receiver type profile space1, the newly collected profiling information might
not include the rare case at the time of recompilation. The dynamic compiler will then either
use the original invocation as the uncommon path (if megamorphic inlining is supported), or
not inline the callsite at all. In both cases, the reprofiling and recompilation effort is wasted,
and the recompiled code may become even worse.

2.2 Deoptimization in the Graal Compiler
The Graal compiler is integrated into the HotSpot runtime via the JVM Compiler Interface
(JVMCI)2 and replaces the HotSpot VM’s C2 server compiler when enabled. It makes
heavy use of profile-directed speculative optimizations and is thus more likely to exhibit
deoptimizations. Because Graal only provides the last-level compiler, it can only instruct the
HotSpot runtime what action to perform during deoptimization. The deoptimization actions
used internally by Graal can be therefore directly mapped to the deoptimization actions
defined in the HotSpot runtime.

The possible deoptimization actions are summarized in Table 1. Apart from the None
action, which only switches execution to the interpreter, all other options influence the compil-
ation unit which triggered the deoptimization in some way. Most of them invalidate the compil-
ation unit’s machine code immediately, with the exception of the RecompileIfTooManyDeopts
action, which depends on a profile of preceding deoptimizations, and only invalidates the
compiled code if too many deoptimizations are triggered at the same site or within the
compilation unit.

Even though the deoptimization action is fixed in the compiled code, the HotSpot runtime
rewrites the actual action either to force reprofiling or to avoid endless deoptimization

1 -XX:TypeProfileWidth in the Oracle JVM, defaults to 2 in standard HotSpot runtime or 8 in the Graal
compiler.

2 http://openjdk.java.net/jeps/243

ECOOP 2017

http://openjdk.java.net/jeps/243

30:6 An Empirical Study on Deoptimization in the Graal Compiler

Table 1 Deoptimization actions in the Graal compiler.

Graal Deopt Action Description HotSpot Deopt Action

None Do not invalidate the compiled
code.

Action_none

RecompileIfTooManyDeopts Do not invalidate the compiled code
and schedule a recompilation if
enough deoptimizations are seen.

Action_maybe_recompile

InvalidateReprofile Invalidate the compiled code and
reset the invocation counter.

Action_reinterpret

InvalidateRecompile Invalidate the compiled code and
schedule a recompilation immedi-
ately.

Action_make_not_entrant

InvalidateStopCompiling Invalidate the compiled code and
stop compiling the outermost
method of this compilation.

Action_make_not_compilable

Table 2 Deoptimization reasons in the Graal compiler.

Deoptimization Reason Description Associated Action

None Absence of a relevant deoptimization. -
NullCheckException Unexpected null or zero divisor. None

InvalidateRecompile
InvalidateReprofile

BoundsCheckException Unexpected array index. InvalidateReprofile
ClassCastException Unexpected object class. InvalidateReprofile
ArrayStoreException Unexpected array class. InvalidateReprofile
UnreachedCode Unexpected reached code. InvalidateRecompile

InvalidateReprofile
TypeCheckedInliningViolated Unexpected receiver type. InvalidateReprofile
OptimizedTypeCheckViolated Unexpected operand type. InvalidateRecompile

InvalidateReprofile
NotCompiledExceptionHandler Exception handler is not compiled. InvalidateRecompile
Unresolved Encountered an unresolved class. InvalidateRecompile
JavaSubroutineMismatch Unexpected JSR return address. InvalidateReprofile
ArithmeticException A null_check due to division by zero. None

InvalidateReprofile
RuntimeConstraint Arbitrary runtime constraint violated. None

InvalidateRecompile
InvalidateReprofile

LoopLimitCheck Compiler generated loop limits check failed. InvalidateRecompile
TransferToInterpreter Explicit transfer to interpreter. -

Y. Zheng, L. Bulej, and W. Binder 30:7

and recompilation cycles. If a recompilation is scheduled for the second time for the same
deoptimization site with the same reason, the HotSpot runtime rewrites the action to
InvalidateReprofile, which resets method’s hotness counters and causes it to be reprofiled. If
the total number of recompilations of any method exceeds a threshold, the HotSpot runtime
rewrites the action to InvalidateStopCompiling to prevent further recompilation of the method.

To illustrate how Graal uses these deoptimization actions, Table 2 shows the deoptimiz-
ation reasons along with the associated actions as defined and used throughout the Graal code
base. The table reveals that the actions RecompileIfTooManyDeopts and
InvalidateStopCompiling are not used as of Graal v0.173. This suggests that the compiler
tries to keep full control over invalidation of compiled code, and that it tries not to give up
any optimization opportunity until the HotSpot runtime enforces certain actions.

Some of the deoptimization reasons are used with multiple actions, depending on the
situation in which the deoptimization is invoked. For instance, the OptimizedTypeCheck-
Violated reason is used when inlining the target of an interface with a single implementation,
and when optimizing instanceof checks. In the former case, if a guard on the expected receiver
type fails, the compiler invokes the InvalidateRecompile action with the reason Optimized-
TypeCheckViolated, because it has produced the compiled code under the assumption that
there is only a single implementation of a particular interface. In the latter case, the compiler
checks against types derived from the given type that have been observed so far. Because
the occurrence of a previously unseen type indicates an incomplete type profile, the compiler
invokes the InvalidateReprofile action to get a more accurate type profile. If the compiler
knew that the previously unseen type was a very rare case, it could invoke the None action.
However, because encountering a new type may also signify a phase change in the application,
Graal uses the InvalidateReprofile action.

Nevertheless, the mapping between deoptimization reasons and deoptimization actions
in the Graal compiler is hard-coded and represents the trade-offs between startup and
steady-state performance made by the compiler developers. In the following sections, we
provide quantitative and qualitative analyses of how these decisions influence the actual
deoptimization behavior of the Graal compiler.

3 Study of Deoptimization Behavior

In this section we analyze the deoptimization behavior of the HotSpot VM with the Graal
compiler when executing benchmarks from the DaCapo [3], ScalaBench [20], and Octane [8]
benchmark suites. The individual benchmarks are based on real-world programs written in
Java and Python (DaCapo), Scala (ScalaBench), and JavaScript (Octane), slightly modified
to run under a benchmarking harness suitable for experimental evaluation. The Python
workloads are executed by Jython, a Python interpreter written in Java, the Scala workloads
are compiled to Java bytecode, and the JavaScript workloads are executed by Graal.js, a
JavaScript runtime written in Java on top of the Truffle framework [24].

We first analyze the kind of deoptimization sites emitted by Graal and the frequency
with which they are triggered during execution, and then investigate two specific cases in
which the same deoptimizations are triggered repeatedly.

3 https://github.com/graalvm/graal-core/tree/graal-vm-0.17

ECOOP 2017

https://github.com/graalvm/graal-core/tree/graal-vm-0.17

30:8 An Empirical Study on Deoptimization in the Graal Compiler

3.1 Profiling Deoptimizations
To collect information about deoptimizations, we use a deoptimization profiler based on the
accurate profiling framework integrated in Graal [26]; that framework ensures that profiling
does not perturb the compiler optimizations. The profiler instruments each deoptimization
site and reports the number of deoptimizations triggered at that site during execution.

The identity of each deoptimization site consists of the deoptimization reason, action, the
originating method and bytecode index, and (optionally) a context identifying the compilation
root if the method was inlined. The information encoded in the site identity along with
the number of deoptimizations triggered at the site allow us to perform qualitative and
quantitative analysis of the deoptimizations triggered in the compiled code produced by Graal.
To this end, we profile selected benchmarks4 from the DaCapo 9.12 suite, all benchmarks
from the ScalaBench suite, and selected benchmarks5 from the Octane suite on a multi-core
platform6.

We present the resulting profile from different perspectives. First we provide a static
break-down of the deoptimization sites and deoptimization actions found in the code emitted
by Graal (Section 3.1.1). This is complemented by a dynamic view of deoptimization sites
that are actually triggered during execution (Section 3.1.2). Finally, we look at the most
frequent repeatedly-triggered deoptimizations, because these are potential candidates for
wasted compilation work (Section 3.1.3).

3.1.1 Deoptimizations Sites Emitted
The profiling results are summarized in Table 3. The top-level column groups represent
the actions used at the deoptimization sites. We only track three of the five possible
deoptimization actions, because Graal does not make use of the other two (c.f. Section 2.2).
The bottom-level columns correspond to the number of deoptimization sites invoking a
particular action, the fraction of the total number of sites, and the fraction of the total
number of deoptimization sites emitted at which at least one deoptimization was triggered.

In general, the number of deoptimization sites emitted during a benchmark’s lifetime varies
significantly, ranging from 2000 to 23 000. For the DaCapo benchmarks, 94.17% of the total
deoptimization sites invoke the InvalidateReprofile action, 3.23% just switch to the interpreter
(action None), and 2.60% invoke the InvalidateRecompile action. For the ScalaBench bench-
marks, the compiler emits a slightly higher proportion (95.44%) of the InvalidateReprofile
deoptimization sites and a lower proportion (1.16%) of the InvalidateRecompile sites. We
attribute this to the fact that the Scala language features are compiled into complex call
chains in the Java bytecode. During dynamic compilation, these callsites are optimized with
type guards that lead to InvalidateReprofile deoptimization sites. To summarize, in standard
Java/Scala applications the Graal compiler favors speculative profile-directed optimizations,
which invoke the InvalidateReprofile deoptimization action in their guard failure paths.

For the Octane benchmarks, the compiled code of the Graal.js self-optimizing interpreter
contains a higher proportion (4.74%) of the InvalidateRecompile deoptimization sites. One of
the reasons for this difference is that language runtimes implemented on top of the Truffle

4 The eclipse and tomcat benchmarks were excluded due to their incompatibility with Java 8.
5 The pdf.js benchmark was excluded due to an internal exception.
6 Intel Xeon E5-2680, 2.7 GHz, 8 cores, 64 GB RAM, CPU frequency scaling and Turbo mode disabled,
hyper-threading enabled, Oracle JDK 1.8.0_101 b13 HotSpot Server VM (64-bit), Graal VM 0.17,
running on Ubuntu Linux Server 64-bit version 14.04.1

Y. Zheng, L. Bulej, and W. Binder 30:9

Table 3 The number and percentage of deoptimization sites with a particular action emitted
and triggered during the first benchmark iteration of the DaCapo and ScalaBench workloads, and
during the warmup phase of the Octane workloads.

Benchmark None Reprofile Recompile
% %Hit # % %Hit # % %Hit

D
aC

ap
o

avrora 94 3.2 .00 2813 94.2 1.04 79 2.7 .00
batik 147 3.5 .00 3991 94.5 2.70 86 2.0 .02
fop 186 3.8 .00 4639 95.6 1.52 30 0.6 .00
h2 208 2.6 .00 7516 94.0 2.49 275 3.4 .05
jython 337 2.9 .00 10 837 94.5 1.89 289 2.5 .03
luindex 196 6.4 .00 2839 92.8 1.37 26 0.9 .00
lusearch 204 6.7 .00 2785 91.2 0.75 64 2.1 .00
pmd 163 2.6 .00 5942 93.2 1.11 270 4.2 .09
sunflow 92 4.1 .00 2123 94.7 1.12 26 1.2 .00
tradebeans 267 2.7 .00 9307 93.4 2.25 394 4.0 .02
tradesoap 608 2.8 .00 20 866 94.6 1.71 593 2.7 .02
xalan 225 3.7 .00 5880 95.3 0.34 63 1.0 .00
Total 2727 3.2 .00 79 538 94.2 1.68 2195 2.6 .02

Sc
al
aB

en
ch

actors 116 2.5 .00 4418 95.2 1.87 108 2.3 .09
apparat 230 3.8 .00 5751 94.7 2.45 91 1.5 .12
factorie 133 4.0 .00 3153 94.4 1.71 54 1.6 .00
kiama 178 4.9 .00 3423 94.3 2.26 31 0.9 .00
scalac 289 1.8 .00 15 525 97.6 3.15 90 0.6 .01
scaladoc 288 2.5 .00 10 909 96.1 2.93 155 1.4 .00
scalap 133 5.2 .00 2428 94.2 1.59 18 0.7 .00
scalariform 189 4.3 .00 4198 94.7 1.11 44 1.0 .00
scalatest 215 5.0 .00 4083 94.2 1.25 37 0.9 .05
scalaxb 166 4.4 .00 3547 94.7 1.68 31 0.8 .03
specs 212 5.4 .00 3672 93.6 1.27 39 1.0 .05
tmt 191 4.0 .00 4535 94.0 1.97 99 2.0 .00
Total 2340 3.4 .00 65 642 95.4 2.27 797 1.2 .03

O
ct
an

e

box2d 195 2.2 .00 8162 91.8 1.43 538 6.1 .46
code-load 699 2.9 .00 23 041 93.8 1.43 827 3.4 .37
crypto 142 2.1 .00 6325 92.6 1.46 364 5.3 .16
deltablue 136 2.3 .00 5395 91.8 1.19 347 5.9 .15
earley-boyer 172 2.4 .00 6740 92.5 1.65 376 5.2 .36
gbemu 200 1.9 .00 9743 92.9 2.74 546 5.2 .28
mandreel 367 3.3 .00 10 197 92.4 1.72 470 4.3 .37
navier-stokes 129 2.4 .00 4930 92.8 1.88 256 4.8 .06
raytrace 133 2.2 .00 5696 92.4 1.28 334 5.4 .32
regexp 221 2.3 .00 9050 93.1 2.27 449 4.6 .11
richards 113 2.2 .00 4834 91.9 1.48 316 6.0 .19
splay 123 2.0 .00 5664 93.1 1.87 296 4.9 .12
typescript 294 2.0 .00 13 403 93.1 1.58 694 4.8 .38
zlib 204 2.9 .00 6458 92.8 1.98 298 4.3 .17
Total 3128 2.4 .00 119 638 92.8 1.71 6111 4.7 .28

ECOOP 2017

30:10 An Empirical Study on Deoptimization in the Graal Compiler

framework heavily utilize the Truffle API. Because this API consists of many interfaces with
a single implementation, the compiled code for callsites invoking the Truffle API uses guarded
devirtualized invocations. Consequently, the (many) corresponding guard failure paths
invoke the InvalidateRecompile deoptimization action with OptimizedTypeCheckViolated as the
reason (c.f. Section 2.2). The second reason for the higher proportion of InvalidateRecompile
deoptimization sites is that the Truffle framework encourages aggressive type specialization
in the interpretation of abstract syntax tree (AST) nodes of the hosted language. Internally,
Truffle uses Java’s exception mechanism to undo type specialization, and because at the time
the type specialization occurs the exception handler has never been executed (otherwise the
type specialization would not happen in the first place), the dynamic compiler considers
the exception handler to be uncommon and replaces it with a deoptimization site which
invokes the InvalidateRecompile action with NotCompiledExceptionHandler as the reason. This
mechanism allows Truffle to attempt aggressive type specialization and recompile with generic
types if a type-related exception occurs.

3.1.2 Deoptimization Sites Triggered
Of all the sites emitted for the DaCapo benchmarks, only 1.68% were actually triggered
and invoked the InvalidateReprofile deoptimization action during execution. The proportion
increases to 2.27% in the ScalaBench benchmarks for the same reason that affects the
total number of emitted sites. Similarly, only 0.02% of the sites in the DaCapo bench-
marks and 0.03% of the sites in the ScalaBench benchmarks were triggered and invoked
the InvalidateRecompile action. This indicates that in ordinary Java/Scala applications,
deoptimization sites that do not rely on profiling feedback represent only a small fraction
of the total number of deoptimization sites and are rarely triggered. In addition, these
sites tend to be eliminated by the recompilation they force, therefore they rarely cause
repeated deoptimizations. In total, over 98% of all triggered deoptimizations invoke the
InvalidateReprofile action, while only less than 2% invoke the InvalidateRecompile action. This
suggests that in the code produced by the Graal compiler, deoptimizations are dominated by
those that force reprofiling of the affected code.

Compared to DaCapo and ScalaBench, the number and the proportion of the
InvalidateRecompile deoptimizations triggered during execution of the Octane benchmarks
on top of Graal.js is significantly higher. As discussed earlier, this is because the Truffle code
that undoes type specialization in the hosted language is implicitly replaced by deoptim-
ization. Nevertheless, similarly to DaCapo and ScalaBench, the most frequently triggered
deoptimization action in the Octane benchmarks is InvalidateReprofile (88.83%).

3.1.3 Deoptimizations Triggered Repeatedly
In Table 4 we show the number of sites which trigger a particular deoptimization more
than once during benchmark execution. In the DaCapo benchmarks, these sites account
for 11.67% of deoptimization sites triggered at least once, and for 26.64% of all triggered
deoptimizations; the results for ScalaBench are similar. For the Octane benchmarks on
Graal.js, the proportion of repeated deoptimization sites drops to 5.96%, which is caused by
Truffle invalidating the type specialization code that triggered a deoptimization.

While it is possible for multiple threads to trigger the same deoptimization site in the same
version of the compiled code, the majority of the repeated deoptimizations originate from
recompiled code. This means that if recompilation does not eliminate these deoptimization
sites, reprofiling either does not produce a profile that would change the optimization
decisions, or that the profile is not provided in time for the recompilation.

Y. Zheng, L. Bulej, and W. Binder 30:11

Table 4 Number of deoptimization sites that were triggered repeatedly and the deoptimization
reason used at the most frequently triggered InvalidateReprofile deoptimization site during the first
benchmark iteration of the DaCapo and ScalaBench workloads, and during the warmup phase of
the Octane workloads. Due to the obfuscated code in the binary release of Graal.js, some of the
reported sites (marked with *) are identified by their deoptimization target instead of their precise
location in the bytecode.

Benchmark Repeated Deoptimizations Most Frequent Site
#Sites %Sites %Deopts #Hit Reason

D
aC

ap
o

avrora 6 19.4 41.9 4 UnreachedCode
batik 4 3.5 7.5 3 TypeCheckedInliningViolated
fop 2 2.7 10.0 6 UnreachedCode
h2 27 13.3 28.5 6 OptimizedTypeCheckViolated
jython 22 10.0 23.6 9 UnreachedCode
luindex 0 0.0 0.0 - -
lusearch 2 8.7 36.4 10 TypeCheckedInliningViolated
pmd 6 7.8 17.4 5 UnreachedCode
sunflow 1 4.0 7.7 2 TypeCheckedInliningViolated
tradebeans 34 15.0 36.8 10 TypeCheckedInliningViolated
tradesoap 58 15.2 32.0 5 TypeCheckedInliningViolated
xalan 1 4.8 16.7 4 TypeCheckedInliningViolated
Total 163 11.7 26.6

Sc
al
aB

en
ch

actors 14 15.4 67.7 64 UnreachedCode
apparat 15 9.6 24.6 3 TypeCheckedInliningViolated
factorie 8 14.0 40.2 9 OptimizedTypeCheckViolated
kiama 11 13.4 39.3 10 OptimizedTypeCheckViolated
scalac 70 13.9 34.2 23 TypeCheckedInliningViolated
scaladoc 41 12.3 35.1 23 TypeCheckedInliningViolated
scalap 2 4.9 11.4 3 TypeCheckedInliningViolated
scalariform 7 14.3 34.4 7 OptimizedTypeCheckViolated
scalatest 3 5.4 10.2 2 TypeCheckedInliningViolated
scalaxb 1 1.6 4.6 3 TypeCheckedInliningViolated
specs 1 1.9 3.8 2 TypeCheckedInliningViolated
tmt 7 7.4 21.4 9 OptimizedTypeCheckViolated
Total 180 11.4 34.3

O
ct
an

e

box2d 16 9.5 20.4 * 6 TypeCheckedInliningViolated
code-load 35 7.9 18.6 6 UnreachedCode
crypto 2 1.8 6.0 5 UnreachedCode
deltablue 5 6.3 12.9 3 TypeCheckedInliningViolated
earley-boyer 5 3.4 74.3 * 398 TypeCheckedInliningViolated
gbemu 17 5.4 11.5 4 UnreachedCode
mandreel 12 5.2 13.4 5 UnreachedCode
navier-stokes 4 3.9 10.0 * 5 TypeCheckedInliningViolated
raytrace 2 2.0 4.0 2 TypeCheckedInliningViolated
regexp 16 6.9 16.6 9 UnreachedCode
richards 1 1.1 2.3 2 TypeCheckedInliningViolated
splay 3 2.5 4.8 2 UnreachedCode
typescript 24 8.5 66.3 * 237 TypeCheckedInliningViolated
zlib 11 7.3 13.7 2 OptimizedTypeCheckViolated
Total 153 6.0 33.7

ECOOP 2017

30:12 An Empirical Study on Deoptimization in the Graal Compiler

Table 5 Number of deoptimizations per iteration when executing the DaCapo and ScalaBench
benchmarks.

Iteration 1 2 3 4 5 6 ... 15 16 17 18 19 20
avrora 43 17 4 1 2 0 0 0 0 0 0 0
batik 120 20 18 14 6 2 1 1 0 0 1 0
fop 80 23 5 4 2 0 0 1 1 0 0 0
h2 246 17 4 1 2 0 0 1 1 0 0 0
jython 259 27 2 1 0 0 1 1 2 1 0 1
luindex 42 14 1 0 0 0 0 0 0 0 0 0
lusearch 33 3 0 0 0 0 ... 0 0 0 0 0 0
pmd 86 25 6 11 5 4 1 1 2 3 0 0
sunflow 26 3 1 0 0 0 0 0 0 0 0 0
tradebeans 304 7 4 0 0 0 0 0 0 0 0 0
tradesoap 475 34 3 0 2 2 0 1 0 0 0 1
xalan 24 1 1 0 0 0 0 0 0 0 0 0
actors 238 28 5 6 4 5 0 1 2 1 1 2
apparat 187 22 9 3 5 2 3 2 2 2 2 3
factorie 82 10 0 0 0 0 0 1 2 0 0 0
kiama 117 5 2 3 3 3 0 0 1 0 0 2
scalac 656 123 36 25 22 21 8 14 5 13 8 12
scaladoc 450 106 18 13 1 6 1 0 0 2 2 8
scalap 44 10 0 0 0 0 ... 0 0 0 0 0 0
scalariform 64 23 9 5 4 3 1 0 0 0 0 0
scalatest 59 29 8 9 3 1 1 0 0 0 0 0
scalaxb 66 26 3 0 0 1 0 0 0 0 1 0
specs 53 10 9 5 5 7 6 6 4 2 3 4
tmt 112 6 4 3 2 1 2 1 2 2 2 1

To aid in investigating the reasons behind the worst-case repeated deoptimizations, Table 4
also lists the deoptimization sites that repeatedly trigger the most deoptimizations during
the execution of a particular benchmark. All of the worst-case deoptimization sites invoke
the InvalidateReprofile action, which is consistent with our findings so far.

We observe that the most frequently triggered deoptimization sites cause reprofiling for
three main reasons: TypeCheckedInliningViolated, OptimizedTypeCheckViolated, and Unreached-
Code. Deoptimizations specifying UnreachedCode as the reason result from conditional
branches that were eliminated based on (assumed) zero execution probability according to
the branch profile for the corresponding bytecode. The actors benchmark contains the most
frequent deoptimization site of this type in method java.util.concurrent.locks.AbstractQueued-
Synchronizer$ConditionObject.await(), which contains a blocking thread synchronization op-
eration. Deoptimizations that specify type-checking violations as the reason result from
optimizations that rely on a type profile. Here, the compiler typically uses deoptimization
in the failure path of a guard that ensures that type-specific code is only reached with
proper types. Among the benchmarks that suffer from deoptimizations for these reasons, the
scalac and scaladoc benchmarks share the same worst-case deoptimization site which triggers
deoptimization 23 times.

In the case of the Octane benchmarks on Graal.js, a high number of repeated deoptimiz-
ations are triggered in the earley-boyer and typescript benchmarks. The underlying reason
for repeated deoptimizations is the same as in the case of the DaCapo and ScalaBench
suites—inaccurate profiling information caused by associating a profiling record with a
deoptimization target (instead of origin), and subsequent sharing of this record by multiple
deoptimization sites. Unfortunately, code obfuscation in the Graal.js binary release prevents
us from presenting the situation in more detail at source code level.

Y. Zheng, L. Bulej, and W. Binder 30:13

3.1.4 Deoptimizations per Iteration
Finally, Table 5 shows the number of deoptimizations triggered in subsequent benchmark
iterations for the DaCapo and ScalaBench benchmarks. Most benchmarks encounter no
more than 3 deoptimizations per iteration after the 4th iteration, because the compiled
code for most of the hot methods stabilizes. However, there are a few cases of repeated
deoptimizations, especially in the scalac benchmark, where on average 10 deoptimizations
per iteration are triggered even past the 15th iteration. In most cases, TypeCheckedInlining-
Violated is given as the reason, and half of the deoptimizations originate at the same bytecode
(scala.collection.immutable.HashSet.elemHashCode(Object)#9) inlined in different methods.
This suggests that the receiver type profile may not be updated properly (or soon enough)
after deoptimization and reprofiling.

3.2 Investigating Repeated Deoptimizations
Our findings in Section 3.1.3 indicate that certain deoptimizations are triggered repeatedly at
the same site. If a particular deoptimization is triggered by multiple threads in one version
of the compiled code, the subsequent recompilation should eliminate the deoptimization site.
However, repeated deoptimizations triggered at the same site in multiple subsequent versions
of the compiled code indicate a problem, because that site should have been eliminated by
recompilations.

By analyzing the cases of repeatedly triggered deoptimization, we have discovered that
this situation occurs because an outdated method profile is used during the recompilation. In
the Graal compiler, this can happen because Graal inlines methods aggressively, but at the
same time, deoptimization site in the inlined code can deoptimize to the caller containing the
callsite of the inlined method (if no program state modification precedes the deoptimization
site in the inlined code). After deoptimization, when the interpreter wants to invoke the
(previously inlined) method at the callsite, the callee can be compiled either at a different
level (without speculation and thus deoptimization), or with a different optimization outcome
that did not emit a deoptimization site. In both cases, the profile for the callee is not updated,
and subsequent recompilations of its inlined code will use an inaccurate profile, resulting in
repeated deoptimizations.

We now illustrate the situations leading to repeated deoptimization for two specific cases:
the UnreachedCode deoptimization in the actors benchmark, and the type-check related
deoptimizations in the scalac benchmark.

3.2.1 Repeated Deoptimizations in the actors Benchmark
The results in Table 4 show that the actors benchmark contains a site which triggers
the UnreachedCode deoptimization 64 times during the first iteration of the benchmark
execution. Figure 1 shows a snippet of code containing this deoptimization site. The await()
method invokes the checkInterruptWhileWaiting(Node) method (line 21), which returns a
value depending on the result of the Thread.interrupted() method.

When compiling the await() method, Graal inlines the invocation of the (small and private)
checkInterruptWhileWaiting(Node) method at the callsite (line 21). The ternary operator used
in the return statement of that method is essentially a conditional branch compiled using
the ifeq7 bytecode, for which the VM collects a branch profile. Because thread interruption

7 Branch if the value on top of the operand stack is zero, i.e., false.

ECOOP 2017

30:14 An Empirical Study on Deoptimization in the Graal Compiler

1 public abstract class AbstractQueuedSynchronizer
2 extends AbstractOwnableSynchronizer implements java.io. Serializable {
3 final boolean isOnSyncQueue (Node node) {
4 if (node. waitStatus == Node. CONDITION || node.prev == null)
5 return false ;
6 ...
7 }
8 public class ConditionObject implements Condition , java.io. Serializable {
9 private int checkInterruptWhileWaiting (Node node) {

10 return Thread . interrupted () ?
11 (transferAfterCancelledWait (node) ? THROW_IE : REINTERRUPT) : 0;
12 }
13
14 public final void await () throws InterruptedException {
15 ...
16 int savedState = fullyRelease (node);
17 int interruptMode = 0;
18 while (! isOnSyncQueue (node)) {
19 LockSupport .park(this);
20 if ((interruptMode = checkInterruptWhileWaiting (node))
21 != 0)
22 break ;
23 }
24 ...
25 }
26 }
27 }

Figure 1 Excerpt from the source code of java.util.concurrent.locks.AbstractQueuedSynchronizer.

happens rarely, it is very likely that all invocations of Thread.interrupted() will return false,
and the branch profile for the ifeq bytecode will tell the compiler that the branch was taken
in 100% of the cases. By default8, Graal removes the code in the (apparently) unreachable
branch, and inserts a guard for the expected result of the Thread.interrupted() method with
a failure path which invokes the InvalidateReprofile deoptimization with UnreachedCode as
the reason.

In the await() method, threads may block in the park() method at line 19, which returns
when a thread is unparked, or when a thread is interrupted. Any thread returning from the
park() method will execute the condition at line 20, including the inlined optimized version
of checkInterruptWhileWaiting(Node). If a thread was interrupted, the Thread.interrupted()
method returns true contrary to the expectation, and causes the thread to trigger a deoptim-
ization. The first thread to trigger the deoptimization will invalidate the compiled code
of the await() method by making it not entrant (execution entering the compiled code will
immediately switch to interpreter), and resume execution in the interpreter.

However, there may be more threads in the same situation, executing the (now invalidated)
compiled code—the 64 repeated deoptimizations in the actors benchmark were caused by
64 different threads triggering the same deoptimization in the same version of the compiled
code. While this kind of repeated deoptimization causes threads to execute in the interpreter,
it only leads to a single recompilation and is relatively harmless. The branch profile for the
ifeq bytecode will be updated during interpreted execution, and taken into account during
recompilation of the await() method.

But the await() method contains another UnreachedCode deoptimization site that is
problematic. In this case, Graal inlines the invocation of the (final) isOnSyncQueue(Node)
method at the callsite (line 18). The null-check in the inlined code uses the ifnonnull bytecode
(line 4), which is a conditional branch. Based on the associated branch profile indicating
100% branch-taken probability, Graal replaces the unreachable branch with a deoptimization
which is triggered if node.prev is null.

8 This can be disabled via -Dgraal.RemoveNeverExecutedCode=false.

Y. Zheng, L. Bulej, and W. Binder 30:15

1 class HashSet [A] extends Set[A]
2 with GenericSetTemplate [A, HashSet] with SetLike [A, HashSet [A]] {
3 protected def elemHashCode (key: A) = if (key == null) 0 else key.##
4 protected def computeHash (key: A) = improve (elemHashCode (key))
5 }

9 // Java pseudo - code for the ## operation
10 int ##() {
11 if (this instanceof Number) {
12 return BoxesRunTime . hashFromNumber (this);
13 } else {
14 return hashCode ();
15 }
16 }

Figure 2 Excerpt from scala.collection.immutable.HashSet.

1 if (key.type == String) {
2 // inlined code of String . hashCode
3 } else {
4 deoptimize (InvalidateReprofile , TypeCheckedInliningViolated ,
5 HashSet . computeHash /* target method */ , 0 /* target bytecode index */
6); // never returns
7 }

Figure 3 Pseudo-code of the Graal-compiled code for the ## operation.

If the deoptimization in the loop header is triggered, the code of the await() method will
be invalidated and the interpreter will resume execution at beginning of the loop (line 18).
The interpreter will then likely invoke the compiled version of the isOnSyncQueue(Node)
method, which contains the same guard and deoptimization derived from the same ifnonnull
branch profile. In the meantime, because the actors benchmark is highly multi-threaded,
another thread may set node.prev to a non-null value. The compiled version of the isOnSync-
Queue(Node) method will then execute normally, without retriggering the deoptimization.
Without that the isOnSyncQueue(Node) method will not be reinterpreted, and the branch
profile for the ifnonnull bytecode will not be updated. When recompiling the await() method,
the compiler will use an inaccurate branch profile and produce the same code that was
previously invalidated. In our experiment, we observed 9 deoptimizations originating at the
same site, but triggered in different versions of the compiled code. This kind of repeated
deoptimizations is more serious, because it causes reprofiling of the await() method (requiring
it to be executed in the interpreter more times) and subsequent recompilation, but does not
improve the situation.

3.2.2 Repeated Deoptimizations in the scalac Benchmark
Another deoptimization anomaly that can be observed in the profiling results concerns
several benchmarks that exhibit the same pattern of repeated deoptimizations, with either
TypeCheckedInliningViolated or OptimizedTypeCheckViolated specified as the reason. This is
also true for the steady-state execution of the scalac benchmark shown in Table 5, which we
now investigate in more detail.

The code containing the deoptimization site is shown in Figure 2. At line 4 the compute-
Hash(Object) method invokes the elemHashCode(Object) method, which in turn invokes the
operation on key. The ## operation is a Scala intrinsic which can be expressed as Java
pseudo-code shown in lines 10–16. For every use of the ## operation, the Scala compiler
directly inlines the corresponding bytecode sequence into the bytecode it produces.

Line 11 produces an instanceof bytecode which checks for the Number class, and is subject
to type-profile-based optimizations in Graal. When compiling the instanceof bytecode into

ECOOP 2017

30:16 An Empirical Study on Deoptimization in the Graal Compiler

machine code, the compiler queries the recorded type profile associated with the particular
bytecode, and generates tests against the profiled types instead of the operand type, and a
failure path which will trigger deoptimization if all the type checks fail.

In our experiment, when compiling the computeHash(Object) method for the first time,
the compiler receives a type profile containing only the String class, and generates machine
code corresponding to the pseudo-code shown in Figure 3. The deoptimization in the else
branch actually transfers execution to the beginning of the computeHash(Object) method,
because the program state is not mutated between the invocation of the elemHashCode(Object)
method and the deoptimization due to the inlined ## operation. When the interpreter
reaches the invocation of the elemHashCode(Object) method again, it will likely find the
method compiled, so the invocation will switch to machine code. However, with the default
tiered compilation strategy, the elemHashCode(Object) method is very likely to be compiled
by the level 1 compiler, which is intended for simple methods. As such, level 1 compilation
does not use profile-directed optimizations for instanceof and the generated code does not
update the profiling information. The compiled version of the elemHashCode(Object) method
will therefore correctly handle the ## operation for all types, but the type profile for the
inlined code of the ## operation will not be updated. When Graal compiles the compute-
Hash(Object) method again, it will inline the elemHashCode(Object) method again, but
the type profile for the instanceof bytecode will still contain only the String class. The
recompiled elemHashCode(Object) method will therefore repeatedly trigger deoptimizations
and recompilations.

Consequently, the anomaly occurs when a deoptimization due to an inlined method
resumes in the caller and invokes a compiled version of the (previously inlined) callee. If the
callee is compiled at level 1, it neither contains profile-directed optimizations nor updates
profiling information. When the caller is recompiled (as it is a hot method) and the callee is
inlined again, the compiler uses the inaccurate type profile for the code in the callee and
generates code that triggers the same deoptimization.

We have also identified a similar problem when Graal devirtualizes method invocations.
A devirtualized callsite uses a number of type checks against types from a callsite’s receiver
profile to invoke concrete methods on specific receiver types, and may trigger deoptimization if
it encounters an unexpected receiver type (unless the callsite is megamorphic, which performs
a virtual method dispatch). The problem occurs if a callsite is devirtualized in the ancestor
of the direct caller of a method, which may happen when the direct caller is inlined. If such
a devirtualized (non-megamorphic) callsite triggers a deoptimization and does not transfer
execution to the direct caller, the receiver type profile used for devirtualization of the callsite
may not be updated if the direct caller also has a standalone compiled version that neither
devirtualizes the callsite (and thus trigger the same deoptimization) nor collects profiling
information. In general, this situation is caused by the weighted inlining mechanism in the
Graal compiler, and the problem would be remedied by either disallowing deoptimization to
cross the direct caller’s method boundary, or by invalidating its compiled code.

4 Alternative Deoptimization Strategies

The deoptimization code produced by Graal mostly invokes the InvalidateReprofile action,
hoping to trade extra work in the short term for a potentially better peak performance in the
long term. Another reason for using this kind of deoptimization is to cope with application
phase changes. These can manifest in the form of completely different execution and type
profiles, rendering the compiled code based on profiles from the previous phase obsolete.

Y. Zheng, L. Bulej, and W. Binder 30:17

Obviously, the compiler cannot tell ahead of time whether the actual benefits will outweigh
the costs. However, as long as the costs are not excessive, they will be amortized in the long
term even without huge performance gains.

With this strategy, the worst-case scenario for long-term performance is the occurrence of
rare cases that trigger deoptimization. In this case, the ensuing reprofiling and recompilation
will not provide a long-term benefit, but instead cause short-term performance degradation.
Worse, during recompilation, the rare case may cause the compiler to abandon speculative
optimizations that have worked well before the rare case occurred.

The solution is to introduce some tolerance for rare cases, delaying deoptimizations until
the supposedly rare cases become more frequent. This notion is supported by the HotSpot
runtime, as the presence of the action_maybe_recompile deoptimization action suggests.
However, Graal does not use its own corresponding action (RecompileIfTooManyDeopts) in the
deoptimization code it emits. Presumably, this is because Graal speculates aggressively and
the Graal developers do not want to delay recompilation if the program violates optimization
assumptions. In addition, because Graal focuses on achieving high peak performance, the
cost associated with eager deoptimizations should be amortized in the longer run.

Because the effect of this approach on performance has not been previously studied, we
modify Graal to support two additional strategies for handling deoptimizations and compare
the performance achieved with the alternative strategies to the default strategy used by
Graal. Unlike the default strategy, which always invokes the InvalidateReprofile action, the
alternative strategies differ in the degree of tolerance for rare cases.

4.1 Conservative Deoptimization Strategy
The first strategy, referred to as conservative, replaces the use of the InvalidateReprofile action
with the RecompileIfTooManyDeopts. This strategy relies on the existing mechanisms in the
HotSpot runtime to determine when to invalidate the compiled code and when to reinterpret
(and possibly reprofile) it. The runtime keeps an execution profile for each method, including
information about deoptimizations. The deoptimization profile consists of a counter for each
deoptimization reason as well as a recompilation counter. It also stores limited information
associated with deoptimization targets (referred to as traps), i.e., the bytecode instructions
at which the interpreter resumes execution after deoptimization. The per-trap information
is keyed to the bytecode index of the target instruction in the target method, and stores
the reasons9 for which the trap was targeted, and whether the method code was invalidated
and recompiled due to this trap. The deoptimization reasons are split into two categories
considered separately. The first category, referred to as per-method, represents reasons that
are only considered at the method level, while the second category, referred to as per-bytecode,
represents reasons that are only considered at the bytecode level.

When a deoptimization is triggered, the HotSpot runtime uses the method profile to
make the following decisions: (1a) if the deoptimization reason belongs to the per-bytecode
category, was previously observed at this trap, and the deoptimization count (taken from the
method-level profile) for that reason exceeds a per-bytecode threshold10, the compiled code is
invalidated; (1b) if the deoptimization reason belongs to the per-method category and the
deoptimization count for that reason exceeds a per-method threshold11, the compiled code

9 To limit memory consumption, only one precise reason can be stored, otherwise the profile just indicates
that there is more than one reason.

10 -XX:PerBytecodeTrapLimit, defaults to 4.
11 -XX:PerMethodTrapLimit, defaults to 100.

ECOOP 2017

30:18 An Empirical Study on Deoptimization in the Graal Compiler

is invalidated; (2) for compiled code that is to be invalidated, if the per-trap information
shows that the code has been previously recompiled for the same per-bytecode reason, or if
the recompilation counter is greater than 0 for other reasons, the runtime resets the method
execution and back-edge counters to facilitate reprofiling; (3) if the recompilation counter
for a per-bytecode reason exceeds a per-bytecode threshold12, or a per-method threshold13 for
per-method reasons, the deoptimizing method is made not compilable.

The per-trap information is inherently approximate. For example, it does not distinguish
between two deoptimization sites sharing the same deoptimization target. But when Graal is
enabled, it makes it even more approximate. While the trap bytecode index always refers to
the instruction in the bytecode of the target method, updates to the per-trap information are
stored in the profile of the method in which a deoptimization occurred (not the deoptimization
target, as in the case of HotSpot without Graal). A deoptimization triggered by an inlined
method will therefore update the per-trap information of the compilation root using an index
associated with the bytecode in the target method. This is presumably to avoid spurious
invalidation of the compiled code of methods that were inlined with speculative optimizations.
However, if several methods inlined in the same compilation root contain a trap instruction,
they may share the same slot in the per-trap profile of the compilation root. In addition, due
to Graal’s aggressive inlining, the deoptimization target may cross method boundaries—a
deoptimization from an inlined method may target the returning bytecode of the previous
callsite in the caller.

4.2 Adaptive Deoptimization Strategy
The second strategy, referred to as adaptive, uses a custom deoptimization profile to choose
a deoptimization action both during dynamic compilation and during program execution.
Unlike the HotSpot runtime or Graal (c.f. Section 4.1), we simply associate a deoptimization
counter with each deoptimization site ID (c.f. Section 3), but disregard the stack trace for
inlined methods. This means that methods inlined in different compilation roots will update
the same deoptimization counters.

During compilation, whenever Graal intends to emit the InvalidateReprofile deoptimiza-
tion at a particular site, we check the value of the counter corresponding to that site, and
emit the default deoptimization code (invoking InvalidateReprofile) if the value is between
two thresholds, deoptsTolerated (exclusive, defaults to 1) and deoptsAllowed (inclusive, de-
faults to 100). If the counter exceeds the deoptsAllowed threshold, too many deoptimiza-
tions have been triggered at that particular site, and we instead emit code to invoke the
InvalidateStopCompiling deoptimization. If the method containing the deoptimization site
is being inlined, we mark the method as non-inlineable and emit the InvalidateRecompile
deoptimization in the inlined code. Consequently, the method is inlined one last time in
the compilation root being compiled, but will not be inlined in future recompilations of
any method. If the counter does not exceed the deoptsTolerated threshold, the number of
deoptimizations triggered at the site is considered tolerable, and we emit code that chooses
between the None and InvalidateReprofile deoptimization actions at runtime. When such a
deoptimization site is reached and the corresponding deoptimization counter still does not
exceed the deoptsTolerated threshold, the deoptimization just switches to the interpreter and
keeps the compiled code as-is (the None action). Otherwise the deoptimization invalidates

12 -XX:PerBytecodeRecompilationCutoff, defaults to 200.
13 -XX:PerMethodRecompilationCutoff, defaults to 400.

Y. Zheng, L. Bulej, and W. Binder 30:19

the code and resets the hotness counters of the corresponding method to force reprofiling
(the InvalidateReprofile action).

To avoid using a stale deoptimization profile during application phase changes, the counters
for deoptimization sites involved in a particular compilation are aged in each compilation.
Alternatively, we provide an option to age the deoptimization profile periodically, which
allows tolerating deoptimizations based on rates, instead of absolute numbers.

5 Performance Evaluation

We now evaluate performance of the two additional strategies and compare them to the
default strategy used by Graal. Using the same set of benchmarks and the same hardware
platform as presented in Section 3, we evaluate the deoptimization strategies with a varying
number of CPU cores available to the JVM. To minimize interference due to compilation of
Graal classes, we enable bootstrapping of Graal14 at JVM startup.

Because the DaCapo and ScalaBench benchmark suites are similar (ScalaBench uses
the DaCapo benchmarking harness), we present the results for these two benchmark suites
separately from the results for the Octane benchmarks on Graal.js, which are not directly
comparable to the results from the other two suites. We also subject the results from the
DaCapo and ScalaBench benchmark suites to more extensive evaluation, whereas the results
for the Octane benchmarks are meant to illustrate the indirect impact of deoptimization
strategies on the performance of the hosted language (JavaScript).

5.1 DaCapo and ScalaBench Evaluation
To evaluate the impact of the deoptimization strategies on the performance of the benchmarks
from the DaCapo and ScalaBench benchmark suites, we collect15 the following performance
metrics: (1) startup time, i.e., the wall-clock time for the execution of the first benchmark
iteration, (2) steady-state execution time, i.e., the wall-clock time for the execution of the
last benchmark iteration, and (3) compilation time in each iteration, i.e., CPU time spent in
compiler threads during benchmark iteration.

To present the results, we plot the speed-up factor of each benchmark against the baseline,
as well as the geometric mean of speed-up factors for all benchmarks to illustrate the overall
effect. When discussing average performance, we also report the range of speed-up factors
for individual benchmarks contributing to the particular geometric mean.

5.1.1 Choosing the Baseline
The choice of the baseline for evaluating the performance of the alternative deoptimization
strategies in Graal deserves a justification. Because changes were made to the original Graal
implementation, using HotSpot with Graal in place of the server compiler is our default
choice. However, the production configuration of the HotSpot JVM still uses the C2 server
compiler in the last compilation tier, which makes C2 a candidate for a performance baseline.
Moreover, reporting changes against a well-known HotSpot configuration can help assessing
the relevance of the presented changes.

A problem could arise if the Graal baseline was significantly slower than C2. Any per-
formance improvements would be reported against a slow baseline, but the peak performance

14Enabled by the -XX:+BootstrapJVMCI option.
15Data from 10 benchmark runs, each benchmark executed for at least 10 iterations and 10 seconds.

ECOOP 2017

30:20 An Empirical Study on Deoptimization in the Graal Compiler

1 2 4 8 160.6

0.8

1

1.2

1.4

1.6

1.8

2

scalac
lusearch

scalatest

scalap

lusearch

factorie

scalatest
scalap

lusearch

xalan

factorie

scalap

factorie
xalan
luseach

tradesoap

scalap

factorie

lusearch

scalap

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(a) Startup

1 2 4 8 160.6

0.8

1

1.2

1.4

1.6

1.8

2
scalariform
scalaxb

factorie

scaladoc

factorie
scalaxb

jython

factorie

sunflow

apparat

factorie

sunflow

apparat

factorie

sunflow

apparat

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(b) Steady-state

Figure 4 Startup and steady-state performance of the DaCapo and ScalaBench benchmarks on
Graal, with C2 as the baseline. Black circles indicate the speed-up factor of individual benchmarks
(ratio of mean execution time on Graal and C2). Value greater than 1 means that Graal outperforms
C2. Red points represent the geometric mean of speed-up factors across all bechmarks. The line
connecting the geometric means is intended only as a visual aid.

might not reach or exceed that of C2. To resolve this tension, we evaluate the relative
performance of the two potential baselines, C2 and Graal, using the same benchmarks that
will be used to evaluate the alternative deoptimization strategies.

The results of this comparison for different number of cores available to the JVM are
shown in Figure 4. The plot of startup performance (Figure 4a) shows that on average, the
Graal baseline outperforms the C2 baseline. We attribute this to the fact that we enable
bootstrapping of the Graal compiler, which may also precompile frequently executed methods
from the Java class library in addition to methods from the Graal compiler itself.

On the other hand, the plot of steady state performance (Figure 4b) shows that on
average, the Graal baseline becomes slightly slower (2.1% in the worst case for 4 cores, with
an average speed-up factor of 0.979 and individual speed-up factors from 0.824 to 1.364) than
C2 as more CPU cores are made available to the JVM. The single-core case is an exception
in which Graal outperforms C2 by 9% (average speed-up factor of 1.090, individual speed-up
factors from 0.888 to 1.913).

In summary, Graal is a competitive compiler for our workload and this experiment
validates our choice of Graal as the baseline.

5.1.2 Start-up Performance

The result of evaluating the startup and steady-state performance of the alternative deoptim-
ization strategies is presented in Figure 5. The default deoptimization strategy used in Graal
represents the baseline. Figure 5a shows that in the single-core case the conservative strategy
is on average 1.8% slower than the baseline (average speed-up factor of 0.982, individual
speed-up factors from 0.941 to 1.190). As the number of CPU cores increases, the single-core
slowdown becomes a slight speed-up for 16 cores. The conservative strategy apparently
causes more compilation work and more cores allow it to hide the compilation latency. While
tolerating some deoptimizations may provide a slight performance benefit, in this case it is
completely outweighed by the extra compilation work.

In contrast, Figure 5c shows that the adaptive strategy is on average 6.4% faster in
the single-core case (average speed-up factor of 1.064, individual speed-up factors from

Y. Zheng, L. Bulej, and W. Binder 30:21

1 2 4 8 160.8

0.9

1

1.1

1.2

tradebeans

factorie

apparat

luindex

kiama
scalap

scalac

scalap

factorie

apparat

sunflow

Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(a) Conservative Startup

1 2 4 8 160.8

0.9

1

1.1

1.2

scalac
kiama

avrora

factorie
fop

scalac
tmt

factorie

scalaxb

scalatest

actors

scaladoc
scalaxb

factorie

actors

scalaxb
factorie

actors

factorie

scalaxb

Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(b) Conservative Steady-state

1 2 4 8 160.9

1

1.1

1.2

1.3 luindex

apparat
fop

scalac
h2

avrora

sunflow
jython
factorie

luindex
fop
apparat
scaladoc

pmd

tmt

scalatest
luindex

kiama

tmt
factorie

luindex
apparat

scalac

h2
sunflow

luindex

apparat

scalac

tmt
sunflow

Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(c) Adaptive Startup

1 2 4 8 160.9

1

1.1

1.2

1.3

apparat

scalac

fop

batik

specs
scalaxb

tmt

scalac
apparat

factorie
scalaxb

apparat

scalatest
lusearch

tmt
scalaxb

apparat

tradebeans

scalaxb

apparat

factorie
scalaxb

Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(d) Adaptive Steady-state

Figure 5 Startup and steady-state performance of the alternative deoptimization strategies when
executing the DaCapo and ScalaBench benchmarks. Black circles indicate the speed-up factor of
individual benchmarks against the default Graal baseline. Red points represent the geometric mean
of speed-up factors across all bechmarks. The line connecting the geometric means is intended only
as a visual aid.

0.630 to 1.451), and remains on average slightly faster. The adaptive strategy causes less
compilation work, improving startup performance on average, but the benefit diminishes
with the increasing number of available CPU cores, because the (baseline) default strategy
can hide some of its compilation latency.

The two alternative strategies differ mainly in the level of tolerance for deoptimizations,
the accuracy of the deoptimization profile used to make decisions, and the deoptimization
actions taken. The conservative strategy actually makes the compiler less sensitive to changes
in profiling information during startup. On the one hand, the RecompileIfTooManyDeopts
deoptimization used by the conservative strategy delays recompilation, but on the other
hand it causes methods to be recompiled without being thoroughly reprofiled. Recall also
that unlike the adaptive strategy, the conservative strategy associates deoptimization profile
with the target of a deoptimization, not its origin. This impairs the ability to tolerate
rare deoptimizations but deal with deoptimizations that are repeatedly triggered at the
same deoptimization site. Due to inlining, the code triggering the deoptimizations may be
duplicated in different methods and target different deoptimization traps, spreading the
information about a single deoptimization site among different profiles.

ECOOP 2017

30:22 An Empirical Study on Deoptimization in the Graal Compiler

The effect of tolerating deoptimizations is clearly workload dependent, and the results
show a few interesting cases. The luindex benchmark clearly benefits from the adaptive
strategy, as it exhibits a speed-up factor of 1.289 in the single-core case, and a speed-up
factor of at least 1.083 throughout the experiment. Interestingly, it does not benefit from the
conservative strategy, exhibiting a slow-down (speed-up factor of 0.965) in the single-core
case, even though the compilation times for both strategies are similar.

In contrast to luindex, the factorie benchmark does not benefit from either of the strategies,
exhibiting slowdowns (speed-up factors from 0.928 to 0.996) throughout the experiment.
Further investigation shows that the slowdown results from an increased number of deoptim-
izations which may result in more time spent in the interpreter.

5.1.3 Steady-state Performance
The plots in Figure 5b and Figure 5d show the steady-state performance of both strategies.
Even though the results for individual benchmarks differ slightly, on average the steady-state
performance of the conservative strategy does not really differ from the baseline. In the
case of the adaptive strategy, the overall speed-up factor remains slightly below 1 as the
number of CPU cores increases. We attribute this to the fact that unlike the conservative
strategy, which is supported by the HotSpot runtime and attempts to store all profiling
data efficiently, the implementation of the adaptive strategy is far from optimized. It uses
more memory to store profiling data, and emits conditional code and a volatile memory
access at deoptimization sites that select deoptimization action at runtime. We expect this
to impact performance, especially given the memory barriers associated with the volatile
memory access and the increasing number of CPU cores.

For some benchmarks, the increased tolerance to deoptimizations provided by both
strategies is beneficial even during steady-state execution. The scalac benchmark benefits
from both strategies in single-core and dual-core configurations, exhibiting a performance
improvement of 9.4% (single-core) and 5% (dual-core) with the adaptive strategy, and 11.6%
(single-core) and 4.4% (dual-core) with the conservative strategy. The apparat benchmark
benefits from the adaptive strategy even in 4-core and 8-core configurations, which we
attribute to the aging of the deoptimization profile. On the other hand, benchmarks such as
tmt exhibit an average 4% slow-down in steady-state performance for all core configurations.
Short-running benchmarks (less than 300ms) such as fop and scalaxb have a tendency to
amplify speed-ups and slow-downs, so they appear as outliers in the plots.

5.1.4 Overall Execution and Compilation Time
Figure 6 shows the amount of execution time saved for the 24 benchmarks from the DaCapo
and ScalaBench suites together in a single-core configuration. When considering the total
execution time, the execution time of each benchmark provides a weight to its respective
speed-up or slow-down. With the adaptive strategy, the first iteration of all benchmarks
finishes 17.7 seconds earlier than with the default strategy (which required 337 seconds
in total), resulting in a speed-up factor of 1.053. With the conservative strategy, the first
iteration takes 6 seconds longer than with the default strategy, resulting in a speed-up
factor of 0.982. Note that these speed-up factors implicitly weigh the speed-up achieved for
individual benchmarks by the execution time of each benchmark, giving a more conservative
estimate than the geometric mean of speed-up factors, which treats all benchmarks with
equal weight. The improvement observable with the adaptive strategy diminishes with the
increasing number of available CPU cores, but the adaptive strategy still manages to save
some time on each iteration, which would accumulate in the long run. Considering the

Y. Zheng, L. Bulej, and W. Binder 30:23

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

Benchmark Iteration

Sa
ve
d
T
im

e
(s
)

conservative adaptive

Figure 6 Total saved execution time for the selected 24 DaCapo and ScalaBench benchmarks in
single-core setup. Negative values represent a slowdown.

1 2 4 8 160

50

100

150

200

Available Cores

C
P
U

T
im

e
(s
)

baselineUnique conservativeUnique adaptiveUnique

baselineRecomp conservativeRecomp adaptiveRecomp

(a) 1st Iteration

1 2 4 8 160

20

40

60

Available Cores

C
P
U

T
im

e
(s
)

(b) 2nd Iteration

1 2 4 8 160

2

4

6

8

Available Cores

C
P
U

T
im

e
(s
)

(c) 10th Iteration

Figure 7 The total CPU time spent compiling (+) and recompiling () when executing the
24 selected DaCapo and ScalaBench benchmarks.

overall execution time shows that the adaptive strategy does not necessarily hurt steady-state
performance, as the results discussed in Section 5.1.3 may suggest.

Even though there are benefits in avoiding repeated deoptimizations, the influence of the
increasing number of CPU cores on the performance results suggests that the differences in
performance can be mostly attributed to compilation. To support this observation, Figure 7
provides a summary of the compilation log for all strategies. The data shows that indeed
the adaptive strategy saves approximately 8% in the total compilation time compared to
the default strategy in the first iteration of the single-core scenario, which benefits the most.
The alternative strategy mostly saves time in all scenarios, but the impact on total execution
time diminishes with increased number of cores available, and in steady-state execution. In
contrast, the conservative strategy is apparently not a good fit for the first iteration, because
it creates more compilation work. It saves some compilation time in later iterations, but too
little too late.

ECOOP 2017

30:24 An Empirical Study on Deoptimization in the Graal Compiler

1 2 3 4 5 6 7 8 16

1

2

3

4

5

6

deoptsTolerated

#
be

nc
hm

ar
ks

20

40

60

80

100

1.064 1.071
1.076 1.077

1.085
1.086

1.089 1.090

1.091

%
be

nc
hm

ar
ks

Figure 8 Theoretical speed-up with optimal values of deoptsTolerated for each of the 24 selected
DaCapo and ScalaBench benchmarks. The bars represent the number of benchmarks for which the
value was optimal. The line connecting the blue points represents the cumulative percentage of
benchmarks for which the optimal threshold does not exceed the corresponding value. Associated
with each blue point is the overall speed-up factor that would be achieved if we managed to choose
an optimal threshold for each benchmark not exceeding the corresponding value.

5.1.5 Tolerance for Deoptimizations in the Adaptive Strategy
The tolerance of the adaptive strategy to deoptimizations can be adjusted by changing the
deoptsTolerated and deoptsAllowed thresholds (c.f. Section 4.2). The results presented so
far were obtained with the default values, but we are interested in how different levels of
tolerance to deoptimizations impact performance of the strategy. Because the strategy had
the most effect on the 1st benchmark iteration in the single-core configuration, we evaluated
the performance of the adaptive strategy with the deoptsTolerated threshold set to 1–8, and
16. We analyzed the speed-up factors of individual benchmarks for all tested values of the
deoptsTolerated threshold, and selected the threshold value resulting in maximal speed-up
factor as optimal for each benchmark.

The tolerance to deoptimizations, and thus the value of the deoptsTolerated threshold, is
clearly a property of a particular workload and represents a tuning parameter. If we were
able to (quickly) determine the appropriate threshold based on the character of the workload
being executed, the parameter could be adjusted in response to program behavior. To gauge
the potential for improvement, Figure 8 shows the theoretical speed-up factor that could be
achieved, if we managed to find the optimal deoptsTolerated threshold (within a given limit)
for each benchmark. The plot shows that searching for an optimal threshold in the range of
1–5 would provide an optimal value for approximately 50% of benchmarks (given the upper
bound of 16), and yield a speed-up factor of 1.085.

5.2 Octane on Graal.js Evaluation
To evaluate the performance of the Octane benchmarks running on Graal.js, we use the
benchmarking harness for the Octane suite provided in the GraalVM binary release16. The
harness uses benchmark-specific warm-up times ranging from 15 to 120 seconds, and a
common steady-state period of 10 seconds. When finished executing a benchmark, the

16 http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads/index.html

Y. Zheng, L. Bulej, and W. Binder 30:25

1 2 4 8 160.8

0.9

1

1.1

1.2

1.3
Crypto

DeltaBlue

Splay

zlib

Gameboy

Splay

Typescript

DeltaBlue

Box2D
RayTrace

Splay
Mandreel

zlib

Crypto
zlib

Typescript

Crypto

CodeLoad

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(a) Conservative Warm-up

1 2 4 8 160.8

0.9

1

1.1

1.2

1.3

CodeLoad
zlib

Splay
DeltaBlue

Crypto

Box2D
RegExp
Crypto

Typescript

Splay

Richards

Splay

CodeLoad

CodeLoad

Splay

Gameboy

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(b) Conservative Steady-state

1 2 4 8 160.8

0.9

1

1.1

1.2

1.3
Crypto

RayTrace

DeltaBlue
Gameboy

Richards

Splay

CodeLoad

zlib

RayTrace

Splay

Mandreel

Typescript

zlib

Crypto

Splay

Box2D

Typescript

Splay

Box2D

zlib

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(c) Adaptive Warm-up

1 2 4 8 160.8

0.9

1

1.1

1.2

1.3

CodeLoad

Gameboy

RegExp

Box2D

Crypto

Typescript

CodeLoad

Splay

Crypto

Typescript

CodeLoad

Splay

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(d) Adaptive Steady-state

Figure 9 Warm-up and steady-state performance of the alternative deoptimization strategies
when executing the Octane benchmarks on Graal.js. Black circles represent the speed-up factor of
individual benchmarks against the default Graal baseline. Red points represent the geometric mean
of speed-up factors across all benchmarks. The line connecting the geometric means is intended only
as a visual aid.

harness reports per-iteration execution times achieved during the warm-up and steady-state
periods. We collect the per-iteration execution times for both phases and report the speed-up
factors w.r.t. the default deoptimization strategy. Because the warm-up and steady-state
phases are defined differently for the Octane suite than for the DaCapo and ScalaBench
suites, we report the speed-up factors separately.

The plots in Figure 9a and Figure 9c show the warm-up performance of Octane benchmarks
running on Graal.js with the conservative strategy and the adaptive strategy, respectively.
We again show the speed-up factors for the individual benchmarks and the overall speed-up
factor calculated as a geometric mean of the individual speed-up factors. In the single core
case, both alternative deoptimization strategies achieve better warm-up performance than
the default strategy. On average, the conservative strategy is approximately 3.5% faster
(average speed-up factor of 1.035, individual speed-up factors from 0.931 to 1.255) and the
adaptive strategy is approximately 5.1% faster (average speed-up factor of 1.051, individual
speed-up factors from 0.989 to 1.253) than the default strategy.

The results indicate that the JavaScript runtime implemented using the Truffle framework
generally benefits from tolerating deoptimizations during startup due to the reduction of
the compilation work. This is potentially beneficial for JavaScript workloads that mostly

ECOOP 2017

30:26 An Empirical Study on Deoptimization in the Graal Compiler

c2/g1gc c2/noinline c2/notiered c2/graal graal/nospec
0

1

2

3

lusearch
specs
tradesoap
factorie

scalac
scaladoc

fopscalariform

tradebeans

apparat

tmt
factorie

scalac
scaladoc
specs

factorie

pmd

scalac

scalatest
scalap

scalap
scalatest

apparat
factorie

VM Configuration

Sp
ee
du

p
Fa

ct
or

(a) Startup (1-core)

c2/g1gc c2/noinline c2/notiered c2/graal graal/nospec
0

1

2

3

scalariform

tradesoap
factorie

scalatest

tmtfactorie

jython
scalariform
scalaxb
scalac

fop
scalap

scalariform
scalaxb

factorie
scalac

specs

scalatest
tradebeans
scalaxb

VM Configuration

Sp
ee
du

p
Fa

ct
or

(b) Steady-state (1-core)

Figure 10 Startup and steady-state performance of different VM configurations executing the
DaCapo and ScalaBench benchmarks. Black circles represent speed-up factor against the respective
baseline, red points represent geometric mean of speed-up factors across all benchmarks.

execute code once, instead of repeatedly. However, similarly to the DaCapo and ScalaBench
benchmarks, the benefit diminishes as the number of available CPU cores increases. Even
though JavaScript is a single-threaded language, the runtime may use additional CPU cores
to hide compilation latency.

Finally the plots in Figure 9b and Figure 9d show the steady-state performance of Octane
benchmarks with the conservative and adaptive strategies, respectively. Neither of them
deviates from the performance of the default strategy in a significant way.

5.3 On the Scale of Performance Changes

The results of performance evaluation indicate that on average the adaptive deoptimization
strategy provides moderate improvements to startup performance in a single-core scenario.
As the number of cores and benchmark runtime increases, the effect wears off, until it
disappears. Because the improvement is moderate, it is difficult to assess how it fits the
overall picture. In his 1974 paper, Knuth notes that in established engineering disciplines,
12% improvement, easily obtained, is never considered marginal [13]. The improvements
obtained here are roughly half of that, but still rather easily obtained, given the complexity
of the other parts of the VM.

Arguably, the execution time aspect of the improvement diminishes with more CPU cores
available to the JVM, but the computation saved remains. To provide a frame of reference,
we evaluate the single-core performance of five different configurations of the HotSpot VM
and compare it with their respective baselines. Two of the configuration changes swap entire
VM subsystems, while three other changes alter the behavior of the dynamic compiler.

Y. Zheng, L. Bulej, and W. Binder 30:27

The first baseline is the default configuration of HotSpot with C2 as the top tier-compiler
to which we compare the following configurations:

g1gc Replaces the default garbage collector in HotSpot with the Garbage First (G1) garbage
collector.

noinline Disables inlining in C2.
notiered Disables tiered compilation in HotSpot, i.e., disables C1 compiler.

graal Replaces the C2 server compiler with Graal.
The second baseline is the default configuration of HotSpot with Graal as the top-tier

compiler to which we compare the following configuration:
nospec Disables the majority of speculative optimizations relying on deoptimization in Graal,

providing a rough estimate of performance gains enabled by deoptimization.
The results of the evaluation are shown in Figure 10. The subfigures correspond to startup

(Figure 10a) and steady state (Figure 10b) performance, each showing average performance of
the first four configurations compared to the C2 baseline, followed by the fifth configuration
compared to the Graal baseline.

In a single-core setting, the change of the GC algorithm caused a 10.4% degradation
in startup performance, and a 12.9% degradation in steady-state performance of the g1gc
configuration. We are aware that this results from different mode of operation of the G1
collector, which is typically recommended for heaps exceeding 6 GB. However, it illustrates
the kind of performance impact a careless swap of a GC may have in a particular scenario.

The noinline and nospec configurations reduce the amount of compilation work, either
due to avoiding redundant compilation of methods that could have been inlined, or due to
compiling immediately using the top-tier compiler. Consequently, we observe a significantly
better startup performance in the single-core scenario—29.4% improvement due to disabled
inlining, and 12.6% due to disabled tiered compilation. In steady state, disabled tiered
compilation retains a 7.4% performance improvement, but disabled inlining changes the
situation dramatically. Because inlining is a critical optimization that increases optimization
scope and effectively enables inter-procedural optimization, disabling inlining causes a 40%
degradation in steady-state performance.

The graal configuration illustrates the effect of replacing C2 with Graal as the top-tier
compiler. This situation is investigated more closely in Section 5.1.1, here we just note a 14.4%
improvement in startup performance, and 9% improvement in steady-state performance.

Finally, the nospec configuration illustrates the effect of disabling various speculative
optimizations in the Graal compiler. These include elimination of unreached branches,
heuristic inlining, speculative instanceof test, elimination of unreached exception handlers,
and elimination of safepoints within a loop. On average, this change appears to have neutral
impact on startup performance, but has a significant impact later, resulting in a 26.1%
degradation in steady-state performance.

This suggests that the above speculative optimizations pay off in the long term, but do
not provide much benefit at startup. The adaptive strategy complements this by providing a
moderate improvement in startup performance without adversely affecting performance in
the long term.

6 Conclusion

Deoptimization is a key fallback mechanism for implementing speculative optimizations in
modern dynamic compilers. While the existing literature covers the implementation aspects
of deoptimization in great depth, the actual use of deoptimizations in compiled code has not
been previously studied.

ECOOP 2017

30:28 An Empirical Study on Deoptimization in the Graal Compiler

We present a study of deoptimization behavior in benchmarks executing on a Graal-
enabled HotSpot VM. We profile deoptimization sites in the code produced by the Graal
compiler, and provide a qualitative and quantitative analysis of deoptimization causes in
benchmark suites such as DaCapo, ScalaBench, and Octane, which provide workloads derived
from real applications and libraries written in Java, Python, Scala, and JavaScript. We
show that only a small fraction of deoptimization sites actually trigger deoptimizations at
runtime, and that most of the deoptimizations actually triggered in Graal-compiled code
unconditionally invalidate and reprofile the method which caused a deoptimization.

To gain insight on the trade-offs made by Graal in its default deoptimization strategy,
we modify Graal to add support for two alternative deoptimization strategies and evaluate
benchmark performance using the three strategies. We show that by avoiding the conservative
strategy provided by the HotSpot VM runtime, Graal gains better startup performance.
However, we also show that certain tolerance to deoptimizations can provide performance
benefits, if used with a precise deoptimization profile. The adaptive strategy, which switches
among various deoptimization actions based on a precise deoptimization profile, manages to
reduce the amount of method recompilations and eliminate certain repetitive deoptimizations.
As a result, on a single-core system, it improves the average start-up performance by 6.4% in
the DaCapo and ScalaBench benchmarks, and by 5.1% in the Octane benchmarks.

Finally, we show that tolerance to deoptimizations is a workload-specific parameter, and
that finding correlation between some workload characteristics and the appropriate level of
tolerance to deoptimizations can potentially provide additional performance benefits.

Acknowledgements. We thank Jan Vitek, Olga Vitek, Petr Tůma, and the anonymous
ECOOP reviewers for their suggestions on how to improve the paper. We also thank Tom
Rodriguez, Doug Simon, Gilles Duboscq and Thomas Würthinger for their support with the
HotSpot VM and the Graal compiler.

References
1 Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F. Sweeney. A

Survey of Adaptive Optimization in Virtual Machines. Proceedings of the IEEE, 93(2):449–
466, 2005.

2 Matthew Arnold, Michael Hind, and Barbara G. Ryder. Online Feedback-directed Optimiz-
ation of Java. In Proc. 17th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA 2002, pages 111–129. ACM, 2002.

3 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In
Proc. ACM SIGPLAN International Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA 2006, pages 169–190. ACM, 2006.

4 Dries Buytaert, Andy Georges, Michael Hind, Matthew Arnold, Lieven Eeckhout, and
Koen De Bosschere. Using Hpm-sampling to Drive Dynamic Compilation. In Proc. 22nd
ACM SIGPLAN Conference on Object-oriented Programming, Systems and Applications,
OOPSLA 2007, pages 553–568. ACM, 2007.

5 Craig Chambers and David Ungar. Making pure object-oriented languages practical. In
Proc. ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA 1991, pages 1–15. ACM, 1991.

Y. Zheng, L. Bulej, and W. Binder 30:29

6 L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80
System. In Proc. 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1984, pages 297–302. ACM, 1984.

7 S. J. Fink and Feng Qian. Design, Implementation and Evaluation of Adaptive Recompila-
tion with On-stack Replacement. In Proc. IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 2003, pages 241–252. IEEE Computer Society, March
2003.

8 Google. Octane 2.0 JavaScript Benchmark. https://developers.google.com/octane/.
9 Dayong Gu and Clark Verbrugge. Phase-based Adaptive Recompilation in a JVM. In Proc.

6th IEEE/ACM International Symposium on Code Generation and Optimization, CGO
2008, pages 24–34. ACM, 2008.

10 Urs Hölzle, Craig Chambers, and David Ungar. Debugging Optimized Code with Dynamic
Deoptimization. In Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 1992, pages 32–43. ACM, 1992.

11 Urs Hölzle and David Ungar. Reconciling Responsiveness with Performance in Pure Object-
oriented Languages. ACM Trans. Program. Lang. Syst., 18(4):355–400, July 1996.

12 Madhukar N. Kedlaya, Behnam Robatmili, Cġlin Caşcaval, and Ben Hardekopf. De-
optimization for Dynamic Language JITs on Typed, Stack-based Virtual Machines. In
Proc. 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments, VEE 2014, pages 103–114. ACM, 2014.

13 Donald E. Knuth. Structured Programming with Go to Statements. ACM Comput. Surv.,
6(4):261–301, December 1974.

14 Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez, Ken-
neth Russell, and David Cox. Design of the Java HotSpot™ Client Compiler for Java 6.
ACM Trans. Archit. Code Optim., 5(1):7:1–7:32, May 2008.

15 Chandra J. Krintz, David Grove, Vivek Sarkar, and Brad Calder. Reducing the Overhead
of Dynamic Compilation. Software: Practice and Experience, 31(8):717–738, 2001.

16 Prasad Kulkarni, Matthew Arnold, and Michael Hind. Dynamic Compilation: The Benefits
of Early Investing. In Proc. 3rd International Conference on Virtual Execution Environ-
ments, VEE 2007, pages 94–104. ACM, 2007.

17 Prasad A. Kulkarni. JIT Compilation Policy for Modern Machines. In Proc. ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2011, pages 773–788. ACM, 2011.

18 Oracle. Graal project. http://openjdk.java.net/projects/graal/.
19 Michael Paleczny, Christopher Vick, and Cliff Click. The Java HotSpot™ Server Com-

piler. In Proc. Symposium on Java Virtual Machine Research and Technology Symposium
- Volume 1, JVM 2001, pages 1–1. USENIX Association, 2001.

20 Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da Capo con Scala:
Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine. In Proc.
ACM International Conference on Object Oriented Programming, Systems, Languages and
Applications, OOPSLA 2011, pages 657–676. ACM, 2011.

21 Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, and Toshio Na-
katani. Design and Evaluation of Dynamic Optimizations for a Java Just-in-time Compiler.
ACM Trans. Program. Lang. Syst., 27(4):732–785, July 2005.

22 John Whaley. Partial Method Compilation Using Dynamic Profile Information. In Proc.
16th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA 2001, pages 166–179. ACM, 2001.

23 Christian Wimmer, Vojin Jovanovic, Erik Eckstein, and Thomas Würthinger. One Com-
piler: Deoptimization to Optimized Code. In Proc. 26th International Conference on Com-
piler Construction, CC 2017, pages 55–64. ACM, 2017.

ECOOP 2017

https://developers.google.com/octane/
http://openjdk.java.net/projects/graal/

30:30 An Empirical Study on Deoptimization in the Graal Compiler

24 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to Rule
Them All. In Proc. ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, Onward! 2013, pages 187–204. ACM, 2013.

25 Toshiaki Yasue, Toshio Suganuma, Hideaki Komatsu, and Toshio Nakatani. An Efficient
Online Path Profiling Framework for Java Just-In-Time Compilers. In Proc. 12th Inter-
national Conference on Parallel Architectures and Compilation Techniques, PACT 2003,
pages 148–158. IEEE Computer Society, 2003.

26 Yudi Zheng, Lubomír Bulej, and Walter Binder. Accurate Profiling in the Presence of Dy-
namic Compilation. In Proc. ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, pages 433–450. ACM,
2015.

	Introduction
	Related Work and Background
	Speculation and Deoptimization
	Deoptimization in the Graal Compiler

	Study of Deoptimization Behavior
	Profiling Deoptimizations
	Deoptimizations Sites Emitted
	Deoptimization Sites Triggered
	Deoptimizations Triggered Repeatedly
	Deoptimizations per Iteration

	Investigating Repeated Deoptimizations
	Repeated Deoptimizations in the actors Benchmark
	Repeated Deoptimizations in the scalac Benchmark

	Alternative Deoptimization Strategies
	Conservative Deoptimization Strategy
	Adaptive Deoptimization Strategy

	Performance Evaluation
	DaCapo and ScalaBench Evaluation
	Choosing the Baseline
	Start-up Performance
	Steady-state Performance
	Overall Execution and Compilation Time
	Tolerance for Deoptimizations in the Adaptive Strategy

	Octane on Graal.js Evaluation
	On the Scale of Performance Changes

	Conclusion

