
Proactive Synthesis of Recursive Tree-to-String
Functions from Examples∗†

Mikaël Mayer1, Jad Hamza2, and Viktor Kunčak3

1 EPFL IC IINFCOM LARA, INR 318, Station 14, CH-1015 Lausanne
Mikael.Mayer@epfl.ch

2 EPFL IC IINFCOM LARA, INR 318, Station 14, CH-1015 Lausanne
Jad.Hamza@epfl.ch

3 EPFL IC IINFCOM LARA, INR 318, Station 14, CH-1015 Lausanne
Viktor.Kuncak@epfl.ch

Abstract
Synthesis from examples enables non-expert users to generate programs by specifying ex-

amples of their behavior. A domain-specific form of such synthesis has been recently deployed in
a widely used spreadsheet software product. In this paper we contribute to foundations of such
techniques and present a complete algorithm for synthesis of a class of recursive functions defined
by structural recursion over a given algebraic data type definition. The functions we consider
map an algebraic data type to a string; they are useful for, e.g., pretty printing and serialization
of programs and data. We formalize our problem as learning deterministic sequential top-down
tree-to-string transducers with a single state (1STS).

The first problem we consider is learning a tree-to-string transducer from any set of input/out-
put examples provided by the user. We show that, given a set of input/output examples, checking
whether there exists a 1STS consistent with these examples is NP-complete in general. In contrast,
the problem can be solved in polynomial time under a (practically useful) closure condition that
each subtree of a tree in the input/output example set is also part of the input/output examples.

Because coming up with relevant input/output examples may be difficult for the user while
creating hard constraint problems for the synthesizer, we also study a more automated active
learning scenario in which the algorithm chooses the inputs for which the user provides the
outputs. Our algorithm asks a worst-case linear number of queries as a function of the size of
the algebraic data type definition to determine a unique transducer.

To construct our algorithms we present two new results on formal languages.
First, we define a class of word equations, called sequential word equations, for which we

prove that satisfiability can be solved in deterministic polynomial time. This is in contrast to
the general word equations for which the best known complexity upper bound is in linear space.

Second, we close a long-standing open problem about the asymptotic size of test sets for
context-free languages. A test set of a language of words L is a subset T of L such that any
two word homomorphisms equivalent on T are also equivalent on L. We prove that it is possible
to build test sets of cubic size for context-free languages, matching for the first time the lower
bound found 20 years ago.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs
– D.3.4 Processors

Keywords and phrases programming by example, active learning, program synthesis

∗ This work was partially supported by European Research Council (ERC) Project Implicit Programming
and an EPFL-Inria Post-Doctoral grant.

† The full version of this paper including detailed proofs is available at [33].

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Mikaël Mayer, Jad Hamza and Viktor Kunčak;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 19; pp. 19:1–19:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.19

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.16

1 Introduction

Synthesis by example has been very successful to help users deal with the tedious task of
writing a program. This technique allows the user to specify input/output examples to
describe the intended behavior of a desired program. Synthesis will then inspect the examples
given by the user, and generalize them into a program that respects these examples, and
that is also able to handle other inputs.

Therefore, synthesis by example allows non-programmers to write programs without
programming experience, and gives experienced users one more way of programming that
could fit their needs. Current synthesis techniques usually rely on domain-specific heuristics
to try and infer the desired program from the user. When there are multiple (non-equivalent)
programs which are compatible with input/output examples provided by the user, these
heuristics may fail to choose the program that the user had in mind when writing the
examples.

We believe it is important to have algorithms that provide formal guarantees based on
strong theoretical foundations. Algorithms we aim for ensure that the solution is found
whenever it exists in a class of functions of interest. Furthermore, the algorithms ensure that
the generated program is indeed the program the user wants by detecting once the solution
is unique and otherwise identifying a differentiating example whose output reduces the space
of possible solutions.

In this paper, we focus on synthesizing printing functions for objects or algebraic data types
(ADT), which are at the core of many programming languages. Converting such structured
values to strings is very common, including uses such as pretty printing, debugging, and
serialization. Writing methods to convert objects to strings is repetitive and usually requires
the user to code himself mutually recursive toString functions. Although some languages
have default printing functions, these functions are often not adequate. For example, the
object Person(“Joe”, 31) might have to be printed “Joe is 31 years old” for better readability,
or “<td>Joe</td><td>31</td>” if printed as part of an HTML table. How feasible is it
for the computer to learn these “printing” functions from examples?

The state of the art in this context [27, 26] requires the user to provide enough examples.
If the user gives too few examples, the synthesis algorithm is not guaranteed to return a valid
printing function, and there is no simple way for the user to know which examples should be
added so that the synthesis algorithm finishes properly.

Our contribution is to provide an algorithm that is able to determine exactly which
questions to ask the user so that the desired function can be derived. Moreover, in order to
learn a function, our algorithm (Algorithm 3) only needs to ask a linear number of questions
(as a function of the size of the ADT declaration).

Our results hold for recursive functions that take ADT as input, and output strings. We
model these functions by tree-to-string transducers, called single-state sequential top-down
tree-to-string transducers [9, 14, 19, 27, 44], or 1STS for short. In this formalism, objects are
represented as labelled trees, and a transducer goes through the tree top down in order to
display it as a string. Single-state means the transducer keeps no memory as it traverses the
tree. Sequential is a shorthand for linear and order-preserving, meaning that each subtree is

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.19
http://dx.doi.org/10.4230/DARTS.3.2.16

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:3

printed only once (linear), and the subtrees of a node are displayed in order (order-preserving).
In particular, such transducers cannot directly represent recursive functions that have extra
parameters alongside the tree to print. Our work on 1STSs establishes a foundation that
may be used for larger classes of transducers.

Our goal is to learn a 1STS from a set of positive input/output examples, called a sample.
We prove the problem of checking whether there exists a 1STS consistent with a given sample
is NP-complete in general. Yet, we prove that when the given sample is closed under subtree,
i.e., every tree in the sample has all of its subtrees in the sample, the problem of finding
a compatible 1STS can be solved in polynomial time. For this, we reduce the problem of
checking whether there exists an 1STS consistent with a sample to the problem of solving
word equations. The best known algorithm to solve word equations takes linear space, and
exponential time [40, 22]. However, we prove that the word equations we build are of a
particular form, which we call sequential, and our first algorithm learns 1STSs by solving
sequential equations in polynomial time.

We then tackle the problem of ambiguities that come from underspecified samples. More
precisely, it is possible that, given a sample, there exist two 1STSs that are consistent with
the sample, but that are not equivalent on a domain D of trees. We thus define the notion
of tree test set of a domain D, which guarantees that, any two 1STSs which are equivalent
on the tree test set are also equivalent on the whole domain D. We give a method to build
tree test sets of size O(|D|3) from a domain of trees given as a non-deterministic top-down
automaton. Our second learning algorithm takes as input a domain D, builds the tree test set
of D, and asks for the user the output to all trees in the tree test set. Our second algorithm
then invokes our first algorithm on the given sample.

This construction relies on fundamental results on a known relation between sequential
top-down tree-to-string transducers and morphisms (a morphism is a function that maps
the concatenation of two words to the concatenation of their images), and on the notion of
test set [44]. Informally, a test set of a language of words L is a subset T ⊆ L such that any
two morphisms which are equivalent on T are also equivalent on L. In the context of 1STSs,
the language L is a context-free language, intuitively representing the yield of the domain
D mentioned above. Prior to our work announced in [32], the best known construction for
a test set of a context-free grammar G produced test sets of size O(|G|6), while the best
known lower bound was O(|G|3) [38, 39]. We show the O(|G|3) is in fact tight, and give a
construction that, given any grammar G, produces a test set for G of size O(|G|3).

Finally, our third and, from a practical point of view, the main algorithm, improves
the second one by analyzing the previous outputs entered by the user, in order to infer the
next output. More specifically, the outputs previously entered by the user give constraints
on the transducer being learned, and therefore restrict the possible outputs for the next
questions. Our algorithm computes these possible outputs and, when there is only one,
skips the question. Our algorithm only asks the user a question when there are at least
two possible outputs for a particular input. The crucial part of this algorithm is to prove
that such ambiguities happen at most O(|D|) times. Therefore, our third algorithm asks the
user only O(|D|) questions, greatly improving our second one that asks O(|D|3) questions.
Our result relies on carefully inspecting the word equations produced by the input/output
examples.

We implemented our algorithms in an open-source tool available at https://github.com/
epfl-lara/prosy. In sections 9 and 10, we describe how to extend our algorithms and tool
to ADTs which contain String (or Int) as a primitive type. We call the implementation of our
algorithms proactive synthesis, because it produces a complete set of questions ahead-of-time

ECOOP 2017

https://github.com/epfl-lara/prosy
https://github.com/epfl-lara/prosy

19:4 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

whose answers will help to synthesize a unique tree-to-string function, filters out future
questions whose answer could be actively inferred after each user’s answer, and produces
suggestions as multiple choice or pre-filled answers to minimize the answering effort.

Contributions
Our paper makes the following contributions:
1. A new efficient algorithm to synthesize recursive functions from examples. We give a

polynomial-time algorithm to obtain a 1STS from a sample closed under subtree. When
the sample is not necessarily closed under subtree, we prove that the problem of checking
whether there exists a 1STS consistent with the sample is NP-complete (Section 6). This
result is based on a fundamental contribution:

A polynomial-time algorithm for solving a class of word equations that come from a
synthesis problem (sequential word equations, Section 6).

2. An algorithm that synthesize recursive functions without ambiguity by generating an
exhaustive set of questions to ask to the user, in the sense that any two recursive functions
that agree on these inputs, are equal on their entire domain (Section 7). This is based on
the following fundamental contribution:

A constructive upper bound of O(|G|3) on the size of a test set for a context-free
grammar G, improving on the previous known bound of O(|G|6) [38, 39] (Section 7).

3. A proactive and efficient algorithm that synthesizes recursive functions, which only
requires the user to enter outputs for the inputs determined by the algorithm. Formally,
we present an interactive algorithm to learn a 1STS for a domain of trees, with the
guarantee that the obtained 1STS is functionally unique. Our algorithm asks the user
only a linear number of questions (Section 8).

4. A construction of a linear tree test set for data types with Strings, which enables
constructing a small set of inputs that distinguish between two recursive functions
(Section 9).

5. An implementation of our algorithms as an interactive command-line tool (Section 10)
We note that the fundamental contributions of (1) and (2) are new general results about
formal languages and may be of interest on their own.

For space purposes, we only show proof sketches and intuition; detailed proofs can be
found in the extended version of this paper [33].

2 Example Run of Our Synthesis Algorithm

To motivate our problem domain, we present a run of our algorithm on an example. The
example is an ADT representing a context-free grammar. It defines its custom alphabet
(Char), words (CharList), and non-terminals indexed by words (NonTerminal). A rule (Rule)
is a pair made of a non-terminal and a sequence of symbols (ListSymbol), which can be
non-terminals or terminals (Terminal). Finally, a grammar is a pair made of a (starting)
non-terminal and a sequence of rules.

The input of our algorithm is the following file (written in Scala syntax):

abstract class Char
case class a() extends Char
case class b() extends Char

abstract class CharList
case class NilChar() extends CharList

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:5

case class ConsChar(c: Char, l: CharList) extends CharList

abstract class Symbol
case class Terminal(t: Char) extends Symbol
case class NonTerminal(s: CharList) extends Symbol

case class Rule(lhs: NonTerminal, rhs: ListSymbol)

abstract class ListRule
case class ConsRule(r: Rule, tail: ListRule) extends ListRule
case class NilRule() extends ListRule

abstract class ListSymbol
case class ConsSymbol(s: Symbol, tail: ListSymbol) extends ListSymbol
case class NilSymbol() extends ListSymbol

case class Grammar(s: NonTerminal, r: ListRule)

We would like to synthesize a recursive tree-to-string function print, such that if we
compute, for example:

print(Grammar(NonTerminal(NilChar()),
ConsRule(Rule(NonTerminal(NilChar()),

ConsSymbol(Terminal(a()),
ConsSymbol(NonTerminal(NilChar()),

ConsSymbol(Terminal(b()), NilSymbol())))),
ConsRule(Rule(NonTerminal(NilChar()),

NilSymbol())), NilRule())))

the result should be:

Start: N
N −> a N b
N −>

We would like the print function to handle any valid Grammar tree.
When given these class definitions above, our algorithm precomputes a set of terms from

the ADT, so that any two single-state recursive functions which output the same Strings for
these terms also output the same Strings for any term from this ADT. (This is related to the
notion of tree test set defined in Section 7.2.) Our algorithm will determine the outputs for
these terms by interacting with the user and asking questions. Overall, for this example, our
algorithm asks the output for 14 terms.

For readability, question lines provided by the synthesizer are indented. Lines entered by
the user finish by the symbol ←↩ , meaning that she pressed the ENTER key. Everything
after ←↩ on the same line is our comment on the interaction. “It” usually refers to the
synthesizer. After few interactions, the questions themselves are shortened for conciseness.
The interaction is the following:

Proactive Synthesis.
If you ever want to enter a new line, terminate your line by \ and press Enter.
What should be the function output for the following input tree?
a

a←↩
What should be the function output for the following input tree?
b

ECOOP 2017

19:6 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

b←↩
NilChar ?
←↩ indeed, NilChar is an empty string.

NilSymbol ?
←↩ No symbol at the right-hand-side of a rule

NilRule ?
←↩ No rule left describing the grammar

What should be the function output for the following input tree?
Terminal(a)
Something of the form: [...]a[...]

a←↩ Terminals contain only one char. Note the hint provided by the synthesizer.
NonTerminal(NilChar) ?

N←↩
ConsChar(b,NilChar) ? Something of the form: [...]b[...]

b←↩ A ConsChar is a concatenation of a char and a string
What should be the function output for the following input tree?
NonTerminal(ConsChar(b,NilChar))
1) Nb
2) bN
Please enter a number between 1 and 2, or 0 if you really want to enter your answer manually

1←↩ Note that it was able to infer only two possibilities, thus the closed question.
Grammar(NonTerminal(NilChar),NilRule) ? Something of the form: [...]N[...]

Start: N←↩
ConsSymbol(Terminal(a),NilSymbol) ? Something of the form: [...]‘a‘[...]

a←↩ Symbols on the right-hand-side of a Rule are prefixed with a space
Rule(NonTerminal(NilChar),NilSymbol) ? Something of the form: [...]N[...]
N −>←↩ A rule with no symbols on the right-hand-side

ConsRule(Rule(NonTerminal(NilChar),NilSymbol),NilRule) ?
Something of the form: [...]N −>[...]

\←↩ A newline
N −>←↩

What should be the function output for the following input tree?
Rule(NonTerminal(NilChar),ConsSymbol(Terminal(‘a‘),NilSymbol))
1) N ‘a‘−>
2) N − ‘a‘>
3) N −> ‘a‘
4) N ‘a‘ −>
Please enter a number between 1 and 4, or 0 if you really want to enter your answer manually

3←↩

The synthesizer then emits the desired recursive tree-to-string function, along with a complete
set of the tests that determine it:

def print(t: Any): String = t match {
case a() ⇒ "a"
case b() ⇒ "b"
case NilChar() ⇒ ""
case ConsChar(t1,t2) ⇒ print(t1) + print(t2)
case Terminal(t1) ⇒ "‘" + print(t1) + "‘"
case NonTerminal(t1) ⇒ "N" + print(t1)
case Rule(t1,t2) ⇒ print(t1) + " −>" + print(t2)
case ConsRule(t1,t2) ⇒ "\n" + print(t1) + print(t2)
case NilRule() ⇒ ""
case ConsSymbol(t1,t2) ⇒ " " + print(t1) + print(t2)
case NilSymbol() ⇒ ""

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:7

case Grammar(t1,t2) ⇒ "Start: " + print(t1) + print(t2)
} // the part below is a contract, not needed to execute the recursive function
ensuring { (res: string) => res == (t match {
case a() => "a"
case b() => "b"
case NilChar() => ""
case NilSymbol() => ""
case NilRule() => ""
case Terminal(a()) => "a"
case NonTerminal(NilChar()) => "N"
case ConsChar(b(),NilChar()) => "b"
case NonTerminal(ConsChar(b(),NilChar())) => "Nb"
case Grammar(NonTerminal(NilChar()),NilRule()) => "Start: N"
case ConsSymbol(Terminal(a()),NilSymbol()) => " a"
case Rule(NonTerminal(NilChar()),NilSymbol()) => "N −>"
case ConsRule(Rule(NonTerminal(NilChar()),NilSymbol()),NilRule()) => "\nN −>"
case Rule(NonTerminal(NilChar()),ConsSymbol(Terminal(a()),NilSymbol())) => "N −> a"
case _ => res})

}

Observe that, in addition to the program, the synthesis system emits as a postcondition
(after the ensuring construct) the recorded input/output examples (tests). Our work
enables the construction of an IDE that would automatically maintain the bidirectional
correspondence between the body of the recursive function and the postcondition that
specifies its input/output tests. If the user modifies an example in the postcondition, the
system could re-synthesize the function, asking for clarification in cases where the tests
become ambiguous. If the user modifies the program, such system can regenerate the tests.

Depending on user’s answers, the total number of questions that the synthesizers asks
varies (see section 11). Nonetheless, the properties that we proved for our algorithm guarantee
that the number of questions remains at most linear as a function of the size of the algebraic
data type declaration.

When the user enters outputs which are not consistent, i.e., for which there exists no print-
ing function in the class of functions that we consider, our tool directly detects it and warns
the user. For instance, for the tree ConsRule(Rule(NonTerminal(NilChar),NilSymbol),NilRule), if
the user enters N- > with the space and the dash inverted, the system detects that this output
is not consistent with the output provided for tree Rule(NonTerminal(NilChar),NilSymbol),
and asks the question again.

We cannot have the transducer convert ConsRule(Rule(NonTerminal(NilChar),NilSymbol),NilRule)
to N− >.
Please enter something consistent with what you previously entered (e.g. ’N −>’,’N −>bar’,...)?

3 Discussion

3.1 Advantages of Synthesis Approach
It is important to emphasize that in the approach we outline, the developer not only enters
less text in terms of the number of characters than in the above source code, but that
the input from the user is entirely in terms of concrete input-output values, which can be
easier to reason about for non-expert users than recursive programs with variable names and
control-flow.

ECOOP 2017

19:8 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

It is notable that the synthesizer in many cases offered suggestions, which means that
the user often simply needed to check whether one of the candidate outputs is acceptable.
Even in cases where the user needed to provide new parts of the string, the synthesizer
in many cases guided the user towards a form of the output consistent with the outputs
provided so far. Because of this knowledge, the synthesizer could also be stopped early by, for
example, guessing the unknown information according to some preference (e.g. replacing all
unknown string constants by empty strings), so the user can in many cases obtain a program
by providing a very small amount of information.

Such easy-to-use interactions could be implemented as a pretty printing wizard in an
IDE, for example triggered when the user starts to write a function to convert an ADT to a
String.

Our experience in writing pretty printers manually suggests that they often require testing
to ensure that the generated output corresponds to the desired intuition of the developer,
suggesting that input-output tests may be a better form of specification even if in cases where
they are more verbose. We therefore believe that it is valuable to make available to users
and developers sucn an alternative method of specifying recursive functions, a method that
can co-exist with the conventional explicitly written recursive functions and the functions
derived automatically (but generically) by the compiler (such as default printing of algebraic
data type values in Scala), or using polytypic programming approaches [21] and serialization
libraries [35]. (Note that the generic approaches can reduce the boilerplate, but do not
address the problem of unambiguously generalizing examples to recursive functions.)

3.2 Challenges in Obtaining Efficient Algorithms

The problem of inferring a program from examples requires recovering the constants embedded
in the program from the results of concatenating these constants according to the structure
of the given input tree examples. This presents two main challenges. The first one is
that the algorithm needs to split the output string and identify which parts correspond to
constants and which to recursive calls. This process becomes particularly ambiguous if the
alphabet used is small or if some constants are empty strings. A natural way to solve such
problems is to formulate them as a conjunction of word equations. Unfortunately, the best
known deterministic algorithms for solving word equations run in exponential time (the best
complexity upper bound for the problem takes linear space [40, 22]). Our paper shows that,
under an assumption that, when specifying printing of a tree, we also specify printing of its
subtrees, we obtain word equations solvable in polynomial time.

The next challenge is the number of examples that need to be solved. Here, a previous
upper bound derived from the theory of test sets of context-free languages was Ω(n6), which,
even if polynomial, results in impractical number of user interactions. In this paper we
improve this theoretical result and show that tests sets are in fact in O(n3), asymptotically
matching the known lower bound.

Furthermore, if we allow the learning algorithm to choose the inputs one by one after
obtaining outputs, the overall learning algorithm has a linear number of queries to user and
to equation solving subroutine, as a function of the size of tree data type definition. Our
contributions therefore lead to tools that have completeness guarantees with much less user
input and a shorter running time than the algorithms based on prior techniques.

We next present our algorithms as well as the results that justify their correctness and
completeness.

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:9

4 Notation

We start by introducing our notation and terminology for some standard concepts. Given
a (partial) function from f : A → B, and a set C, f|C denotes the (partial) function
g : A ∩ C → B such that g(a) = f(a) for all a ∈ A ∩ C.

A word (string) is a finite sequence of elements of a finite set Σ, which we call an alphabet.
A morphism f : Σ∗ → Γ∗ is a function such that f(ε) = ε and for every u, v ∈ Σ∗,

f(u · v) = f(u) · f(v), where the symbol ‘·’ denotes the concatenation of words (strings).
A non-deterministic finite automaton (NFA) is a tuple (Γ, Q, qi, F, δ) where Γ is the

alphabet, Q is the set of states, qi ∈ Q is the initial state, F is the set of final states,
δ ⊆ Q× Γ×Q is the transition relation. When the transition relation is deterministic, that
is for all q, p1, p2 ∈ Q, a ∈ Γ, if (q, a, p1) ∈ δ and (q, a, p2) ∈ δ, then p1 = p2, we say that A is
a deterministic finite automaton (DFA).

A context-free grammar G is a tuple (N,Σ, R, S) where:
N is a set of non-terminals,
Σ is a set of terminals, disjoint from N ,
R ⊆ N × (N ∪ Σ)∗ is a set of production rules,
S ∈ N is the starting non-terminal symbol.

A production (A, rhs) ∈ R is denoted A→ rhs. The size of G, denoted |G|, is the sum of sizes
of each production in R:

∑
A→rhs∈R 1 + |rhs|. A grammar is linear if for every production

A→ rhs ∈ R, the rhs string contains at most one occurrence of N . By an abuse of notation,
we denote by G the set of words produced by G.

4.1 Trees and Domains
A ranked alphabet Σ is a set of pairs (f, k) where f is a symbol from a finite alphabet, and
k ∈ N. A pair (f, k) of a ranked alphabet is also denoted f (k). We say that symbol f has
a rank (or arity) equal to k. We define by TΣ the set of trees defined over alphabet Σ.
Formally, TΣ is the smallest set such that, if t1, . . . , tk ∈ TΣ, and f (k) ∈ Σ for some k ∈ N,
then f(t1, . . . , tk) ∈ TΣ. A set of trees T is closed under subtree if for all f(t1, . . . , tk) ∈ T ,
for all i ∈ {1, . . . , k}, ti ∈ T .

A top-down tree automaton T is a tuple (Σ, Q, I, δ) where Σ is a ranked alphabet, I ⊆ Q
is the set of initial states, and δ ⊆ Σ ×Q ×Q∗. The set of trees L(T) recognized by T is
defined recursively as follows. For f (k) ∈ Σ, q ∈ Q, and t = f(t1, . . . , tk) ∈ TΣ, we have
t ∈ L(T)q iff there exists (f, q, q1 · · · qk) ∈ δ such that for 1 ≤ i ≤ k, ti ∈ L(T)qi

. The set
L(T) is then defined as

⋃
q∈I L(T)q.

Algebraic data types are described by the notion of domain, which is a set of trees
recognized by a top-down tree automaton T = (Σ, Q, I, δ). The size of the domain is the
sum of sizes of each transition in δ, that is

∑
(f(k),q,q1···qk)∈δ 1 + k.

I Example 1. In this example and the following ones, we illustrate our notions using an
encoding of HTML-like data structures. Consider the following algebraic data type definitions
in Scala:

abstract class Node
case class node(t: Tag, l: List) extends Node

abstract class Tag
case class div() extends Tag
case class pre() extends Tag
case class span() extends Tag

ECOOP 2017

19:10 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

abstract class List
case class cons(n: Node, l: List) extends List
case class nil() extends List

The corresponding domain Dhtml is described by the following:

Σ = {nil(0), cons(2), node(2), div(0), pre(0), span(0)}
Q = {Node,Tag,List}
I = {Node,Tag,List}
δ = {(node,Node, (Tag,List)),

(div,Tag, ()), (pre,Tag, ()), (span,Tag, ()),
(cons,List, (Node,List)),
(nil,List, ())}

4.2 Transducers
A deterministic, sequential, single-state, top-down tree-to-string transducer τ (1STS for short)
is a tuple (Σ,Γ, δ) where:

Σ is a ranked alphabet (of trees),
Γ is an alphabet (of words),
δ is a function over Σ such that ∀f (k) ∈ Σ. δ(f) ∈ (Γ∗)k+1.

Note that the transducer does not depend on a particular domain for Σ, but instead can
map any tree from TΣ to a word. Later, when we present our learning algorithms for 1STSs,
we restrict ourselves to particular domains provided by the user of the algorithm.

We denote by JτK the function from trees to words associated with the 1STS τ . Formally,
for every f (k) ∈ Σ, we have JτK(f(t1, . . . , tk)) = u0 · JτK(t1) · u1 · · · JτK(tk) · uk if δ(f) =
(u0, u1, . . . , uk). When clear from context, we abuse notation and use τ as a shorthand for
the function JτK.

I Example 2. A transducer τ = (Σ,Γ, δ) converting HTML trees into a convenient syntax
for some programmatic templating engines1 may be described by:

Σ ={nil(0), cons(2), node(2), div(0), pre(0), span(0)}}
Γ =[All symbols]

δ(node) =(“<.”, ε, ε)
δ(div) =(“div”) δ(pre) =(“pre”) δ(span) = (“span”),
δ(cons) =(“(”, “)”, ε) δ(nil) =(ε)

In Scala, this is written as follows:

def tau(input: Tree) = input match {
case node(t, l) ⇒ "<." + tau(t) + "" + tau(l) + ""
case div() ⇒ "div"
case pre() ⇒ "pre"
case span() ⇒ "span"

1 https://github.com/lihaoyi/scalatags

https://github.com/lihaoyi/scalatags

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:11

def tree(w: List[Σ]): Tree =
if w is empty or does not start with some (f, 0):
throw error

let (f, 0) = w.head
w ← w.tail
for i from 1 to arity(f)
ti = tree(w)
assert(w starts with (f, i))
w ← w.tail

return f(t1, . . ., tk)

Figure 1 Parsing algorithm to obtain tree(w) from a word w ∈ Σ∗. When the algorithm fails,
because of a pattern matching error or because of the thrown exception, it means there exists no t
such that τΣ(t) = w.

case cons(n, l) ⇒ "(" + tau(n) + ")" + tau(l) + ""
case nil() ⇒ ""

}

For example, tau(node(div,cons(node(span,nil,cons(node(pre,nil)))))) = "<.div(<.span())(<.pre())"

5 Transducers as Morphisms

For a given alphabet Σ, a 1STS (Σ,Γ, δ) is completely determined by the constants that
appear in δ. This allows us to define a one-to-one correspondence between transducers and
morphisms. This correspondence is made through what we call the default transducer. More
specifically, Γ is the set Σ = {(f, i) | f (k) ∈ Σ ∧ 0 ≤ i ≤ k} and for all f (k) ∈ Σ, we have
δ(f) = ((f, 0), (f, 1), . . . , (f, k)). The default transducer produces sequences of pairs from Σ.

I Example 3. For Σ = {nil(0), cons(2),node(2),div(0), pre(0), span(0)}, τΣ is:

Γ ={ (node, 0), (node, 1), (node, 2), (div, 0), (pre, 0), (span, 0)
(cons, 0), (cons, 1), (cons, 2), (nil, 0)}

δ(node) = ((node, 0), (node, 1), (node, 2))
δ(div) = (div, 0) δ(pre) = (pre, 0) δ(span) = (span, 0)
δ(cons) = ((cons, 0), (cons, 1), (cons, 2)) δ(nil) = (nil, 0))

In Scala, τΣ can be written as follows (+ is used to concatenate elements and lists):

def tauSigma(input: Tree): List[Σ] = input match {
case node(t, l) ⇒ (node,0) + tauSigma(t) + (node,1) + tauSigma(l) + (node,2)
case div() ⇒ (div,0)
case pre() ⇒ (pre,0)
case span() ⇒ (span,0)
case cons(n, l) ⇒ (cons,0) + tauSigma(n) + (cons,1) + tauSigma(l) + (cons,2)
case nil(n, l) ⇒ (nil,0)

}

I Lemma 1. For any ranked alphabet Σ, the function JτΣK is injective.

ECOOP 2017

19:12 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

Following Lemma 1, for a word w ∈ Σ∗, we define tree(w) to be the unique tree (when it
exists) such that τΣ(tree(w)) = w. We show in Figure 1 how to obtain tree(w) in linear time
from w.

For a 1STS τ = (Σ,Γ, δ), we define the morphism morph[τ] from Σ to Γ∗, and such that,
for all f (k) ∈ Σ, i ∈ {0, . . . , k}, morph[τ](f, i) = ui where δ(f) = (u0, u1, . . . , uk). Conversely,
given a morphism µ : Σ→ Γ∗, we define sts(µ) as τΣ where each output l ∈ Σ is replaced
by µ(l).

I Example 4. For Example 2, morph[τ] is defined by:

morph[τ](node, 0) = “<.” morph[τ](cons, 0) = “(”
morph[τ](node, 1) = ε morph[τ](cons, 1) = “)”
morph[τ](node, 2) = ε morph[τ](cons, 2) = ε

morph[τ](div, 0) = “div” morph[τ](nil, 0) = ε

morph[τ](pre, 0) = “pre” morph[τ](span, 0) = “span”

Note that for any morphism: µ : Σ → Γ∗, morph[sts(µ)] = µ and for any 1STS τ ,
sts(morph[τ]) = τ . Moreover, we have the following result, which expresses the output of a
1STS τ using the morphism morph[τ].
I Lemma 2. For a 1STS τ , and for all t ∈ TΣ, morph[τ](τΣ(t)) = τ(t).

Proof. Follows directly from the definitions of morph[τ] and τΣ. J

I Example 5. Let t = cons(node(div, nil), nil). For morph[] defined as in Example 4 and the
transducer τ as in Example 2, the left-hand-side of the equation of Lemma 2 translates to:

morph[τ](τΣ(t))
= morph[τ](τΣ(cons(node(div,nil), nil)))
= morph[τ]((cons, 0)(node, 0)(div, 0)(node, 1)(nil, 0)(node, 2)(cons, 1)(nil, 0)(cons, 2))
= “(” · “<.” · “div” · ε · ε · ε · “)” · ε · ε
= “(<.div)”

Similarly, the right-hand-side of the equation can be computed as follows:

τ(t)
= τ(cons(node(div, nil), nil))
= “(” · τ(node(div, nil)) · “)” · τ(nil) · ε
= “(” · “<.” · τ(div) · ε · τ(nil) · ε · “)” · ε · ε
= “(<.div)”

We thus obtain that checking equivalence of 1STSs can be reduced to checking equivalence
of morphisms on a context-free language.
I Lemma 3 (See [44]). Let τ1 and τ2 be two 1STSs, and D = (Σ, Q, I, δ) a domain. Then
Jτ1K|D = Jτ2K|D if and only if morph[τ1]|G = morph[τ2]|G where G is the context-free language
{τΣ(t) | t ∈ D}.

Proof. Follows from Lemma 2. G is context-free, as it can be recognized by the grammar
(NG,Σ, RG, SG) where:

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:13

NG = {SG} ∪ {Aq | q ∈ Q}, where SG is a fresh symbol used as the starting non-terminal,
The productions are:
RG = {Aq → (f, 0) ·Aq1 · (f, 1) · · ·Aqk

· (f, k) | f (k) ∈ Σ ∧ (q, f, (q1, . . . , qk)) ∈ δ}
∪ {SG → Aq | q ∈ I}

Note that the size of G is linear in the size of |D| (as long as there are no unused states
in D). J

6 Learning 1STS from a Sample

We now present a learning algorithm for learning 1STSs from sets of input/output examples,
or a sample. Formally, a sample S : TΣ 7→ Γ∗ is a partial function from trees to words, or
alternatively, a set of pairs (t, w) with t ∈ TΣ and w ∈ Γ∗ such that each t is paired with at
most one w.

6.1 NP-completeness of the general case

In general, we prove that finding whether there exists a 1STS consistent with a given a sample
is an NP-complete problem. To prove NP-hardness, we reduce the one-in-three positive
SAT problem. This problem asks, given a formula ϕ with no negated variables, whether
there exists an assignment such that for each clause of ϕ, exactly one variable (out of three)
evaluates to true.

I Theorem 1. Given a sample S, checking whether there exists a 1STS τ such that for all
(t, w) ∈ S, τ(t) = w is an NP-complete problem.

Proof. (Sketch) We can check for the existence of τ in NP using the following idea. Every
input/output example from the sample gives constraints on the constants of τ . Therefore, to
check for the existence of τ , it is sufficient to non-deterministically guess constants which are
subwords of the given output examples. We can then verify in polynomial-time whether the
guessed constants form a 1STS τ which is consistent with the sample S.

To prove NP-hardness, we consider a formula ϕ, instance of the one-in-three positive
SAT. The formula ϕ has no negated variables, and is satisfiable if there exists an assignment
to the boolean variables such that for each clause of ϕ, exactly one variable (out of three)
evaluates to true.

We construct a sample S such that there exists a 1STS τ such that for all (t, w) ∈ S,
τ(t) = w if and only if ϕ is satisfiable. For each clause (x, y, z) ∈ ϕ, we construct an
input/output example of the form S(x(y(z(nil)))) = a# where x, y and z are symbols of
arity 1 corresponding to the variables of the same name in ϕ, nil is a symbol of arity 0, and
a and # are two special characters. Moreover, we add an input/output example stating that
S(nil) = #.

This construction forces the fact that a 1STS τ consistent with S will have a non-empty
output (a) for exactly one symbol out of x, y, and z (therefore matching the requirements of
one-in-three positive SAT formulas). J

In the sequel, we prove that if the domain of the given sample is closed under subtree,
this problem can be solved in polynomial time.

ECOOP 2017

19:14 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

6.2 Word Equations
Our learning algorithm relies on reducing the problem of learning a 1STS from a sample to
the problem of solving word equations. In general, the best known algorithm for solving word
equations is in linear space [40, 22], and takes exponential time to run. When the domain of
the sample S is closed under subtree, the equations we construct have a particular form, and
we call them sequential formulas. We show there is a polynomial-time algorithm for checking
whether a sequential word formula is satisfiable.

I Definition 6. Let X be a finite set of variables, and Γ a finite alphabet. A word equation
e is a pair y1 = y2 where y1, y2 ∈ (X ∪ Γ)∗. A word formula ϕ is a conjunction of word
equations. An assignment is a function from X to Γ∗, and can be seen as a morphism
µ : (X ∪ Γ)→ Γ∗ such that µ(a) = a for all a ∈ Γ.

A word formula is satisfiable if there exists an assignment µ : (X ∪ Γ)→ Γ∗ such that for
all equations y1 = y2 in ϕ, µ(y1) = µ(y2).

A word formula ϕ is called sequential if: 1) for each equation y1 = y2 ∈ ϕ, y2 ∈ Γ∗
contains no variable, and y1 ∈ (Γ ∪ X)∗ contains at most one occurrence of each variable, 2)
for all equations y = _ and y′ = _ in ϕ, either y and y′ do not have variables in common, or
y|X = y′|X, that is y and y′ have the same sequence of variables. We used the name sequential
due to this last fact.

I Example 7. For X1, X2, X3, X4, X5 ∈ X and p, q ∈ Γ∗, each of the four formulas below is
sequential:

X1 = pq X1X3 = qpqpqqpqpq ∧X1qX3 = qpqpqqqpqpq

X1pX2qX3 = qppq X1pqX2X3 = pqpqpp ∧X1X2qpX3 = pqppqp ∧X5pX4 = qpq

The following formulas (and any formula containing them) are not sequential:

X1pqX2X3 = pX3pq (rhs is not in Γ∗)
X1pqX2pX3X2 = ppqqpp (X2 appears twice in lhs)

X1pqX2X3 = pqpqpp ∧X2pX5 = qpq (X2 is shared)
X1pqX2X3 = pqpqpp ∧X1pX3X2 = pqppp (different orderings of X1 X2 X3)

We prove that any sequential word formula ϕ can be solved in polynomial time.
I Lemma 4. Let ϕ be a sequential word formula. Let n be the number of equations in ϕ,
V the number of variables, and C be the size of the largest constant appearing in ϕ. We
can determine in polynomial time O(nV C) whether ϕ is satisfiable. When it is, we can also
produce a satisfying assignment for ϕ.

Proof. (Sketch) We construct for each equation in ϕ a DFA which represents succinctly
all the possible assignments for this equation. Then, we take the intersection of all these
DFAs, and obtain the possible assignments that satisfy all equations (i.e. the assignments
that satisfy formula ϕ). The crucial part of the proof is to prove that this intersection can
be computed in polynomial time, and does not produce an exponential blow-up as can be
the case with arbitrary DFAs. We prove this by carefully inspecting the DFAs representing
the assignments, and using the special form they have. We show the intersection of two
such DFAs A and B is a DFA whose size is smaller than both the sizes of A and B (instead
of being the product of the sizes of A and B, as can be the case for arbitrary DFAs). See
Figure 2 for an illustration of this intersection. J

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:15

p

q

p

q

p

p

q

p

p

#

#

#

#

#

#

#

X0 X1 X2

X0 p X1 X2 = pqpp

q

p

p

q

p

p p

p

#

#

#

#

#

#

#

X0 X1 X2

X0 X1 p X2 = qppp

q

p

p p

p

#

#

#

#

X0 X1 X2

X0X1pX2 = qppp∧
X0pX1X2 = pqpp

Figure 2 On the left, two automata representing the solutions of equations X0 p X1 X2 = pqpp
and X0 X1 p X2 = qppp respectively. On the right, their intersection represents the solutions of
the conjunction of equations. Note that the third automaton can be obtained from the first (and
the second) by removing states and transitions.

6.3 Algorithm for Learning from a Sample

Algorithm 1 Learning 1STSs from a sample.
Input: A sample S whose domain is closed under subtree.
Output: If there exists a 1STS τ such that τ(t) = w for all (t, w) ∈ S, output Yes and τ ,
otherwise, output No.
1. Build the sequential formula ϕ ≡

∧
(t,w)∈S regEquation(t, w,S)

2. Check whether ϕ has a satisfying assignment µ as follows: (see Lemma 4):
For every word equation regEquation(t, w,S) where t has root f , build a DFA that
represents all possible solutions for the words µ(f, 0),. . . ,µ(f, k).
Check whether the intersection of all DFAs contains some word w.

If no, exit the algorithm and return No.
If yes, define the words µ(f, 0),. . . ,µ(f, k) following w.

3. Return (Yes and) sts(µ).

Consider a sample S such that dom(S) is closed under subtree. Given (t, w) ∈ S, we
define the word equation equation(t, w) as:

τΣ(t) = w

where the left hand side τΣ(t) is a concatenation of elements from Σ, considered as word
variables, and the right hand side w ∈ Γ∗ is considered to be a word constant.

Assume all equations corresponding to a set of input/output examples are simultaneously
satisfiable, with an assignment µ : Σ→ Γ∗. Our algorithm then returns the 1STS τ = sts(µ),
thus guarantying that τ(t) = w for all (t, w) ∈ Σ.

If the equations are not simultaneously satisfiable, our algorithm returns No.

ECOOP 2017

19:16 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

I Example 8. For Σ = {nil(0), cons(2), node(2),div(0),pre(0), span(0)}, given the examples:

τΣ(node(div, nil)) = “<.div”
τΣ(div) = “div” τΣ(span) = “span” τΣ(pre) = “pre”

τΣ(cons(node(div, nil), nil) = “(<.div)” τΣ(nil) = “”

we obtain the following equations:

(node, 0) · (div, 0) · (node, 1) · (nil, 0) · (node, 2) = “<.div”
(div, 0) = “div”

(span, 0) = “span”
(pre, 0) = “pre”

(cons, 0) · (node, 0) · (div, 0) · (node, 1) · (nil, 0)·
(node, 2) · (cons, 1) · (nil, 0) · (cons, 2) = “(<.div)”

(nil, 0) = “”

A satisfying assignment for these equations is the morphism morph[τ] given in Example 4.
Note that this assignment is not unique (see Example 9). We resolve ambiguities in Section 7.

To check for satisfiability of
∧

(t,w)∈S equation(t, w), we slightly transform the equations
in order to obtain a sequential formula. For (t, w) ∈ S, with t = f(t1, . . . , tk), we define the
word equation regEquation(t, w,S) as:

(f, 0)w1 (f, 1) · · ·wk (f, k) = w

where for all i ∈ {1, . . . , k}, wi = S(ti). Note that S(ti) must be defined, since t is in the
domain of S, which is closed under subtree. Moreover, the formula

ϕ ≡
∧

(t,w)∈S

regEquation(t, w,S)

is satisfiable iff
∧

(t,w)∈S equation(t, w) is satisfiable.
Finally, ϕ is a sequential formula. Indeed, two equations corresponding to trees having

the same root f (k) ∈ Σ have the same sequence of variables (f, 0) . . . (f, k) in their left hand
sides. And two equations corresponding to trees not having the same root have disjoint
variables. Thus, using Lemma 4, we can check satisfiability of ϕ in polynomial time (and
obtain a satisfying assignment for ϕ if there exists one).

I Theorem 2 (Correctness and running time of Algorithm 1). Let S be a sample whose domain
is closed under subtree. If there exists a 1STS τ such that τ(t) = w for all (t, w) ∈ S,
Algorithm 1 returns one such 1STS. Otherwise, Algorithm 1 returns No. Algorithm 1
terminates in time polynomial in the size of S.

Proof. Assume ϕ has a satisfying assignment µ : Σ → Γ∗, in step (2) of Algorithm 1. In
that case, Algorithm 1 returns τ = sts(µ). By definition of ϕ, we know, for all (t, w) ∈ S,
µ(τΣ(t)) = w. Moreover, since morph[τ] = µ, we have by Lemma 2 that τ(t) = µ(τΣ(t)), so
τ(t) = w.

Conversely, if there exists τ such that τ(t) = w for all (t, w) ∈ S. Then, again by Lemma 2,
morph[τ] is a satisfying assignment for ϕ, and Algorithm 1 must return Yes.

The polynomial running time follows from Lemma 4.

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:17

I Remark. For samples whose domains are not closed under subtree, we may modify
Algorithm 1 to check for satisfiability of word equations which are not necessarily sequential.
In that case, we are not guaranteed that the running time is polynomial.

J

7 Learning 1STSs Without Ambiguity

The issue with Algorithm 1 is that the 1STS expected by the user may be different than the
one returned by the algorithm (see Example 9 below). To circumvent this issue, we use the
notion of tree test set. Formally, a set of trees T ⊆ D is a tree test set for the domain D if
for all 1STSs τ1 and τ2, Jτ1K|T = Jτ2K|T implies Jτ1K|D = Jτ2K|D.

I Example 9. The transducer τ2 defined below satisfies the requirements of Example 8
but is different than the transducer in Example 2. Namely, the values in the box have been
switched.

δ2(node) =(“<.”, ε, ε)
δ2(div) =(“div”) δ2(pre) =(“pre”) δ2(span) = (“span”)

δ2(cons) =(“(”, ε, “)”) δ2(nil) =(ε)

We can verify that the two transducers are not equal on the domain Dhtml:

τ(cons(node(div, nil), cons(node(div, nil), nil))) = “(<.div)(<.div)”
τ2(cons(node(div, nil), cons(node(div, nil), nil))) = “(<.div(<.div))”

Therefore, if a user had the 1STS τ in mind when giving the sample of Example 8, it
is still possible that Algorithm 1 returns τ2. However, by definition of tree test set, if the
sample given to Algorithm 1 contains a tree test set for Dhtml, we are guaranteed that the
resulting transducer is equivalent to the transducer that the user has in mind, for all trees
on Dhtml.

Our goal in this section is to compute from a given domain D a tree test set for D. The
notion of tree test set is derived from the well-known notion of test set in formal languages.
The test set of a language L (a set of words) is a subset T ⊆ L such that for any two
morphisms f, g : Σ∗ → Γ∗, f|T = g|T implies f|L = g|L.

To compute a tree test set T for D, we first compute a test set TG for the context-free
language G = {τΣ(t) | t ∈ D} (built in Lemma 3), and then define T = {tree(w) | w ∈ TG}.
We prove in Lemma 7 that T is indeed a tree test set for D.

We introduce in Section 7.1 a new construction, asymptotically optimal, for building test
sets of context-free languages. We show in Section 7.2 how this translates to a construction of
a tree test set for a domain D. We also give a sufficient condition of D so that the obtained
tree test set is closed under subtree. This allows us to present, in Section 7.3, an algorithm
that learns 1STSs from a domain D in polynomial-time (by building the tree test set T of D,
and asking to the user the outputs corresponding to the trees of T).

7.1 Test Sets for Context-Free Languages
We show in this section how to build, from a context-free grammar G, a test set of size of
O(|G|3). Our construction is asymptotically optimal. We reuse lemmas from [38, 39], which
were originally used to give a O(|G|6) construction.

ECOOP 2017

19:18 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

7.1.1 Plandowski’s Test Set
The following lemma was originally used in [38, 39] to show that any linear context-free
grammar has a test set containing at most O(|R|6) elements. We show in Section 7.1.2 how
this lemma can be used to show a 2|R|3 bound.

Let Σ4 = {ai, ai, bi, bi | i ∈ {1, 2, 3, 4}} be an alphabet. We define:

L4 = {x4 x3 x2 x1 x1 x2 x3 x4 | ∀i ∈ {1, 2, 3, 4}. (xi, xi) = (ai, ai) ∨ (xi, xi) = (bi, bi)}

and T4 = L4 \ {b4 b3 b2 b1 b1 b2 b3 b4}.
The sets L4, T4 ⊆ Σ4 have 16 and 15 elements respectively.

I Lemma 5 ([38, 39]). T4 is a test set for L4.

7.1.2 Linear Context-Free Grammars
We now prove that for any linear context-free grammar G, there exists a test set whose size is
2|R|3. Like the original proof of [38, 39] that gave a O(|R|6) upper bound, our proof relies on
Lemma 5. However, our proof uses a different construction to obtain the new, tight, bound.

I Theorem 3. Let G = (N,Σ, R, S) be a linear context-free grammar. There exists a test set
T ⊆ G for G containing at most 2|R|3 elements.

Proof. (Sketch) Our proof relies on the fact that a linear grammar G can be seen as a
labelled graph whose nodes are non-terminals and whose transitions are rules of the grammar.
A special node labelled ⊥ is used for rules whose right-hand-sides are constant. We define
the notion of optimal path in this graph. We use optimal paths to define paths which are
piecewise optimal. More precisely, for k ∈ N, a word belongs to the set Φk(G) if it can be
derived in G by a path that can be split into k+ 1 optimal paths. We then prove that Φ3(G)
forms a test set for G (by using Lemma 5), which ends our proof as Φ3(G) contains O(|R|3)
elements.

J

We make use of this theorem in the next section to obtain test sets for context-free
grammars which are not necessarily linear.

7.1.3 Context-Free Grammars
To obtain a test set for a context-free grammar G which is not necessarily linear, [38]
constructs from G a linear context-free grammar, Lin(G), which produces a subset of G, and
which is a test set for G.

Formally, Lin(G) is derived from G as follows:
For every productive non-terminal symbol A in G, choose a word xA produced by A.
Every rule r : A → x0A1x1 . . . Anxn in G, where for every i, xi ∈ Σ∗ and Ai ∈ N is
productive, is replaced by n different rules, each one obtained from r by replacing all Ai
with xAi

, except one.

Note that the definition of Lin(G) is not unique, and depends on the choice of the words
xA. The following result holds for any choice of the words xA.

I Lemma 6 ([38, 39]). Lin(G) is a test set for G.

Using Theorem 3, we improve the O(|G|6) bound of [38, 39] for the test set of G to 2|G|3.

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:19

I Theorem 4. Let G = (N,Σ, R, S) be a context-free grammar. There exists a test set T ⊆ G
for G containing at most 2|G|3 elements.

Proof. Follows from Theorem 3, Lemma 6, and from the fact that Lin(G) has at most
|G| =

∑
A→rhs∈R(|rhs| + 1) rules. (When constructing Lin(G), each rule A → rhs of G is

duplicated at most |rhs| times.) J

7.2 Tree Test Sets for Transducers
We use the results of the previous section to construct a tree test set for a domain D.

I Lemma 7. Any domain D = (Σ, Q, I, δ) has a tree test set T of size at most O(|D|)3.
Moreover, if I = Q, then we can build T such that T is closed under subtree.

Proof. Intuitively, we build the tree test set for D by taking the set of trees corresponding
to the test set of G, where G is the grammar built in Lemma 3.

Let τ1 and τ2 be two 1STSs. Let TG be a test set for G. Define T = {tree(w) | w ∈ TG}.
By Theorem 4, we can assume TG has size at most |G|3, and hence, T has size at most |D|3.
Let µ1 and µ2 be morph[τ1] and morph[τ2], respectively. We have:

Jτ1K|T = Jτ2K|T ⇐⇒

∀t ∈ T. τ1(t) = τ2(t) ⇐⇒
∀w ∈ TG. τ1(tree(w)) = τ2(tree(w)) ⇐⇒ (by Lemma 2)
∀w ∈ TG. µ1(τΣ(tree(w))) = µ2(τΣ(tree(w))) ⇐⇒ (by definition of tree)
∀w ∈ TG. µ1(w) = µ2(w) ⇐⇒ (since TG is a test set for G)
∀w ∈ G. µ1(w) = µ2(w) ⇐⇒ (see Lemma 3)
Jτ1K|D = Jτ2K|D

This ends the proof that T is a tree test set for D.
We now show how to construct T such that it is closed under subtree. For every non-

terminal A of G, we define the minimal word wA. These words are built inductively, starting
from the non-terminals which have a rule whose right-hand-side is only made of terminals. In
the definition of Lin(G), we use these words when modifying the rules of G into linear rules.

When then define TG as the test set of Lin(G) (which is also a test set of G), and
T = {tree(w) | w ∈ TG} ∪ {tree(wA) | A ∈ G}. As shown previously, T is a tree test set
for D. We can now prove that T is closed under subtree. Let t = f(t1, . . . , tk) ∈ T . Let
i ∈ {1, . . . , k}. We want to prove that ti ∈ T .

We consider two cases. Either there exists w ∈ TG such that t = f(t1, . . . , tk) = tree(w),
or there exists A ∈ G, t = f(t1, . . . , tk) = tree(wA).

First, if there exists w ∈ TG such that t = f(t1, . . . , tk) = tree(w). Consider a derivation
p for w in the Lin(G). By construction of Lin(G), the first rule is an ε-transition of the
form S → N while the second rule is of the form:

N → (f, 0) · w1 · (f, 1) · · ·wj−1 · (f, j − 1) ·Nj · (f, j) · wj+1 · · ·wk · (f, k).

This second rule corresponds to a rule in G, of the form:

N → (f, 0) ·N1 · (f, 1) · · ·Nj−1 · (f, j − 1) ·Nj · (f, j) ·Nj+1 · · ·Nk · (f, k).

ECOOP 2017

19:20 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

We then have two subcases to consider. Either i 6= j, and in that case ti = tree(wi). By
construction of Lin(G), wi must be equal to wA for some A ∈ G. Thus, we have ti ∈ T
by definition of T .
Or i = j, in that case ti = tree(w′), where w′ is derived by the derivation p where the
first two derivation rules, outlined above, are replaced with the ε-rule S → Ni. This
production rule is ensured to exist in Lin(G), as all states of D are initial, so there exists a
rule S → Nq for all q ∈ Q. (see definition of G in Lemma 3). Then, since w ∈ Φ3(Lin(G)),
and by construction of Φ3(Lin(G)), we conclude that w′ ∈ Φ3(Lin(G)). This ensures that
w′ ∈ TG, and ti ∈ T .
Otherwise, there exists A ∈ G such that t = f(t1, . . . , tk) = tree(wA). Using the fact that
wA was build inductively in the grammar G, using other minimal words wA′ for A′ ∈ G,
we deduce there exists A′ ∈ G such that ti = tree(wA′), and ti ∈ T .

J

Lemma 8 shows the bound given in Lemma 7 is tight, in the sense that there exists an
infinite class of growing domains D for which the smallest tree test set has size |D|3.
I Lemma 8. There exists a sequence of domains D1, D2, . . . such that for every n ≥ 1,
the smallest tree test set of Dn has at least n3 elements, and the size of Dn is linear in n.
Furthermore, this lower bound holds even with the extra assumption that all states of the
domain are initial.

Proof. (Sketch) Our proof is inspired by the lower bound proof for test sets of context-free
languages [38, 39]. For n ≥ 1, we build a particular domain Dn (whose states are all initial),
and we assume by contradiction that it has a test set T of size less than n3. From this
assumption, we expose a tree t ∈ Dn, as well as two 1STSs τ1 and τ2 such that τ1|T = τ2|T
but τ1(t) 6= τ2(t). J

7.3 Learning 1STSs Without Ambiguity

Algorithm 2 Learning 1STSs from a domain.
Input: A domain D, and an oracle 1STS τu.
Output: A 1STS τ functionally equivalent to τu.
1. Build a tree test set {t1 . . . tn} of D, following Lemma 7.
2. For every ti ∈ {t1 . . . tn}, ask the oracle for wi = τu(ti).
3. Run Algorithm 1 on the sample {(ti, wi) | 1 ≤ i ≤ n}.

Our second algorithm (see Algorithm 2) takes as input a domain D, and computes a tree
test set T ⊆ D. It then asks the user the expected output for each tree t ∈ T . The user is
modelled by a 1STS τu that can be used as an oracle in the algorithm. Algorithm 2 then
runs Algorithm 1 on the obtained sample. The 1STS τu expected by the user may still be
syntactically different the 1STS τ returned by our algorithm, but we are guaranteed that
JτK|D = JτuK|D (by definition of tree test set).
I Theorem 5 (Correctness and running time of Algorithm 2). Let τu be a 1STS (used as an
oracle), and D = (Σ, Q, I, δ) a domain such that I = Q. The output τ of Algorithm 2 is a
1STS τ such that JτK|D = JτuK|D.

Furthermore, Algorithm 2 invokes the oracle O(|D|3) times, and terminates in time
polynomial in |D|.

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:21

Proof. The correctness of Algorithm 2 follows from the correctness of Algorithm 1 and from
the fact that T is a tree test set for D. The fact that Algorithm 2 invokes the algorithm
O(|D|3) times follows from the size of the tree test set (see Lemma 7).

Moreover, since all states of D are initial, the tree test set of D that we build is closed
under subtree. The polynomial running time then follows from the fact that Algorithm 1
ends in polynomial time for samples whose domains are closed under subtree.
I Remark. Similarly to Algorithm 1, Algorithm 2 also applies for domains such that I 6= Q,
but the running time is not guaranteed to be polynomial.

J

8 Learning 1STS Interactively

Algorithm 3 Interactive learning of 1STSs.
Input: A domain D, and an oracle 1STS τu whose output alphabet is Γ.
Output: A 1STS τ functionally equivalent to τu.
1. Initialize a map sol from Σ to Automata, such that for f (k) ∈ Σ, sol(f) recognizes
{x0# · · ·#xk | xi ∈ Γ∗},

2. Build a tree test set T of D, following Lemma 7.
3. Initialize a partial function S : TΣ 7→ Γ∗, initially undefined everywhere.
4. While dom(S) 6= T :

Choose a tree f(t1, . . . , tk) /∈ dom(S) such that all subtrees of t belong to dom(S)
(possible since T is closed under subtree).
Build the automatonA recognizing {x0 S(t1)x1 · · · S(tk)xk | x0#x1 · · ·#xk ∈ sol(f)},
representing all possibles values of τu(t) that do not contradict previous outputs.

If A recognizes only 1 word w, define S(t) = w.
Otherwise (A recognizes at least 2 words), define S(t) = τu(t) using the oracle.

Update sol(f) = sol(f) ∩ automaton(t,S(t)).
5. Run Algorithm 1 on S.

Our third algorithm (see Algorithm 3) takes as input a domain D, and computes a tree
test set T ⊆ D. For this algorithm, we require from the beginning that all states of D are
initial, so that T is closed under subtree. For a sample S such that dom(S) is closed under
subtree, and for (t, w) ∈ S, we denote by automaton(t, w) the automaton automaton(y, w)
where y = w is the equation regEquation(t, w,S).

Instead of building the sample S and the intersection
⋂

(t,w)∈S automaton(t, w) all at once,
like algorithms 1 and 2 do, Algorithm 3 builds S and the intersection incrementally. It then
uses the intermediary results to infer outputs, in order to avoid calling the oracle τu too
many times. Overall, we prove that Algorithm 3 invokes the oracle τu at most O(|D|) times,
while Algorithm 2 invokes it O(|D|3) times.

To infer outputs, Algorithm 3 maintains the following invariant for the while loop. First S
is such that dom(S) ⊆ T , and its domain increases at each iteration. Then, for any f (k) ∈ Σ,
sol(f) is equal to

⋂
(t,w)∈S automaton(t, w), and thus recognizes the set

{µ(f, 0)#µ(f, 1)# . . .#µ(f, k) | µ : Σ→ Γ satisfies
∧

(t,w)∈S

regEquation(t, w,S)}.

Intuitively, sol(f) represents the possible values for the output of f in the transducer τu,
based on the constraints given so far.

ECOOP 2017

19:22 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

To infer the output of a tree t = f(t1, . . . , tk), for some f (k) ∈ Σ, Algorithm 3 uses
the fact that τu(f(t1, . . . , tk)) must be of the form µ(f, 0)S(t1)µ(f, 1) · · · S(tk)µ(f, k) for
some morphism µ : Σ→ Γ satisfying

∧
(t,w)∈S equation(t, w). By construction, the NFA A,

that recognizes the set {x0 S(t1)x1 · · · S(tk)xk | x0#x1 · · ·#xk ∈ sol(f)}, recognizes exactly
these words of the form µ(f, 0)S(t1)µ(f, 1) · · · S(tk)µ(f, k).

We then check whether A recognizes exactly one word w, in which case, we know τu(t) = w,
and we do not need to invoke the oracle. Otherwise, there are several alternatives which are
consistent with the previous outputs provided by the user, and we cannot infer τu(t). We
thus invoke the oracle (the user) to obtain τu(t).

Before proving the theorem corresponding to Algorithm 3, we give a lemma on words
which we use extensively in the theorem.
I Lemma 9. Let u, v, w ∈ Γ∗. If uv = vu and uw = wu and u 6= ε, then vw = wv.

Proof. A word p ∈ Γ∗ is primitive if there does not exist r ∈ Γ∗, i > 1 such that p = ri.
Proposition 1.3.2 of [30] states that the set of words commuting with a non-empty word u is
a monoid generated by a single primitive word p. Since v and w both commute with u, there
exist i and j such that v = pi and w = pj , thus vw = wv = pi+j . J

The difficult part of Theorem 6 is to show the number of times the oracle τu is invoked is
O(|D|). We prove this by assuming by contradiction that the number of times τu is invoked
is strictly greater than 3|D| + |Q| times. We prove this entails there are four trees which
are nearly identical and for which our algorithm invokes the oracle (the four trees have the
same root, and differ only for one child). Then, by a close analysis of the word equations
corresponding to these four terms, we obtain a contradiction by proving our algorithm must
have been able to infer the output for at least one of those terms.
I Theorem 6 (Correctness and running time of Algorithm 3). Let τu be a 1STS (used as an
oracle), and D = (Σ, Q, I, δ) a domain such that I = Q. The output τ of Algorithm 3 is a
1STS τ such that JτK|D = JτuK|D.

Algorithm 3 ends in time polynomial in |D| and the number of times it invokes the oracle
τu is in O(|D|).

Proof. (Sketch) The correctness and the polynomial running time of Algorithm 3 can be
proved similarly to Algorithm 2. Note that we can check whether the NFA A recognizes
exactly one word. For that, we obtain a word w that A recognizes, and we intersect A with
the complement of an automaton recognizing w.

The crucial part of Algorithm 3 is that it invokes the oracle τu at most O(|D|) times.
More precisely, we show that Algorithm 3 invokes τu at most |Q|+ 3

∑
(q,f(k),(q1,...,qk)∈δ 1 + k

times, which is |Q|+ 3|D|, and in O(|D|).
The main goal is to prove that for any trees four trees of the same root (ta, tb, tc, td)

differing from only one their ith subtree (respectively tai , tbi , tci , tdi), if we know the output
of τu on all subtrees of ta, tb, tc, td, then we can infer the output for at least one of ta, tb,
tc, td based on the previous outputs. Let xli = τu(tli) be the already known outputs of the
sub-trees and wl = τu(tl) the outputs to ask to the user, for l ∈ {a, b, c, d}. We obtain the
following equations where u, v represent the parts which do not change:

wa = uxai v wb = uxbiv wc = uxciv wd = uxdi v

We prove by contradiction that we could not have asked the user for all wl for l ∈ {a, b, c, d},
because at least one of the answer can be inferred from the previous ones. Here we illustrate
two representative cases of the proof.

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:23

(1) One case is when xai and xbi are neither prefix nor suffix of each other. By observing
where wa and wb differ, we can recover u and v, and the algorithm could have inferred wc
and wd.

(2) Another case is when xai , xbi , and xci are respectively of the form x1, x1x2 and x1x2x3
for some x1, x2, x3 ∈ Γ∗ with x2x3 = x3x2, and x2 6= ε, x3 6= ε. Since we asked the output wa,
wb and wc, then after the first two questions, the values of u and v could not be determined.
In particular, this means that there are some u, v and u′, v′ such that: ux1v = u′x1v

′ and
ux1x2v = u′x1x2v

′ but ux1x2x3v 6= u′x1x2x3v
′.

By assuming without loss of generality that u = u′u′′ and v′ = v′′v, we obtain that
u′′x1 = x1v

′′ and u′′x1x2 = x1x2v
′′, thus v′′x2 = x2v

′′, and then x2 commutes with v′′. Since
x2 also commutes with x3, we deduce v′′ commutes with x3, and then u′′x1x2x3 = x1x2x3v

′′,
which is a contradiction. J

9 Tree with Values

Until now, we have considered a set of trees TΣ which contained only other trees as subtrees,
and with a test set of size O(n3), although we have a linear learning time if we have
interactivity. However, in practice, data structures such as XML are usually trees containing
values. Values are typically of type stringor int, and may be used instead of subtrees. For
convenience, we will suppose that we only have string elements, and that string elements are
rendered raw. We will demonstrate how we can directly obtain a test set of size O(n).

Formally, let us add a special symbol v ∈ Σ, of arity 0, which has another version which
can have a parameter. For each string s ∈ Γ∗ we can thus define the symbol vs and extend
the notion of trees and domains as follows.

For a set of trees T, we define the extended set T ′ by:

T ′ = {t′ | ∃t ∈ T, t′ is obtained from t by replacing each v by a vs for some s ∈ Γ∗}

Note that given a domain D and a height h, there is an infinite number of trees of
height h in D′, while only a finite number in D. Fortunately, thanks to the semantics of the
transducers on vs we define below, finding the tree test sets is easier in this setting.

For any transducer τ we extend the definition of JτK to T ′Σ by defining JτK(vs) = s. We
naturally extend the definition of tree test set of an extended domain D′ to be a set T ′ ⊂ D′
such that for all 1STSs τ1 and τ2, Jτ1K|T ′ = Jτ2K|T ′ implies Jτ1K|D′ = Jτ2K|D′ . After proving
the following lemma, we will state and prove the theorem on linear test sets.
I Lemma 10. For a, b, x, y ∈ Γ∗, c 6= d in Γ, if acx = bcy and adx = bdy, then a = b.

Proof. Either a or b is a prefix of the other. Let us suppose that a = bk for some suffix
k ∈ Γ∗. It follows that kcx = cy and kdx = dy. If k is not empty, then k starts with c and
with d, which is not possible. Hence k is empty and a = b. J

I Theorem 7. If the domain D = (Σ, Q, I, δ) is such that for every f ∈ Σ of arity k > 0,
there exist trees in t1, . . . , tk ∈ D such that f(t1, . . . , tk) ∈ D and each ti contains at least
one v, then there exists a tree test set of D′ of linear size O(|Σ| ·A) where A is the maximal
arity of a symbol of Σ.

Proof. (Intuition) Using the trees provided in the theorem’s hypothesis, we build a linear
set of trees of D′ where the v nodes are replaced successively by two different symbols v“#”
and v“?”. Then, we prove that any two 1STSs which are equal on this set of trees, are
syntactically equal. J

ECOOP 2017

19:24 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

10 Implementation

Our tool (walkthrough in Section 2) is open-source and available at https://github.com/
epfl-lara/prosy. It takes as input an ADT represented by case class definitions written
in a Scala-like syntax, and outputs a recursive printer for this ADT. For the automata
constructions of Algorithm 3, we used the brics Java library2.

In the walkthrough, notice that our tool gives propositions to the user so that the user
does not have to enter the answers manually. The user may choose how many propositions are
to be displayed (default is 9). To obtain these propositions, we use the following procedure.
Remember that for each tree t for which we need to obtain the output, Algorithm 3 builds
an NFA A that recognizes the set of all possible outputs for t (see Section 8). We check for
the existence of an accepted word w0 in A, and compute the intersection A1 between A and
an automaton recognizing all words except w0. We then have two cases. Either A1 is empty,
and therefore we know the output for tree t is w0. In that case, we do not need to interact
with the user, and can continue on to the next tree. Otherwise, A1 recognizes some word
w1 6= w0, which we display as a proposition to the user (alongside w0). We then obtain A2 as
the intersection between A and an automaton recognizing all words except w0 and w1. We
continue this procedure until we have 9 propositions (or whichever number the user entered),
or when the intersected automaton becomes empty.

Concerning support for the String data type, we use ideas from Section 9 and reused
our code from Algorithm 3 to infer outputs. Technically, we replace the String data type
with an abstract class with two case classes, foo, and bar, that must be printed as “foo”
and “bar” respectively. We then obtain an ADT without Strings, on which we apply the
implementation of Algorithm 3 described above. We handle the Int and Boolean data types
similarly, each with two different values which are not prefix of each other (we refer to the
proof of Theorem 6).

11 Evaluation

Although this work is mostly theoretical, we now depict through some benchmarks how many
and which kind of questions our system is able to ask (Figure 3).

The first column is the name of the benchmark. The first two appear in Section 2 and
in the examples. The third is a variation of the second where we add attributes as well,
rendered “ˆ.foo := "bar"”. The fourth is the same but rendered in XML instead of tags. Note
that because we do not support duplication, we need to have a finite number of tags for
XML.

The four rows “binary” illustrate how the number and type of questions may vary only
depending on the user’s answers. We represent binary numbers as either Empty or Zero(x)
or One(x) where x is a binary number. We put in parenthesis what a user willing to print
Zero(One(Zero(Zero(One(Empty))))) would have in mind. The second and the third
“discard” Zero when printing. The fourth one prints Empty as empty, Zero(x) as {x}ab and
One(x) as a{x}b, which result in an ambiguity not resolved until asking a 3-digit number.

The last five rows of Figure 3 also illustrate how the number of asked questions grows
linearly, whereas the number of elements in the test set grows cubically. These five rows
represent a set of classes of type A taking as argument a class of type B, which themselves

2 http://www.brics.dk/automaton/

https://github.com/epfl-lara/prosy
https://github.com/epfl-lara/prosy

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:25

Test set The output was
size inferred asked asked with. . .

Name Total total total nothing a hint suggestions

Grammar (Sec. 2) 116 102 14 6 6 2
Html tags (Ex. 2, 8, 9) 35 28 7 4 2 1
Html tags+attributes 60 52 8 2 4 2
Html xml+attributes 193 179 14 5 3 6
Binary (01001x) 15 12 3 1 2 0
Binary (11x) 15 12 3 3 0 0
Binary (ababx) 15 11 4 3 0 1
Binary (01001) 15 10 5 3 0 2
Binary (aabababbab) 15 9 6 3 0 3
Ax(By(Fz)) 1 3 0 3 1 2 0
Ax(By(Fz)) 2 14 8 6 3 3 0
Ax(By(Fz)) 4 84 67 17 8 4 5
Ax(By(Fz)) 8 584 552 32 19 5 8
Ax(By(Fz)) 16 4368 4305 63 32 16 15

Figure 3 Comparison of the number of questions asked for different benchmarks.

take as argument a class of type F. We report on the statistics by varying the number of
concrete classes between 1, 2, 4, 8 and 16 (see proof of Lemma 8)

The second column is the size of the test set. For the last five rows, the test set contains
a cubic number of elements. The third column is the number of answers our tool was able to
“infer” based on previously “asked” questions, whose total number is in the fourth column.
The fourth column plus the third one thus equal the second one.

Columns five, six and seven decompose the fourth column into the questions which
were either asked without any indication, or with a hint of type “[...]foo[...]” (because the
arguments were known), or with explicit suggestions where the user just had to enter a
number for the choice (see Section 10).

12 Related Work

Our approach of proactively learning transducers by example, or tree-to-string programs, can
be viewed as a particular case of Programming-by-Example. Programming-by-example, also
named inductive programming [42] or test-driven synthesis [37], is gaining more and more
attention, notably thanks to Flash Fill in Excel 2013 [16]. Subsequent work demonstrated
that these techniques could widely be applicable not only to strings, but when extracting
documents [28], normalizing text [24] and number transformations [43]. However, most
state-of-the-art programming-by-example techniques rely on the fact that examples are
unambiguous and/or that the example provider can check the validity of the final pro-
gram [6] [45] [12]. The scope of their algorithms may be larger but they do not guarantee
formal result such as polynomial time or non-ambiguity, and often require the user to come up
with the examples by himself. More generally, synthesizing recursive functions has recently
gained an interest among computer scientists from repairing fragments [25] to very precise
types [41], even by formalizing programming-by-example [13].

Recently, research has pointed out that solving ambiguities is a key to make programming
by example accessible, trustful and reduce the number of errors [34][20]. The power of

ECOOP 2017

19:26 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

interaction is already well known in more statistical approaches, e.g. machine learning [46],
although recent machine-learning based formatting techniques could benefit from more
interaction, because they acknowledge some anomalies [36]. In [18] and even [17], the
authors solve ambiguities by presenting different code snippets, obtained from synthesizing
expressions of an expected type and from other sources of information. Nonetheless, the
user has to choose between hard-to-read code snippets. Instead of asking which transducer
is correct, we ask for what is the right output. Asking sub-examples at run-time proved to
be a successful strategy when synthesizing recursive functions [1]. To deal with ambiguous
samples, they developed a Saturate rule to ask for inputs covering the inferred program.
In our case, however, such coverage rule still yield the ambiguity raised in example 9, leaving
the chance of finding the right program to heuristics.

Researchers have investigated fundamental properties of tree-to-string or tree-to-word
transducers [5], including expressiveness of even more complex classes than we consider [4],
but none of them proposed a practical learning algorithm for such transducers. The situation
is analogous for Macro Tree Transducers [7] [11]. Lemay [29] explores the synthesis of
top-down tree-to-tree transducers using an algorithm similar to L∗ for automata [6] and
tree automata [8]. These learning algorithms require the user to be in possession of a set
of examples that uniquely defines the top-down tree transducer. We instead are able to
incrementally ask for examples which resolve ambiguities, although our transducers are
single-state. There are also probabilistic tree-to-string transducers [14], but they require
the use of a corpus and are not adapted to synthesizing small-size code portions with a few
examples.

A Gold-style learning algorithm [27, 26, 29] was created for sequential tree-to-string
transducers. It runs in polynomial-time, but has a drawback: it requires the input/output
examples to form a characteristic sample for the transducer which is being learned. The
transducer which is being learned is however not known in advance. As such, it is not clear
in practice how to construct such a characteristic sample. When the input/output examples
do not form a characteristic sample, the algorithm might fail, and the user of the algorithm
has no indication on which input/output examples should be added to obtain a characteristic
sample.

In the case when trees to be printed are programming abstract syntax trees, our work is
the dual of the mixfix parsing problem [23]. Mixfix parsing takes strings to parse and the
wrapping constants to print the trees, and produces the shape of the tree for each string.
Our approach requires the shape of the trees and strings of some trees, and produces the
wrapping constants to print the trees.

12.1 Equivalence of top-down tree-to-string transducers

Since tree test sets uniquely define the behavior of tree-to-string transducers, they can be used
for checking tree-to-word transducers equivalence. Checking equivalence of sequential (order-
preserving, non-duplicating) tree-to-string transducers can already be solved in polynomial
time [44], even when they are duplicating, and not necessarily order-preserving [31].

It was also shown [19] that checking equivalence of deterministic top-down macro tree-
to-string transducers (duplication is allowed, storing strings in registers to output them
later is allowed) is decidable. Complexity-wise, this result gives a co-randomized polynomial
time algorithm for linear (non-duplicating) tree-to-string transducers. This complexity
result was recently improved in [10], where it was proved that checking equivalence of linear
tree-to-string transducers can be done in polynomial time.

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:27

12.2 Test sets

The polynomial time algorithms of [44, 10] exploit a connection between the problem of
checking equivalence of sequential top-down tree-to-string transducers and the problem of
checking equivalence of morphisms over context-free languages [44].

This latter problem was shown to be solvable in polynomial time [38, 39] using test sets.
More specifically, this work shows that each context-free language L has a (finite) test set
whose size is O(n6) (originally “finite” in [3, 15] and then “exponential” in [2]), where n is
the size of the grammar. They also provide a lower bound on the sizes of the test sets of
context-free languages, by exposing a family of grammars for which the size of the smallest
test is O(n3).

As a result, when checking the equivalence of two morphisms f and g over a context-
free language L, it is enough to check the equivalence on the test set of L whose size is
polynomial. This result translates (as described in [44]) to checking equivalence between
sequential top-down tree-to-string transducers in the following sense. When checking the
equivalence of two such transducers P1 and P2, it is enough to do so for a finite number of
trees, which correspond to the test set of a particular context-free language. This language
can be constructed from P1 and P2 in time |P1||P2|.

I Remark. Theorem 3 also helps improve the bound for checking equivalence of 1STS
with states, using the known reduction from equivalence of 1STS with states to morphisms
equivalence over a context-free language (reduction similar to Lemma 3, see [44, 26]).

13 Conclusion

We have presented a synthesis algorithms that can learn from examples tree-to-string functions
with the input tree as the only argument. This includes functions such as pretty printers.
Crucially, our algorithm can automatically construct a sufficient finite set of input trees,
resulting in an interactive synthesis approach that in which the user needs to answer only
a linear number of questions in the grammar size. Furthermore, the interaction process
driven by our algorithm guarantees that there is no ambiguity: the recursive function of
the expected form is unique for a given set of input-output examples. Moreover, we have
analyzed the structure of word equations that the algorithm needs to solve and shown that
they have a special structure allowing them to be solved in deterministic polynomial time,
which results in overall polynomial running time of our synthesizer. Our results make a case
that providing tests for tree-to-string functions is a viable alternative to writing the recursive
programs directly, an alternative that is particularly appealing for non-expert users.

References

1 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis. In
International Conference on Computer Aided Verification, 2013.

2 Jürgen Albert, Karel Culik, and Juhani Karhumäki. Test sets for context free languages and
algebraic systems of equations over a free monoid. Information and Control, 52(2):172–186,
1982.

3 Michael H Albert and J Lawrence. A proof of Ehrenfeucht’s conjecture. Theoretical Com-
puter Science, 41:121–123, 1985.

4 Rajeev Alur and Loris D’Antoni. Streaming tree transducers. In Automata, Languages,
and Programming, pages 42–53. Springer, 2012.

ECOOP 2017

19:28 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

5 Rajeev Alur and Pavol Černý. Expressiveness of streaming string transducers. In Kamal
Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010,
Chennai, India, volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2010.

6 Dana Angluin. Learning regular sets from queries and counterexamples. Information and
computation, pages 87–106, 1987.

7 Patrick Bahr and Laurence E. Day. Programming macro tree transducers. In Proceedings
of the 9th ACM SIGPLAN workshop on Generic programming, pages 61–72. ACM, 2013.

8 Jérôme Besombes and Jean-Yves Marion. Learning tree languages from positive examples
and membership queries. In Shai Ben-David, John Case, and Akira Maruoka, editors,
Algorithmic Learning Theory, 15th International Conference, ALT 2004, Padova, Italy,
October 2-5, 2004, Proceedings, volume 3244 of Lecture Notes in Computer Science, pages
440–453. Springer, 2004. doi:10.1007/978-3-540-30215-5_33.

9 Adrien Boiret. Normal Form on Linear Tree-to-word Transducers. In 10th International
Conference on Language and Automata Theory and Applications, 2016.

10 Adrien Boiret and Raphaela Palenta. Deciding equivalence of linear tree-to-word trans-
ducers in polynomial time. CoRR, abs/1606.03758, 2016.

11 Joost Engelfriet and Sebastian Maneth. Output string languages of compositions of determ-
inistic macro tree transducers. Journal of Computer and System Sciences, 64(2):350–395,
2002.

12 John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing Data Structure Transforma-
tions from Input-output Examples. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2015, pages 229–239, New
York, NY, USA, 2015. ACM.

13 Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. Example-
directed synthesis: a type-theoretic interpretation. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, 2016.

14 Jonathan Graehl and Kevin Knight. Training tree transducers. Technical report, DTIC
Document, 2004.

15 Victor Sergeevich Guba. Equivalence of infinite systems of equations in free groups and
semigroups to finite subsystems. Mathematical Notes, 40(3):688–690, 1986.

16 Sumit Gulwani. Synthesis from Examples. In WAMBSE Special Issue, Infosys Labs Brief-
ings, volume 10(2), 2012.

17 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using
types and weights. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013, pages 27–38. ACM, 2013. doi:10.1145/2462156.2462192.

18 Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. Interactive Synthesis of Code Snip-
pets. In Proceedings of the 23rd International Conference on Computer Aided Verification,
CAV’11, pages 418–423, Berlin, Heidelberg, 2011. Springer-Verlag.

19 Helmut Seidl, Sebastian Maneth, and Gregor Kemper. Equivalence of deterministic top-
down tree-to-string transducers is decidable. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, pages 943–962. IEEE, 2015.

20 Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. Programming by manipulation for
layout. In Proceedings of the 27th annual ACM symposium on User interface software and
technology, 2014.

21 Patrik Jansson. Functional Polytypic Programming. PhD thesis, Institutionen för
datavetenska, Göteborg : Chalmers University of Technology, 2000.

http://dx.doi.org/10.1007/978-3-540-30215-5_33
http://dx.doi.org/10.1145/2462156.2462192

Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:29

22 Artur Jeż. Word equations in linear space. arXiv preprint arXiv:1702.00736, 2017.
23 Jean-Pierre Jouannaud, Claude Kirchner, Hélène Kirchner, and Aristide Megrelis. Program-

ming with equalities, subsorts, overloading, and parametrization in OBJ. The Journal of
Logic Programming, 12(3):257–279, 1992.

24 Dileep Kini and Sumit Gulwani. Flashnormalize: Programming by examples for text nor-
malization. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pages 776–783. AAAI Press, 2015. URL: http:
//ijcai.org/Abstract/15/115.

25 Manos Koukoutos, Etienne Kneuss, and Viktor Kuncak. An update on deductive synthesis
and repair in the leon tool. In Ruzica Piskac and Rayna Dimitrova, editors, Proceedings
Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016.,
volume 229 of EPTCS, pages 100–111, 2016. doi:10.4204/EPTCS.229.9.

26 Grégoire Laurence. Normalisation et Apprentissage de Transductions d’Arbres en Mots.
PhD thesis, Université des Sciences et Technologie de Lille-Lille I, 2014.

27 Grégoire Laurence, Aurélien Lemay, Joachim Niehren, Sławek Staworko, and Marc Tom-
masi. Learning sequential tree-to-word transducers. In International Conference on Lan-
guage and Automata Theory and Applications, pages 490–502. Springer, 2014.

28 Vu Le and Sumit Gulwani. FlashExtract: A framework for data extraction by examples.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, page 55. ACM, 2014.

29 Aurélien Lemay, Sebastian Maneth, and Joachim Niehren. A learning algorithm for top-
down XML transformations. In Jan Paredaens and Dirk Van Gucht, editors, Proceedings of
the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, pages 285–296. ACM,
2010. doi:10.1145/1807085.1807122.

30 M Lothaire. Combinatorics on words, volume 17. Cambridge University Press, 1997.
31 Sebastian Maneth and Helmut Seidl. Deciding equivalence of top-down XML transforma-

tions in polynomial time. In PLAN-X, pages 73–79, 2007.
32 Mikaël Mayer and Jad Hamza. Optimal test sets for context-free languages. CoRR,

abs/1611.06703, 2016. URL: http://arxiv.org/abs/1611.06703.
33 Mikaël Mayer, Jad Hamza, and Viktor Kuncak. Polynomial-time proactive synthesis of

tree-to-string functions from examples. CoRR, abs/1701.04288, 2017. URL: http://arxiv.
org/abs/1701.04288.

34 Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Alex Polozov,
Rishabh Singh, Ben Zorn, and Sumit Gulwani. User interaction models for disambigu-
ation in programming by example. In 28th ACM User Interface Software and Technology
Symposium, 2015.

35 Heather Miller, Philipp Haller, Eugene Burmako, and Martin Odersky. Instant pickles:
generating object-oriented pickler combinators for fast and extensible serialization. In Pro-
ceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, In-
dianapolis, IN, USA, October 26-31, 2013, pages 183–202, 2013.

36 Terence Parr and Jurgen Vinju. Towards a universal code formatter through machine
learning. In Proceedings of the 2016 ACM SIGPLAN International Conference on Software
Language Engineering, pages 137–151. ACM, 2016.

37 Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. Test-driven synthesis.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, page 43. ACM, 2014.

ECOOP 2017

http://ijcai.org/Abstract/15/115
http://ijcai.org/Abstract/15/115
http://dx.doi.org/10.4204/EPTCS.229.9
http://dx.doi.org/10.1145/1807085.1807122
http://arxiv.org/abs/1611.06703
http://arxiv.org/abs/1701.04288
http://arxiv.org/abs/1701.04288

19:30 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

38 Wojciech Plandowski. Testing equivalence of morphisms on context-free languages. In
European Symposium on Algorithms, pages 460–470. Springer, 1994.

39 Wojciech Plandowski. The complexity of the morphism equivalence problem for context-free
languages. PhD thesis, Department of Mathematics, Informatics, and Mechanics, Warsaw
University, 1995.

40 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. In
Foundations of Computer Science, 1999. 40th Annual Symposium on, pages 495–500. IEEE,
1999.

41 Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from
polymorphic refinement types. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, 2016.

42 Oleksandr Polozov and Sumit Gulwani. Flashmeta: a framework for inductive program
synthesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part of
SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 107–126, 2015. doi:
10.1145/2814270.2814310.

43 Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from input-
output examples. In Proc. of the 24th CAV conference, pages 634–651, Berlin, Heidelberg,
2012. Springer-Verlag.

44 Sławomir Staworko, Grégoire Laurence, Aurélien Lemay, and Joachim Niehren. Equival-
ence of deterministic nested word to word transducers. In International Symposium on
Fundamentals of Computation Theory, pages 310–322. Springer, 2009.

45 Kuat Yessenov, Shubham Tulsiani, Aditya Krishna Menon, Robert C. Miller, Sumit Gul-
wani, Butler W. Lampson, and Adam Kalai. A colorful approach to text processing
by example. In Shahram Izadi, Aaron J. Quigley, Ivan Poupyrev, and Takeo Igarashi,
editors, The 26th Annual ACM Symposium on User Interface Software and Technology,
UIST’13, St. Andrews, United Kingdom, October 8-11, 2013, pages 495–504. ACM, 2013.
doi:10.1145/2501988.2502040.

46 Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and strong labelers.
In Advances in Neural Information Processing Systems, 2015.

http://dx.doi.org/10.1145/2814270.2814310
http://dx.doi.org/10.1145/2814270.2814310
http://dx.doi.org/10.1145/2501988.2502040

	Introduction
	Example Run of Our Synthesis Algorithm
	Discussion
	Advantages of Synthesis Approach
	Challenges in Obtaining Efficient Algorithms

	Notation
	Trees and Domains
	Transducers

	Transducers as Morphisms
	Learning 1STS from a Sample
	NP-completeness of the general case
	Word Equations
	Algorithm for Learning from a Sample

	Learning 1STSs Without Ambiguity
	Test Sets for Context-Free Languages
	Plandowski's Test Set
	Linear Context-Free Grammars
	Context-Free Grammars

	Tree Test Sets for Transducers
	Learning 1STSs Without Ambiguity

	Learning 1STS Interactively
	Tree with Values
	Implementation
	Evaluation
	Related Work
	Equivalence of top-down tree-to-string transducers
	Test sets

	Conclusion

