
A Generic Approach to Flow-Sensitive
Polymorphic Effects
Colin S. Gordon

Drexel University
csgordon@drexel.edu

Abstract
Effect systems are lightweight extensions to type systems that can verify a wide range of important
properties with modest developer burden. But our general understanding of effect systems is
limited primarily to systems where the order of effects is irrelevant. Understanding such systems
in terms of a lattice of effects grounds understanding of the essential issues, and provides guidance
when designing new effect systems. By contrast, sequential effect systems — where the order of
effects is important — lack a clear algebraic characterization.

We derive an algebraic characterization from the shape of prior concrete sequential effect
systems. We present an abstract polymorphic effect system with singleton effects parameterized
by an effect quantale — an algebraic structure with well-defined properties that can model a range
of existing order-sensitive effect systems. We define effect quantales, derive useful properties, and
show how they cleanly model a variety of known sequential effect systems. We show that effect
quantales provide a free, general notion of iterating a sequential effect, and that for systems we
consider the derived iteration agrees with the manually designed iteration operators in prior work.
Identifying and applying the right algebraic structure led us to subtle insights into the design
of order-sensitive effect systems, which provides guidance on non-obvious points of designing
order-sensitive effect systems. Effect quantales have clear relationships to the recent category
theoretic work on order-sensitive effect systems, but are explained without recourse to category
theory. In addition, our derived iteration construct should generalize to these semantic structures,
addressing limitations of that work.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases Type systems, effect systems, quantales, polymorphism

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.13

1 Introduction

Effect systems are a well-known lightweight extension to standard type systems, which are
capable of verifying an array of useful program properties with modest developer effort.
They have proven useful for enforcing error handling [59, 4, 29], ensuring a variety of safety
properties for concurrent programs [18, 19, 17, 10, 9, 20], purity [33, 16], safe arena-based
memory management [41, 55, 57], and more. Effect systems extend type systems to track
not only the shape of and constraints on data, but also a summary of the side effects caused
by an expression’s evaluation. Java’s checked exceptions are the best-known example of an
effect system — the effect of an expression is the set of (checked) exceptions it may throw —
and other effects have a similar flavor, like the set of heap regions accessed by parallel code,
or the set of locks that must be held to run an expression without data races.

However, our understanding of effect systems is concentrated in the space of systems
like Java’s checked exceptions, where the order of effects is irrelevant: the system does not
care that an IllegalArgumentException would be thrown before any possible IOException.

© Colin S. Gordon;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 13; pp. 13:1–13:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 A Generic Approach to Flow-Sensitive Polymorphic Effects

Effects in such systems are characterized by a join semilattice, which captures exactly systems
where ordering is irrelevant (since the join operation is commutative and associative). This is
an impressively large and useful class of systems, but the assumption that order is irrelevant
leaves some of the more sophisticated effect systems for checking more powerful properties out
of reach. We refer to this class of effect systems — the traditional default — as commutative
effect systems, to contrast against the class we study in this paper. The alternative class of
effect systems, where the order in which effects occur matters — sequential effect systems,
following Tate’s terminology [56]1 — reason directly about the proper ordering of program
events. Examples include non-block-structured reasoning about synchronization for data
races and deadlock freedom [9, 28, 53], atomicity [21, 20], and memory management [11].

Effect system design for the traditional commutative effect systems has been greatly aided
in both theory and practice by the recognition that effects in such systems form a bounded
join semilattice — a lattice with top, bottom, and all binary joins (least-upper-bounds).
On the theory side, this permits general formulations of effect systems to study common
properties [42, 50, 3]. On the practical side, this guides the design and implementation of
working effect systems. If an effect system is not a join semilattice, why not? (Usually
this indicates a mistake.) Effect system frameworks can be implemented generically with
respect to an effect lattice [50, 58], and in the common case where effects are viewed as sets
of required capabilities, simply specifying the capabilities and exploiting the default powerset
lattice makes core design choices straightforward. In the research literature, the ubiquity of
lattice-based (commutative) effect systems simplifies explanations and presentations.

Sequential effect systems so far have no such established common basis in terms of an
algebraic structure to guide design, implementation, and comparison, making all of these
tasks more difficult. Recent work on semantic approaches to modeling sequential effect
systems [56, 36, 45] has produced very general characterizations of the mathematics behind
key necessary constructs (namely, sequencing effects), but with one recent exception [45]
does not produce a description that is sufficient to model a complete sequential effect system
for a real language. Partly this stems from the fact that the accounts of such work proceed
primarily by generalizing categorical structures used to model sequential computation, rather
than implementing complete source-level effect systems. None of this work has directly
considered effect polymorphism (essential for any real use), singleton effects (required for
prominent effect systems both commutative and sequential), or iteration constructs. So there
is currently a gap between this powerful semantic work, and understanding real sequential
effect systems in a systematic way.

We generalize directly from real source-level type-and-effect systems to produce an
algebraic characterization for sequential effect systems, suitable for modeling some well-
known sequential type-and-effect disciplines, and (we hope) useful for guiding the design of
future sequential effect systems. We give important derived constructions (products, and
inducing an iteration operation on effects), and put them to use with an explicit translation
between Flanagan and Qadeer’s early atomicity type system [21] and a (sequential) equivalent
built as an instantiation of our generic sequential type-and-effect system.

Overall, our contributions include:
A new algebraic characterization of sequential effect systems — effect quantales — that
is consistent with existing semantic notions and easily subsumes commutative effects

1 These effect systems have been alternately referred to as flow-sensitive [42], as they are often formalized
using flow-sensitive type judgments (with pre- and post-effect) rather than effects in the traditional sense.
However, this term suggests a greater degree of path sensitivity and awareness of branch conditions
than most such systems have. We use Tate’s terminology as it avoids technical quibbles.

C. S. Gordon 13:3

A syntactic motivation for effect quantales by generalizing from concrete, full-featured
sequential effect systems. As a result, we are the first to investigate interplay between
singleton effects and sequential effect systems in the abstract (not yet addressed by
semantic work). This reveals subtlety in the metatheory of sequential effects that depend
on program values.
Demonstration that effect quantales are not only general, but also sufficient to modularly
define the structure of existing non-trivial effect systems.
A general characterization of effect iteration for any sequential effect system given by
an effect quantale, including demonstration that the resulting iteration for prior systems
(as effect quantales) exactly matches the hand-constructed iteration of the original work.
The form is general enough that it should adapt to semantic characterizations as well.
The first generic sequential effect system with effect polymorphism.
Precise characterization of the relationship between effect quantales and related notions,
ultimately connecting the syntax of established effect systems to semantic work, closing a
gap in our understanding.

2 Background on Commutative and Sequential Effect Systems

Here we derive the basic form of a new algebraic characterization of sequential effects based
on generalizing from the use of effects in current sequential effect systems. The details of this
form are given in Section 3, with a corresponding generic type-and-effect system in Section 6.
We refer to the two together as a framework for sequential effect systems.

By now, the standard mechanisms of commutative effect systems — what is typically
meant by the phrase “type-and-effect system” — are well understood. The type judgment
Γ ` e : τ of a language is augmented with a component χ describing the overall effect of
the term at hand: Γ ` e : τ | χ. Type rules for composite expressions, such as forming a
pair, join the effects of the child expressions by taking the least upper bound of those effects
(with respect to the effect lattice). And the final essential adjustment is to handle the latent
effect of a function — the effect of the function body, which is deferred until the function is
invoked. Function types are extended to include this latent effect, and this latent effect is
included in the effect of function application. Allocating a closure itself has no meaningful
effect, and is typically given the bottom effect in the semilattice:

T-Fun
Γ, x : τ ` e : τ ′ | χ

Γ ` (λ x. e) : τ
χ→ τ ′ | ⊥

T-Call
Γ ` e1 : τ

χ→ τ ′ | χ1 Γ ` e2 : τ | χ2

Γ ` e1 e2 : τ ′ | χ1 t χ2 t χ

Consider the interpretation for concrete effect systems. Java’s checked exceptions are an
effect system [29, 59]: the effects are sets of (checked) exceptions ordered by inclusion, with
set union as the semilattice join. The throws clause of a method states its latent effect —
the effect of actually executing the method (roughly χ in T-Fun above). The exceptions
thrown by a composite expression such as invoking a method is the union of the exceptions
thrown by subexpressions (e.g., the receiver object expression and method arguments) and
the latent effect of the code being executed (as in T-Call above). Most effect systems for
treating data race freedom (for block-structured synchronization like Java’s synchronized
blocks, such as RCC/Java [19, 1]) use sets of locks as effects, where an expression’s effect
is the set of locks guarding data that may be accessed by that expression. The latent
effect there is the set of locks a method requires to be held by its call-site. Other effect
systems follow similar structure: a binary yes/no effects of whether or not code performs
a sensitive class of action like allocating memory in an interrupt handler [33, 34, 16] or

ECOOP 2017

13:4 A Generic Approach to Flow-Sensitive Polymorphic Effects

accessing user interface elements [27]; tracking the sets of memory regions read, written, or
allocated into for safe memory deallocation [55, 57] or parallelizing code safely [41, 25] or
even deterministically [8, 37].

But these and many other examples do not care about ordering. Java does not care which
exception might be thrown first. Race freedom effect systems for block-structured locking do
not care about the order of object access within a synchronized block. Effect systems for
region-based memory management do not care about the order in which regions are accessed,
or the order of operations within a region. Because the order of combining effects in these
systems is irrelevant, we refer to this style of effect system as commutative effect systems,
though due to their prevalence and the fact that they arose first historically, this is the class
of systems typically meant by general references to “effect systems.”

Sequential effect systems tend to have slightly different proof theory. Many of the same
issues arise (latent effects, etc.) but the desire to enforce a sensible ordering among expressions
leads to slightly richer type judgments. Often they take the form Γ; ∆ ` e : τ | χ a ∆′. Here
the ∆ and ∆′ are some kind of pre- and post-state information — for example, the sets of
locks held before and after executing e [53], or abstractions of heap shape before and after
e’s execution [28]. χ as before is an element of some lattice, such as Flanagan and Qadeer’s
atomicity lattice (Figure 1). Some sequential effect systems have both of these features,
and some only one or the other. (These components never affect the type of variables, and
strictly reflect some property of the computation performed by e, making them part of the
effect.) The judgments for something like a variant of Flanagan and Qadeer’s atomicity type
system that tracks lock sets flow-sensitively rather than using synchronized blocks or for an
effect system that tracks partial heap shapes before and after updates [28] might look like
the following, using ∆ or Υ to track locks held, and tracking atomicities with χ:

Γ, x : τ ; Υ ` e : τ ′ | χ a Υ′

Γ; ∆ ` (λ x. e) : τ
Υ,χ,Υ′−−−−→τ ′ | ⊥ a ∆

Γ; ∆ ` e1 : τ
∆′′,χ,∆′′′−−−−−−→τ ′ | χ1 a ∆′

Γ; ∆′ ` e2 : τ | χ2 a ∆′′

Γ∆ ` e1 e2 : τ ′ | χ1; χ2; χ a ∆′′′

The sensitivity to evaluation order is reflected in the threading of ∆s through the type rule
for application, as well as through the switch to the sequencing composition ; of the basic
effects. Confusingly, while χ continues to be referred to as the effect of this judgment, the
real effect is actually a combination of χ, ∆, and ∆′ in the judgment form. This distribution
of the “stateful” aspects of the effect through a separate part of the judgment obscures that
this judgment really tracks a product of two effects — one concerned with the self-contained
χ, and the other a form of effect indexed by pre- and post-computation information.

Rewriting these traditional sequential effect judgments in a form closer to the commutative
form reveals some subtleties of sequential effect systems:

Γ, x : τ ` e : τ ′ | (Υ ; Υ′)⊗ χ

Γ ` (λ x. e) : τ
(Υ;Υ′)⊗χ−−−−−−−→τ ′ | (∆ ; ∆)⊗⊥

Γ ` e1 : τ
(∆′′;∆′′′)⊗χ−−−−−−−−−→τ ′ | (∆ ; ∆′)⊗ χ1 Γ ` e2 : τ | (∆′ ; ∆′′)⊗ χ2

Γ ` e1 e2 : τ ′ | ((∆ ; ∆′); (∆′ ; ∆′′); (∆′′ ; ∆′′′))⊗ (χ1; χ2; χ)

One change that stands out is that the effect of allocating a closure is not simply the bottom
effect (or product of bottom effects) in some lattice. No sensible lattice of pre/post-state
pairs has equal pairs as its bottom. However, it makes sense that some such equal pair
acts as the left and right identity for sequential composition of these “stateful” effects. In

C. S. Gordon 13:5

commutative effect systems, sequential composition is actually least-upper-bound, for which
the identity element happens to be ⊥. We account for this in our framework.

We also assumed, in rewriting these rules, that it was sensible to run two effect systems
“in parallel” in the same type judgment, essentially by building a product of two effect
systems. Some sequential effect systems are in fact built this way, as two “parallel” systems
(e.g., one for tracking locks, one for tracking atomicities, one for tracking heap shapes, etc.)
that together ensure the desired properties. The general framework we propose supports a
straightforward product construction.

Another implicit assumption in the refactoring above is that the effect tracking that is
typically done via flow-sensitive type judgments is equivalent to some algebraic treatment of
effects akin to how χs are managed above. While it is clear we would want a clean algebraic
characterization of such effects, the existence of such an algebra that is adequate for modeling
known sequential effect systems for non-trivial languages is not obvious. Our proposed
algebraic structures (Section 3) are adequate to model such effects (Section 4).

Examining the sequential variant of other rules reveals more subtleties of sequential effect
system design. For example, effect joins are still required in sequential systems:

Γ ` e : B | χ Γ ` e1 : τ | χ1 Γ ` e2 : τ | χ2

Γ ` if e e1 e2 : τ | χ t χ1 t χ2

⇒
Γ ` e : B | χ Γ ` e1 : τ | χ1 Γ ` e2 : τ | χ2

Γ ` if e e1 e2 : τ | χ; (χ1 t χ2)

Nesting conditionals can quickly produce an effect that becomes a mass of alternating effect
sequencing and join operations. For a monomorphic effect system, concrete effects can always
be plugged in and comparisons made. However, for a polymorphic effect system, it is highly
desirable to have a sensible way to simplify such effect expressions — particularly for highly
polymorphic code — to avoid embedding the full structure of code in the effect. Our proposal
codifies natural rules for such simplifications.

3 Effect Quantales

Quantales [43, 44] are an algebraic structure originally proposed to generalize some concepts in
topology to the non-commutative case, which later found use in models for non-commutative
linear logic [61] and reasoning about observations of computational processes [2], among
other uses. Abramsky and Vickers give a thorough historical account [2]. They are almost
what is required for modeling sequential effect systems, but carry a bit too much structure,
so we define here a slightly less constrained variant called effect quantales. We establish one
very useful property of effect quantales, and show how they subsume commutative effect
systems. We defer more involved examples to Section 4.

I Definition 1 (Effect Quantale). An effect quantale Q = (E ,t,�,>, I) is a join semilattice
(E ,t) with top element > with monoid (E ,�, I), such that � distributes over joins in both
directions — a � (b t c) = (a � b)t (a � c) and (a t b) � c = (a � c)t (b � c) — and > is
a nilpotent element for the monoid (a � > = > = > � a).

As is standard in lattice theory, we induce the partial order x v y def
= x t y = y from the

join operation, which ensures the properties required of a partial order.
We will use the semilattice to model the standard effect hierarchy, using the partial order

for subeffecting. The (non-commutative) monoid operation � will act as the sequential
composition. The properties of the semilattice and distributivity of the product over joins
will permit us to move common prefixes or suffixes of effect sequences into or out of least-
upper-bounds of effects, permitting more concise specifications. Intuitively, the unit I is an

ECOOP 2017

13:6 A Generic Approach to Flow-Sensitive Polymorphic Effects

“empty” effect, which need not be a bottom element. > is an error (invalid effect, allowing us
to reason about “undefined” effect sequences).

Effect quantales inherit a rich equational theory of semilattices, monoids, and extensive
study of ordered algebraic systems [6, 23, 7, 22] from their several substructures, providing
many ready-to-use properties for simplifying complex effects, and giving rise to other proper-
ties more interesting to our needs. One such example is an important and expected form
of monotonicity property: that sequential composition respects the partial order on effects.
In lattice-ordered monoids, this property is called isotonicity, and its proof for complete
lattices [6, ch. 14.4] carries over directly to effect quantales because it requires only binary
joins:

I Proposition 2 (Isotonicity). In an effect quantale Q, a v b and c v d implies that
a � c v b � d.

I Proof. Because b � d = b � (c t d) = (b � c) t (b � d), we know b � c v b � d by
the definition of v. Repeating the reasoning: b � c = (a t b) � c = (a � c) t (b � c), so
a � c v b � c. The partial order is transitive, thus a � c v b � d �

An important litmus test for a general model of sequential effects is that it should subsume
commutative effects (modeled as a join semilattice). This not only implies consistency of
effect quantales with traditional effect systems, but ensures implementation frameworks for
sequential effects (based on effect quantales) would be adequate for implementing commutative
systems as well.

I Lemma 3 (Subsumption of Commutative Effects). Every commutative effect system modeled
as a bounded join semilattice yields an effect quantale, such that ordering of individual effects
is irrelevant, by using join for the monoid operation.

I Proof. Assume a bounded join semilattice L = (E ,∨,>,⊥) of effects. Define a new effect
quantale Q as (E ,∨,∨,>,⊥) (i.e., reuse the join for the monoid). Q satisfies the distributivity
requirements of the effect quantale definition, and naturally has ⊥ as the monoid unit. �

4 Modeling Prior Sequential Effect Systems with Effect Quantales

Many of the axioms of effect quantales are not particularly surprising given prior work on
sequential effect systems; one of this paper’s contributions is recognizing that these axioms
are sufficiently general to capture many prior instances of sequential effect systems. We show
two prominent examples here in detail, and cite further examples.

4.1 Locking with Effect Quantales
A common class of effect systems is those reasoning about synchronization — which locks
are held at various points in the program. In most systems this is done using scoped
synchronization constructs, for which a bounded join semilattice is adequate. Here, we give
an effect quantale for flow-sensitive tracking of lock sets including recursive acquisition. The
main idea is to use a multiset of locks (modeled byM(S) = S → N, where the multiplicity of
a lock is the number of claims a thread has to holding the lock — the number of times it has
acquired said lock) for the locks held before and after each expression. We use ∅ to denote
the empty multiset (where all multiplicities are 0). We use join on multisets to produce least
upper bounds on multiplicities, union to perform addition of multiplicities, and set difference
for zero-limited subtraction.

C. S. Gordon 13:7

I Definition 4 (Synchronization Effect Quantale L). An effect quantale L for lock-based
synchronization with explicit mutex acquire and release primitives is given by:

E =M(L)×M(L)] Err for a set L of possible locks.
(a, a′) t (b, b′) = (a ∨ a′, b ∨ b′) when both effects acquire and release the same set of
locks the same number of times: b/b′ = a/a′ and b′/b = a′/a. Otherwise, the join is Err.
(a, a′) � (b, b′) is (c, c′) for the least c and c′ where a ⊆ c, b ⊆ ((c/(a/a′)) ∪ (a′/a))

(b’s holdings are contained in c less lock releases from the first action, plus the lock
acquisitions from the first action), and c′ = (((c/(a/a′)) ∪ (a′/a))/(b/b′)) ∪ (b′/b) when
such a pair exists, and Err otherwise.
> = Err
I = (∅,∅)

Intuitively, the pair represents the sets of lock claims before and after some action, which
models lock acquisition and release. t intuitively requires each “alternative” to acquire/release
the same locks, while the set of locks held for the duration may vary (and the result assumes
enough locks are held on entry — enough times each — to validate either element). This can
be intuitively justified by noticing that most effect systems for synchronization require, for
example, that each branch of a conditional may access different memory locations, but reject
cases where one branch changes the set of locks held while the other does not (otherwise
the lock set tracked “after” the conditional will be inaccurate for one branch, regardless of
other choices). Sequencing two lock actions, roughly, pushes the locks required by the second
action to the precondition of the compound action (unless such locks were released by the
first action, i.e. in a/a′), and pushes locks held after the first action through the second —
roughly a form of bidirectional framing.

With this scheme, lock acquisition for some lock ` would have (at least) effect (∅, {`}),
indicating that it requires no locks to execute safely, and terminates holding lock `. A release
of ` would have swapped components — ({`},∅) — indicating it requires a claim on ` to
execute safely, and gives up that claim. Sequencing the acquisition and release would have
effect (∅, {`}) � ({`},∅) = (∅,∅). Sequencing acquisitions for two locks `1 and `2 would
have effect (∅, {`1}) � (∅, {`2}) = (∅, {`1, `2}), propagating the extra claim on `1 that is
not used by the acquisition of `2. This is true even when `1 = `2 = ` — the overall effect
would represent the recursive acquisition as two outstanding claims to hold `: (∅, {`, `}).

A slightly more subtle example is the acquisition of a lock `2 just prior to releasing
a lock `1, as would occur in the inner loop of hand-over-hand locking on a linked list:
(acquire `2; release `1) has effect (∅, {`2}) � ({`1},∅) = ({`1}, {`2}). The definition of �
propagates the precondition for the release through the actions of the acquire; it essentially
computes the minimal lock multiset required to execute both actions safely, and computes
the final result of both actions’ behavior on that multiset.

While use of sets rather than multisets would be simpler and would form an effect
quantale for a given set of locks (with some use of disjoint union), such a formulation lacks an
important property needed for substitution to behave correctly. We introduce that property
in Section 6.1, and discuss subtle consequences of this in Section 9.3.

4.2 An Effect Quantale for Atomicity
One of the best-known sequential effect systems is Flanagan and Qadeer’s extension of
RCC/Java to reason about atomicity [20], based on Lipton’s theory of reduction [40] (called
movers in the paper). The details of the movers are beyond what space permits us to explain
in detail, but the essential ideas were developed for a simpler language and effect system in
an earlier paper [21], for which we give an effect quantale.

ECOOP 2017

13:8 A Generic Approach to Flow-Sensitive Polymorphic Effects

>

A

RL

B

; B L R A >
B B L R A >
R R A R A >
L L L > > >
A A A > > >
> > > > > >

Figure 1 Atomicity effects [21]: lattice and sequential composition.

The core idea is that in a well-synchronized (i.e., data race free) execution, each action
of one thread can be categorized by how it commutes with actions of other threads: a left
(L) mover commutes left (earlier) with other threads’ actions (e.g., a lock release), a right
R mover commutes later (e.g., lock acquire), a both B mover commutes either direction
(e.g., a well-synchronized field access). A sequence of right movers, then both-movers, then
left-movers reduces to an atomic action (A). Repeating the process wrapping movers around
an atomic action can again reduce to an atomic action, verifying atomicity for even non-trivial
code blocks including multiple lock acquisitions. As a regular expression, any sequence of
movers matching the regular expression (R∗B∗)∗A(B∗L∗)∗ reduces to an atomic action.
Effect trace fragments of this form demarcate expressions that evaluate as if they were
physically atomic.

I Definition 5 (Atomicity Effect Quantale A). The effect quantale for Flanagan and Qadeer’s
simpler system [21] can be given as:

E = {B,L,R,A,>FQ,Err}. Note that >FQ is the top effect in Flanagan and Qadeer’s
work — their use does not itself require an error element.
a t b is defined according to the lattice given by Flanagan and Qadeer [20] (Figure 1)
augmented with the new Err element as top (not shown in Figure 1).
a � b is defined according to Flanagan and Qadeer’s ; operator (Figure 1) plus our added
Err element as an annihilator (Err � a = Err = a � Err).
> = Err
I = B

Flanagan and Qadeer also define an iterator operator on atomicities, used for ascribing
effects to loops whose bodies have a particular atomicity. We defer iteration until Section 5,
but will revisit this operator there.

Of course the atomicity effect quantale alone is insufficient to ensure atomicity, because
atomicity depends on correct synchronization. The choice of effect for each program expression
is not insignificant, but full atomicity checking requires the product of the synchronization
and atomicity effect quantales. Thus, in Section 8 we study an sequential extension to
Flanagan and Qadeer’s work using L ⊗A.

I Definition 6 (Products of Effect Quantales (⊗)). The product Q ⊗R of effect quantales Q
and R is given by the product of the respective carrier lattices, with all pairs containing >
from either constituent lattice merged into one single Err element for the new lattice. Other
operations are lifted pointwise to each half of the product, modified so if the lifting of an
original operation from Q or R produces > in the respective lattice, the operation in the
product produces Err (in the product lattice). Identity is (IQ, IR), and top is Err.

4.3 Other Examples
Our running example of tracking recursive lock ownership and atomicity is one of the better-
known sequential effect systems, but many more exist. We are unaware of a source-level
sequential effect system that does not form an effect quantale.

C. S. Gordon 13:9

A particularly important class of these examples are those that reason specifically about
execution traces. All sequential effect systems reason to some degree about execution history,
but some examples from the literature have very expressive notions of the past. Skalka’s
trace effects [52] are (abstractions of) sets of event traces, with trace concatenation (lifted
to sets) as the monoid, and set union as join — these operations distribute as required by
effect quantales, so adding a synthetic (unused) error element to Skalka’s work produces one.
Setting aside parallel composition (which we do not study), Nielson and Nielson’s earlier
communication effect system for Concurrent ML [46] is similar to Skalka’s. Their behaviors
act as trace set abstractions, with sequencing and non-deterministic choice (union) acting
as an effect quantale’s monoid and join operations. (They also include a separate parallel
composition of behaviors we do not model, discussed in Section 7.3.) Their subtyping rules
for behaviors imply the required distributivity laws (though as with Skalka’s system, we
must add a synthetic error element). Similarly, Koskinen and Terauchi [38] use pairs of trace
sets characterizing the behavior of finite and infinite executions separately. Their effects form
an effect quantale, though they additionally exploit set intersection for intersection effects.

5 Iteration

Many sequential effect systems include a notion of iteration, used for constructs like explicit
loops. The operator for this, usually written as a postfix ∗, gives the overall effect of any
(finite) number of repetitions of an effect.

The iteration construct must follow from some fixed point construction on the semilattice.
However, the most obvious approach — using a least fixed point theorem on effect quantales
with a bottom element — lacks an important property. Instead, we detail an approach based
on closure operators on partially ordered sets in Section 5.2, which applies to any effect
quantale satisfying some mild restrictions and coincides with manual iteration definitions
for prior work. First, in Section 5.1, we motivate a number of required properties for any
derived notion of iterating an effect.

5.1 Properties Required of an Iteration Operator
Iteration operators must satisfy a few simple but important properties to be useful. We first
list, then explain these properties.
P1 : ∀ e. e v e∗ P2 : ∀ e. e � e∗ v e∗ and e∗ � e v e∗ P3 : ∀ e. (e∗)∗ = e∗
P4 : ∀ e, f . (e t f)∗ = e∗ t f ∗ P5 : ∀ e. I v e∗
Property P1 ensures one iteration of a loop body has no greater effect than multiple

iterations. Similarly, the exact number of iterations should be immaterial (P2). Nesting
should not matter, since semantically the nested loop structure is dynamically unrolled
to some number of sequential iterations (P3). And P4 ensures certain equivalent ways of
writing programs (e.g., a loop in each branch of a conditional vs. a conditional inside a
loop) are effect-equivalent. P1 and P2 are essential validity requirements for iteration. P3
and P4 are not strictly necessary, but permit many additional effect simplifications and
figure prominently in prior work that found them important for building manageable effect
systems [21, 20]. P5 is slightly less obvious, but also critical: the least upper bound of the
empty effect and some iterated effect should be the iterated effect. This allows some helpful
simplifications on effects (e.g., for a conditional whose only non-trivial branch contains a
loop), but will play an essential role in the soundness proof later (the effect of not executing
a loop is I). This is also the property that fails for any straightforward use of least fixed
point constructions — all such constructions work on ascending chains rooted at ⊥ (therefore

ECOOP 2017

13:10 A Generic Approach to Flow-Sensitive Polymorphic Effects

requiring a bottom element), but unless I is constrained to be ⊥, there is no simple way
to ensure with the fixed point equation alone that the resulting fixed point will be ordered
above I . Such a constraint is not unheard of (A satisfies it), but not universal. L has no
natural ⊥, and adding a synthetic ⊥ with identity behavior would mean introducing an effect
usable for acquiring locks or not acquiring locks, which is undesirable.

5.2 Iteration via Closure Operators
For a general notion of iteration, we will use a closure operator on a poset:

I Definition 7 (Closure Operator [6, 7, 51]). A closure operator on a poset (P,v) is a function
f : P → P that is

Extensive: ∀ e, e v f (e)

Idempotent: ∀ e, f (f (e)) = f (e)

Monotone: ∀ e, e′. e v e′ ⇒ f (e) v f (e′)
Closure operators have several particularly useful properties [6, 7, 51]:

Idempotence implies that the range of a closure operator is also the set of fixed points of
the operator.
Closure operators on a poset are equivalent to their ranges. In particular, from the range
of a poset, we can recover the original closure operator by mapping each element of the
poset to the least element of the range that is above that input.
A given subset of a poset is the range of a closure operator — called a closure subset —
if and only if for every element x in the poset, every intersection with the principle up-set
of x (x ↑= {y | x v y}) has a bottom element [7, Theorem 1.8]. (The left direction of the
iff is in fact proven by constructing the closure operator as described above.)

This means that if we can identify the desired range of our iteration operation (the results
of the iteration operator) and show that it meets the criteria to be a closure subset, the
construction above will yield an appropriate closure operator, which we can take directly as
our iteration operation. For this to work, we must identify the desired range, and show it
meets the requirements to induce a closure operator.

The natural choice is the set of elements for which sequential composition is idempotent,
which we refer to as the freely iterable elements:

I Definition 8 (Freely Iterable Elements). The set of freely iterable elements Iter(Q) of an
effect quantale Q is defined as Iter(Q) = {a ∈ Q | a � a = a}.

To induce a closure operator for this set, we must show it exists, and that it is in fact a
closure subset. The first is straightforward since Err and I are freely iterable:

I Proposition 9 (Non-emptiness of Freely Iterable Elements). For any effect quantale Q,
Iter(Q) is non-empty.

In general, the freely iterable elements do not themselves form a closure subset. They could
fail to form a closure subset in the case where some element x is less than two incomparable
freely iterable elements y and z , but x is not itself freely iterable and there is no other freely
iterable element between — there is no freely iterable q such that x v q and q v y and q v z .
Phrased differently the intersection of some element’s principle up-set and the freely iterable
elements lacks a least element.

To derive our final solution, two further restrictions are required. First, the elements
of our chosen closure subset must all reside at or above the identity in the semilattice, to
ensure iteration permits loops to not execute. Second, Iter(Q) must be closed under joins:

C. S. Gordon 13:11

∀ x, y ∈ Iter(Q). (x t y) ∈ Iter(Q). This ensures iteration distributes over joins. We call such
effect quantales — which have well-behaved closure operators — iterable effect quantales.

I Definition 10 (Iterable Effect Quantale). An effect quantale Q is iterable if and only if for
all x the set x ↑ ∩(I ↑ ∩Iter(Q)) contains a least element and Iter(Q) is closed under joins.

Another way to read the first part of the definition is that the closure operator will only exist
for effect quantales for where, for every element x , if x is v two incomparable freely iterable
elements y and z (each greater than I), then there is some freely iterable element q A I such
that x v q v y and q v z (possibly x itself).

Not all effect quantales are iterable, since the subset of freely iterable elements may not
be closed under joins, and the semilattice may not contain a unique least freely iterable
element greater than I for each possible effect. However, violating these appears uncommon;
we have not observed it for any effect quantales we constructed, and cannot identify any
systems in the literature with such irregular lattices. So in practice these restrictions on the
existence of a closure-operator-based iteration appears unproblematic.
I Proposition 11 (Closure for Iterable Effect Quantales). For any iterable effect quantale Q,
I ↑ ∩Iter(Q) is a closure subset.
I Proof. I ↑ ∩Iter(Q) is always non-empty, because Iter(Q) is non-empty and contains Err
(Proposition 9), and I v Err. So if for every x, x ↑ ∩(I ↑ ∩Iter(Q)) has a least element,
I ↑ ∩Iter(Q) is a closure subset [7, Theorem 1.8]. This requirement is exactly the meaning of
Q being iterable, so this is a closure subset. �

I Proposition 12 (Free Closure Operator on Iterable Effect Quantales). For every iterable
effect quantale Q, the function F(X) 7→ min(X ↑ ∩(I ↑ ∩Iter(Q))) is a closure operator
satisfying properties P1–P5.
Our technical report [26] gives the proof, but note P1–3 follow from closure operator properties,
P4 follows from Iter(Q)’s join-closure, and P5 follows from using only elements of I ↑.

5.3 Iterating Concrete Effects
We briefly compare the results of applying our derived iteration operation to effect quantales
we have discussed to known iteration operations.

I Example 13 (Iteration for Atomicity). The atomicity quantale A is iterable, so the free
closure operator models iteration in that quantale. The result is an operator that is the
identity everywhere except for the atomic effect A, which is lifted to >FQ when repeated
(it is not an error, but no longer atomic). This is precisely the manual definition Flanagan
and Qadeer gave for iteration. In Section 4.2, we claimed any trace fragment matching
a regular expression evaluated as if it were physically atomic — a property proven by
Flanagan and Qadeer. In terms of effect quantales, this is roughly equivalent to the claim
that (R∗ � B∗)∗ � A � (B∗ � L∗)∗ v A. With our induced iteration operator, this has a
straightforward proof:

(R∗ � B∗)∗ � A � (B∗ � L∗)∗ = (R � B)∗ � A � (B � L)∗ since R∗ = R, B∗ = B
= R∗ � A � L∗ B is unit for �
= R � A � L since R∗ = R, B∗ = B
= A by definition of �

I Example 14 (Iteration for Commutative Effect Quantales). For any bounded join semilattice,
we have by Lemma 3 a corresponding effect quantale that reuses join for sequencing (and thus,

ECOOP 2017

13:12 A Generic Approach to Flow-Sensitive Polymorphic Effects

⊥ for unit), making the sequencing operation commutative. For purposes of iteration, this
immediately makes all instances of this free effect quantale iterable, as idempotency of join
(x t x = x) makes all effects freely iterable. The resulting iteration operator is the identity
function, which exactly models the standard type rule for imperative loops in commutative
effect systems, which reuse the effect of the body as the effect of the loop:

Γ ` e1 : bool : χ1 Γ ` e2 : unit | χ2

Γ ` while(e1){e2} : unit | χ1 t χ2

For a quantales where sequencing is merely the join operation on the semilattice, the above
standard rule can be derived from our rule in Section 6 by simplifying the result effect:

χ1 � (χ2 � χ2)∗ = χ1 � (χ2 � χ2) = χ1 t (χ2 t χ2) = χ1 t χ2

I Example 15 (Loop Invariant Locksets). For the lockset effect quantale L, the freely iterable
elements are all actions that do not acquire or release any locks — those of the form (a, a) for
some a, and >. These are isomorphic to the set of all multisets formed over the set of locks
(plus the error element >), and for those elements the join is equivalent to the complete lattice
under multiset inclusion (again, plus the top error element). Since I is (∅,∅) (which has
no elements below it), I ↑ ∩Iter(L) = I ↑ ∩({(a, b) | a = b} ∪ {>}) = {(a, b) | a = b} ∪ {>}.
Because the freely iterable elements above unit form a complete lattice, L is iterable. The
resulting closure operator is the identity on the freely iterable elements, and takes all actions
that acquire or release locks to > (Err). This is exactly what intuition suggests as correct —
the iterable elements are those that hold the same locks before and after each loop iteration,
and attempts to repeat other actions should be errors.

6 Syntactic Type Soundness for Generic Sequential Effects

In this section we give a purely syntactic proof that effect quantales are adequate for syntactic
soundness proofs of sequential type-and-effect systems. For the growing family of algebraic
characterizations of sequential effect systems, this is the first soundness proof we know of that
is (1) purely syntactic, (2) handles the indexed versions of the algebra required for singleton
effects, (3) addresses effect polymorphism, and (4) includes direct iteration constructs. This
development both more closely mirrors common type soundness developments for applied
effect systems than the category theoretic approaches discussed in Section 7, and demonstrates
machinery which would need to be developed in an analogous way for semantic proofs using
those concepts. Thus, for hypothetical future effect systems requiring more flexibility than
effect quantales provide, our techniques provide guidance on those concepts without switching
to category theoretic denotational semantics.

We give this soundness proof for an abstract effect system — primitive operations, the
notion of state, and the overall effect systems are all abstracted by a set of parameters
(operational semantics for primitives that are aware of the state choice). This alone requires
relatively little mechanism at the type level, but we wish to not only demonstrate that
effect quantales are sound, but also that they are adequate for non-trivial existing sequential
effect systems. In order to support such embeddings (see Sections 4 and 8), the type system
includes parametric polymorphism — over types and effects as different kinds — as well as
singleton types (e.g., for reference types with region tags) and effect constructors (such as
effects mentioning particular locks). We consider effects equal according to the equations
induced by effect quantale properties, and for families of effects indexed by values we identify
the families with uses of appropriate effect constructors applied to singleton types. We

C. S. Gordon 13:13

demonstrate embeddings by directly translating equivalent constructs, and building artificial
terms to model other constructs. These artificial terms’ derived type rules directly match
the language we embed, though the dynamic semantics may not be preserved (for example,
we do not model concurrency). While unsuitable for a general framework in the style of a
language workbench, this is adequate to show that our characterization of sequential effect
systems’ structure is flexible.

The language we study includes no built-in means to introduce a non-trivial (non-identity)
effect, relying instead on the supplied primitives. The language also includes only the simplest
form of parametric polymorphism for effects (and types), without bounding, constraints [30],
relative effect declarations [59, 50], qualifier-based effects [27], or any other richer forms
of polymorphism. Our focus is demonstrating compatibility of effect quantales with effect
polymorphism and singleton effects, rather than to build a particularly powerful framework.

We stage the presentation to first focus on core constructs related to effect quantales,
then briefly recap machinery from Systems F and Fω (and small modifications beyond what
is standard), before proving type soundness. Section 8 gives an embedding from Flanagan
and Qadeer’s sequential effect system for atomicity [21] into our core language to establish
that it is not only sound, but expressive.

6.1 Parameters to the Language

We parameterize our core language by a number of external features. First among these, is a
slight extension of an effect quantale — an indexed effect quantale.

I Definition 16 (Indexed Effect Quantale). An indexed effect quantale is a quantale whose
elements (and therefore operations) are parameterized over some set.2

The lock set effect quantale L we described earlier is in fact an indexed effect quantale,
parameterized by the set of lock names to consider.

Because the set of well-typed values changes during program execution, we will need to
transport terms well-typed under one use of the quantale into another use of the quantale,
under certain conditions. The first is the introduction of new well-typed values (e.g., from
allocating a new heap cell), requiring a form of inclusion between indexed quantales. The
second is due to substitution: our language considers variables to be values, but during
substitution some variable may be replaced by another value that was already present in the
set. This essentially collapses what statically appears as two values into a single value, thus
shrinking the set of values distinguished inside the quantale. Each requires a different kind
of homomorphism between effect quantales, with different properties.

I Definition 17 (Effect Quantale Homomorphism). An effect quantale homomorphism between
two effect quantales Q and R is a join semilattice homomorphism (a function between the
carrier sets that preserves joins) that additionally preserves sequencing and >.

I Definition 18 (Monotone Indexed Effect Quantale). An indexed effect quantale Q is called
monotone when for two sets S and T where S ⊆ T , the inclusion function from the carrier
of Q(S) to the carrier set of Q(T) induces the obvious inclusion homomorphism.

2 For those accustomed to typed meta-logics (e.g., Coq), one could view an indexed quantale as roughly
the type ∀α : Type. {Decidable α} → α→ Quantale. The point is that the details of the set are irrelevant
to the quantale’s definition.

ECOOP 2017

13:14 A Generic Approach to Flow-Sensitive Polymorphic Effects

I Definition 19 (Collapsible Indexed Effect Quantale). An indexed effect quantale Q is called
collapsible when for any non-empty set S and additional element x (not in S), a function f
from S∪{x} to S that is the identity on elements of S induces a corresponding homomorphism
where only sequences and joins that produced > under S ∪ {x} produce > when transported
by the homomorphism (i.e., f (a) � f (b) = > ⇒ a � b = >, similarly for joins).

We parameterize our core language by a monotone, collapsible indexed effect quantale Q.
Monotonicity is a natural requirement, but collapsibility has some subtle consequences we
defer to Section 9. Any constant (i.e., non-indexed) effect quantale trivially lifts to a monotone
collapsible indexed effect quantale that ignores its arguments. The product construction ⊗
lifts in the expected way.

The language parameters also include:

An abstract notion of state, usually noted by σ ∈ State. For a pure calculus State might
be unit, while other languages might instantiate it to a heap, etc.
A set of primitives pi operating on terms and States. This includes modeling additional
values that do not interact directly with general terms, such as references.
A set of type families Ti for describing the types of primitives.
A meta-function K for ascribing appropriate kinds to types in Ti . Thus, reference types
may be modeled this way.
A meta-function δ for ascribing a type to some primitive that is independent of the state
— i.e., source-level primitive operations (but not store references). δ is constrained such
that for values whose types are applicative (i.e., function types and quantified types) only
the very last such type may have non-unit effect.
A partially ordered state type environment Σ ∈ StateEnv, which maps a subset of the
primitives to types. The least element in the partial order is δ (used for source typing of
primitives).
A partial primitive semantics J−K : Term ⇀ State → Term× E × State defined only on
full applications of primitive operations (i.e., fully-applied primitive operations, judged
according to the types from δ).

For type soundness, we will rely on the following:
Types produced by δ must be well-formed in the empty environment, and must not be
closed base types (e.g., the primitives cannot add a third boolean, which would break the
canonical forms lemma).
Effects produced by J−K are valid for the quantale parameterized by the values at the
call site (i.e., the dynamic effects depend only on the values at the call).
There is a relation Q ` σ : Σ for well-typed states.
When the primitive semantics are applied to well-typed primitive applications and a well-
typed state, the resulting term is well-typed (in the empty environment) with argument
substitutions applied, and the resulting state is well-typed under some “larger” state
type:
ε; Σ ` pi v : τ | γ ∧ Q ` σ : Σ ∧ Jpi vK(σ) = (v′, γ′, σ′)

⇒ ∃Σ′.Σ ≤ Σ′ ∧ ε; Σ′ ` v′ : τ [v/args(δ(pi))] | I ∧ Q ` σ′ : Σ′

We call this property primitive preservation.

This setup leads to a delicate dependency order among these parameters and the core
language to avoid circularity. Such circularity is manageable with sophisticated tools in the
ambient logic [12, 5], but we prefer to avoid them for now. The parameters and language
components are stratified as follows:

The syntax of kinds is closed.

C. S. Gordon 13:15

Kinds κ ::= ? | E | κ⇒ κ

Types τ ::= Ti | τ τ | EQ | Πx : τ
τ→ τ | α | bool | ∀α :: κ

τ→ τ | unit | S(v)

Terms e ::= pi | (λ x. e) | e e | x | true | false | if e e e | while e e | (Λα :: κ. e) | e[τ] | ()
TypeEnv Γ ::= ε | Γ, x : τ | Γ, α :: κ

Values v ::= pi | (λ x. e) | x | true | false

` Γ
` ε

Γ ` τ :: ? x 6∈ Γ

` Γ, x : τ

α 6∈ Γ

Γ ` α :: κ

Γ ` τ :: κ
Γ ` Ti :: K(Ti)

Γ(α) = κ

Γ ` α :: κ

Γ ` τ :: κ⇒ κ′ Γ ` τ ′ :: κ

Γ ` τ τ ′ :: κ′
E ∈ Q(Γ)

Γ ` E :: E
Γ ` τ :: ?

Γ, x : τ ` γ :: E
Γ, x : τ ` τ ′ :: ?

Γ ` (Πx : τ
γ→ τ ′) :: ? Γ ` bool :: ? Γ ` unit :: ?

Γ ` v : τ | I
Γ ` S(v) :: ?

Γ, α :: κ ` γ :: E
Γ, α :: κ ` τ :: ?

Γ ` ∀α :: κ
γ→ τ :: ?

Γ ` e : τ | γ
Γ ` pi : δ(pi) | I

Γ(x) = τ

Γ ` x : τ | I
Γ, x : τ ` e : τ ′ | γe γe v γ
Γ ` (λ x. e) : Πx : τ

γ→ τ ′ | I

Γ ` e1 : Πx : τ
γ→ τ ′ | γ1 Γ ` e2 : τ | γ2 x 6∈ FV(γ, τ ′) ∨ Value(e2)

Γ ` e1 e2 : τ ′[e2/x] | γ1 � γ2 � γ[e2/x]

b ∈ {true, false}
Γ ` b : bool | I

Γ ` c : B | γc Γ ` e1 : τ | γ1 Γ ` e2 : τ | γ2
Γ ` if c e1 e2 : τ | γc � (γ1 t γ2)

Γ ` c : bool | γc Γ ` e : τ | γb

Γ ` while c e : unit | γc � (γb � γc)∗

Γ, α :: κ ` e : τ | γ
Γ ` (Λα :: κ. e) : ∀α :: κ

γ→ τ | I
Γ ` e : ∀α :: κ

γ→ τ | γe Γ ` τ ′ :: κ

Γ ` e[τ ′] : τ [τ ′/α] | γe � γ[τ ′/α] Γ ` () : unit | I

σ, e →γ
Q σ′, e′

σ, (λ x. e) v →I
Q σ, e[v/x] σ, (Λα :: κ. e)[τ]→I

Q e[τ/α]

Jpi vK(σ) = (e′, γ, σ′)
σ, pi v →γ

Q σ′, e′

σ, if true e1 e2 →I
Q σ, e1 σ, if false e1 e2 →I

Q σ, e2 σ,while e eb →I
Q σ, if e (eb; while e eb) ()

σ, e γ−→
∗
Q σ′, e′

σ, e I−→
∗
Q σ, e

σ, e γ−→
∗
Q σ′, e′ σ′, e′ →γ′

Q σ′′, e′′

σ, e γ�γ′−−−→
∗

Qσ
′′, e′′

Figure 2 A generic core language for sequential effects, omitting straightforward structural rules
from the operational semantics. ; is standard sugar for sequencing with in a CBV lambda calculus.

The core language’s syntax for terms and types is mutually defined (the language contains
explicit type application and singleton types), parameterized by Ti and pi . The latter
parameters are closed sets, so the mutual definition is confined to the core.

The type judgment depends on (beyond terms, types, and kinds) δ, K , and StateEnv.

State may depend on terms, types, and kinds.

The dynamic semantics will depend on terms, types, kinds, State, and J−K (which cannot
refer back to the main dynamic semantics).

Primitive preservation depends on the typing relation and state typing.

The type soundness proof will rely on all core typing relations, state typing (which may
be defined in terms of source typing), and the primitive preservation property.

Ultimately this leads to a well-founded set of dependencies for the soundness proof.

ECOOP 2017

13:16 A Generic Approach to Flow-Sensitive Polymorphic Effects

6.2 The Core Language, Formally
Figure 2 gives the (parameterized) syntax of kinds, types, and terms. Most of the structure
should be familiar from standard effect systems and Systems F and Fω (with multiple kinds,
as in the original polymorphic effect calculus [41]), plus standard while loops and conditionals
with effects sequenced as in Section 2. We focus on the differences.

The language includes a dependent product (function) type, which permits program
values to be used in types and effects. This is used primarily through effects — elements
of an effect quantale may mention elements of the set — and through the singleton type
constructor S(−), which associates a type (classifying no terms) with each program value.
Use of the dependent function space is restricted to syntactic values (which includes variables
in our call-by-value language) — the application rule requires that either the argument is
a syntactic value, or the function type’s named argument does not appear in the effect or
result type. In the latter case, for concrete types we will use the standard τ γ→ τ ′ notation. A
minor item of note is that dependent function types and quantified types bind their argument
in the function’s effect as well as in the result type. This permits uses such as a function
acquiring the lock passed as an argument. One small matter important to the soundness
proof: for any value, the effect of the value itself is the identity effect I .

Every rule carries an implicit side condition that the resulting effect is 6= >. Since > acts
as the error element, this permits effect systems to completely reject certain event orders.

A slightly more subtle point concerns the kinding judgment for effects. The requirement
is that an effect E is valid if it is contained in Q(Γ). This is because the type system is
actually given with respect to an indexed effect quantale, as described above, which accepts
some set to parameterize the system by. Q(Γ) is Q instantiated with the set of well-typed
values under Γ.

It is worth recalling briefly the role of parametric effect polymorphism and singleton
types in our system. Singleton types are used as a way to specify elements of the effect
quantale that depend on program values. They are used in type-level application with the
effect constructors we assume are given for the effect quantale. They are also used for data
types: for example, they are used to associate a reference type with the lock guarding access
to that heap cell. Effect polymorphism is an essential aspect of code reuse in static effect
systems [41, 55, 50, 27]. It permits writing functions whose effects depend on the effect of
higher-order arguments. For example, consider the atomicity of fully applying the annotated
term

T = λ ` : lock.Λγ :: E . λ f : unit γ→ unit. (acquire `; f (); release `)

The atomicity of a full application of term T (i.e., application to a choice of effect and
appropriately typed function term) depends on the (latent) atomicity of f . For the moment,
assume we track only atomicities (not lock ownership). The type of T is

Π` : lock B→ ∀ γ :: E B→ (unit γ→ unit) R�γ�L−−−−−→ unit

If f 1 performs only local computation, its latent effect can have static atomicity B, making
the atomicity of T [B] f 1 atomic (A). If f 2 acquires and releases locks, its static effect must be
>FQ (valid but non-atomic), making the atomicity of T [>FQ] f 2 also valid but non-atomic.

The operational semantics is mostly standard: a labeled transition system over pairs of
states and terms, where the label is the effect of the basic step. We omit the structural
rules that simply reduce a subexpression and propagate state changes and the effect label in
the obvious way. The only other subtlety of the single-step relation is that when reducing

C. S. Gordon 13:17

invocations of primitives, if a primitive’s semantics via J−K are defined only on larger-arity
calls than what has been reduced to values v (which also includes type applications), the
next argument applied is reduced, structurally. Incomplete applications of primitives remain
stuck. We also give a transitive reduction relation γ−→

∗
Q which accumulates the effects of

each individual step.

Runtime Typing

Figure 2 gives the source type system. For the runtime type system, three changes are made.
First, a state type Σ is added to the left side of each judgment in the standard way. Second,
primitive typing is changed to rely on Σ rather than δ (recall that δ is the least element
in the partial order, so all Σ will extend δ). And third, the effect kinding is modified to
check for effects in Q(Γ,Σ) — the effect quantale instantiated for a set of values well-typed
under Γ and Σ, allowing values introduced at runtime (such as dynamically allocated locks
or references) to appear in effects.

6.3 Syntactic Safety
Syntactic type safety proceeds in the normal manner (for a language with mutually-defined
types and terms), with only a few wrinkles due to effect quantales. Here we give the
statements of the major lemmas affected by effect quantales, and give relevant details. For
more details and statements of other lemmas (canonical forms, substitution of types into
types and terms, progress), see the technical report [26].

Substitution lemmas are proven by induction on the expression’s type derivation, exploiting
the fact that all values’ effects before subeffecting are I :

I Lemma 20 (Term Substitution). If Γ, x : τ ` e : τ | γ and Γ ` v : τ | I , then Γ ` e[v/x] :

τ [v/x] | γ[v/x], and simultaneously if Γ, x : τ ` τ ′ :: κ and Γ ` v : τ | I then Γ ` τ ′[v/x] :: κ.

I Proof. By simultaneous induction on the typing and kinding relations. The only subtle
case is substitution of a variable occurring in an effect. In this case, the set of well-typed
values is being reduced in size by one, with uses of the substituted variable being replaced by
the new value. This induces the type of homomorphism relevant for collapsible (indexed)
effect quantales. By assumption Q is collapsible, so applying the appropriate homomorphism
as substitution yields an effect that is well-kinded in the smaller type environment. �

We give type preservation below, assuming an iterable effect quantale. This assumption
is only used in while-related cases, so this proof also shows soundness for programs without
loops under non-iterable quantales.

I Lemma 21 (One Step Type Preservation). For all Q, σ, e, e′, Σ, τ , γ, and γ′, if
ε; Σ ` e : τ | γ, Q ` σ : Σ, δ ≤ Σ, and σ, e →γ′

Q σ′, e′ then there exist Σ′, γ′′ such that
ε; Σ′ ` e′ : τ | γ′′, Q ` σ′ : Σ′, Σ ≤ Σ′, γ′ � γ′′ v γ.

I Proof. By induction on the reduction relation. We show here only the while loop case
because it leans heavily on details of the iteration construct. See the technical report [26] for
other cases.

Case E-While: Here e = while ec eb, γ′ = I , σ = σ′, and e′ = if ec (eb; (while ec eb)) ().
By inversion on typing:

ε; Σ ` ec : bool | γc ε; Σ ` eb : τb | γb γ = γc � (γb � γc)∗ τ = unit

ECOOP 2017

13:18 A Generic Approach to Flow-Sensitive Polymorphic Effects

By T-If, T-Unit, desugaring ; to function application, and weakening,
ε; Σ ` if ec (eb; (while ec eb)) () : unit | γc � (((γb � γc) � (γb � γc)∗) t I). State remains
unchanged, so the final obligation in this case is to prove the effect just given for e′
(technically, preceded by I �) is a subeffect of γ = γc � (γb � γc)∗, which relies crucially
on iteration properties P2 and P5:

γc � ((γb � γc � (γb � γc)∗) t I) v γc � (((γb � γc) � (γb � γc)∗) t I)

v γc � (((γb � γc)∗) t I)

v γc � ((γb � γc)∗)

�

I Theorem 22 (Type Preservation). For all Q, σ, e, e′, Σ, τ , γ, and γ′, if ε; Σ ` e : τ | γ,
Q ` σ : Σ, δ ≤ Σ, and σ, e γ′→

∗

Q σ′, e′, then there exist Σ′, γ′′ such that ε; Σ′ ` e′ : τ | γ′′,
Q ` σ′ : Σ′, Σ ≤ Σ′, and γ′ � γ′′ v γ.

7 Relationships to Semantic Notions of Effects

Our notion of an effect quantale is motivated by generalizing directly from the form of
effect-based type judgments. In parallel with our work, there has been a line of semantically-
oriented work to generalize monadic semantics to capture sequential effect systems (indeed,
this is where our use of the term “sequential effect system” originates). Here we compare to
several recent developments: Tate’s productors (and algebraic presentation as effectoids) [56],
Katsumata’s effect-indexed monads [36], and Mycroft, Orchard, and Petricek’s joinads (and
algebraic presentation in terms of joinoids) [45].

All of this work is done primarily in the setting of category theory, by incrementally
considering the categorical semantics of desirable effect combinations (in contrast to our work,
working by generalizing actual effect systems). Fortunately, each piece of work also couples
the semantic development with an algebraic structure that yields an appropriate categorical
structure, and we can compare directly with those without appealing to much category theory.
None of the following systems consider effect polymorphism or give more than a passing
mention of iteration, though given the generality of the technical machinery, we cannot say
any of the following are incompatible with these ideas — only that their use has not been
considered. In contrast, we showed (Section 6) that effect quantales are compatible with
these ideas. Effect domains that depend on program semantics (e.g., singleton effects) have
also not been considered in this semantic work, while we consider indexed effect quantales
whose effects depend on program values. Of the three families of semantic work we compare
to, only Mycroft et al. go so far as to consider conditionals and discuss iteration, which are
ignored (in favor of other important issues) in Tate and Katsumata’s work.

Overall, Tate and Katsumata’s work studies structures which are strict generalizations of
effect quantales (i.e., impose fewer constraints than effect quantales), and any effect quantale
can be translated directly to Tate’s effectoids or Katsumata’s partially ordered effect monoid.
Tate and Katsumata demonstrate that their structures are necessary to capture certain parts
of any sequential effect system — a powerful general claim. By contrast, we demonstrate
that with just a bit more structure than either of these, effect quantales become sufficient to
formalize a range of real sequential effect systems. Mycroft et al.’s work does consider a full
programming language, but studies a different set of structures than we do (block-structured
parallelism rather than iteration).

C. S. Gordon 13:19

7.1 Productors and Effectoids
Tate [56] sought to design the maximally general semantic notion of sequential composition,
proposing a structure called productors, and a corresponding algebraic structure for source-
level effects called an effector. Effectors, however, include models of analyses that are not
strictly modular (e.g., can special-case certain patterns in source code for more precise
effects) [56, Section 5]. To model the strictly compositional cases like syntactic type-and-
effect systems, he also defines a semi-strict variant called an effectoid (using slightly different
notation):

I Definition 23 (Effectoid [56]). An effectoid is a set Eff with a unary relation Base(−), a
binary relation − ≤ −, and a ternary relation − o

9− 7→ −, satisfying
Identity: ∀ ε, ε′. (∃ ε`.Base(ε`) ∧ ε` o

9 ε 7→ ε′)⇔ ε ≤ ε′ ⇔ (∃ εr .Base(εr) ∧ ε o
9 εr 7→ ε′)

Associativity: ∀ ε1, ε2ε3, ε. (∃ ε. ε1
o
9 ε2 7→ ε ∧ εo9ε3 7→ ε)⇔ (∃ ε̂. ε2

o
9 ε3 7→ ε̂ ∧ ε1

o
9 ε̂ 7→ ε)

Reflexive Congruence:
∀ ε. ε ≤ ε
∀ ε, ε′.Base(ε) ∧ ε ≤ ε′ =⇒ Base(ε′)
∀ ε1, ε2, ε, ε

′. ε1
o
9 ε2 7→ ε ∧ ε ≤ ε′ =⇒ ε1

o
9 ε2 7→ ε′

Intuitively, Base identifies effects that are valid for programs with “no” effect — e.g., pure
programs, empty programs. Tate refers to such effects as centric. The binary relation ≤ is
clearly a partial order for subeffecting, and − o

9− 7→ − is (relational) sequential composition.
The required properties imply that the effectoid’s sequential composition can be read as a
non-deterministic function producing the minimal composed effect or any supereffect thereof,
given that the sequential composition relation includes left and right units for any effect, and
that Base and the last position of composition respect the partial order on effects.

Given Tate’s aim at maximal generality (while retaining enough structure for interesting
reasoning about sequential composition), it is perhaps unsurprising that all but the most
degenerate effect quantale yields an effectoid by flattening the monoid and semilattice
structure into the appropriate relations:

I Lemma 24 (Quantale Effectoids). For any nontrivial effect quantale Q (one with more
elements than >), there exists an effectoid E with the following structure:

Eff = E/{>}
Base(a)

def
= I v a ∧ a 6= >

a ≤ b def
= a v b ∧ b 6= >

a o
9 b 7→ c def

= a � b = c′ ∧ c′ v c ∧ c 6= >
I Proof. The laws follow almost directly from the effect quantale laws. In the identity
property, both left and right units are always chosen to be I . Associativity follows directly
from associativity of � and isotonicity. The reflexive congruence laws follow directly from the
definition (and transitivity) of v. Note that we removed the top (error) element, representing
failure by missing entries in the relations. �

A bit more surprising, perhaps, is that many effectoids directly yield quantales:

I Lemma 25. For any effectoid E with a least centric element, and whose underlying partial
order is a join semilattice, and which has a least result for any defined sequential composition,
there exists an effect quantale Q such that:

EQ = EffE] Err
> = Err (a synthetic error element)
t performs the assumed binary join extended for new top element Err.

ECOOP 2017

13:20 A Generic Approach to Flow-Sensitive Polymorphic Effects

a � b produces the least c such that a o
9 b 7→ c when defined, or Err when there is no such

c such that a o
9 b 7→ c (by assumption, a o

9 b is undefined or has a least element).
I is assumed the least centric element

Tate calls effectoids with a least result for any defined sequential composition principalled,
and notes that they are common.

Essentially, in the case where the effectoid’s partial order corresponds to a join semilattice
with a single unit for sequencing and deterministic (modulo subsumption) sequencing, the
two notions coincide. This strongly suggests that our generalization from the type judgments
of a few specific effect systems, rather than from semantic notions, did not cost much in the
way of generality. It also clarifies exactly when effectoids are more general: when effects form
a partial order but not a join semilattice (no unique least upper bound of any pair), have no
universal unit for sequencing, or have non-deterministic sequencing results. We are unaware
of any complete source-level type-and-effect system with these properties.

7.2 Effect-indexed Monads, a.k.a. Graded Monads
Katsumata [36] pursues an independent notion of general sequential composition, where
effects are formalized semantically as a form of type refining monad: a T e σ is a monadic
computation producing an element of type σ, whose effect is bounded by e (which classifies
a subset of such computations). Based on general observations, Katsumata speculates that
sequential effects form at least a pre-ordered monoid, and goes on to validate this (among other
interesting results related to the notion of effects as refinements of computations). Katsumata
shows categorically that these effect indexed monads (which later came to be known as
graded monads to avoid confusion with other forms of indexing) are also a specialization
of Tate’s productors, exactly when the productor is induced by an effectoid derived from a
partially-ordered monoid. Our notion of effect quantales directly induces a partially ordered
monoid (E ,t,�, I) satisfying the appropriate laws. However, the effectoid equivalent to this
translation is not quite the same as the direct effectoid described earlier: graded monads
(particularly the po-monoids) do not directly model partiality, while effectoids can. Setting
this minor discrepancy aside (e.g., one could impose type system restrictions on its use, as we
did in our type system) the relaxation between effect quantales and graded monads is due to
relaxing the bounded join semilattice to a partial order, and the change from graded monads
to effectoids (and thus productors) is due primarily to relaxing the rules for sequencing
identity and determinism of sequencing. Katsumata does note briefly that many interesting
effect systems rely on join-semilattices, but does not explore this specific class of graded
monads in depth.

7.3 Joinads and Joinoids
Mycroft, Orchard, and Petricek [45] further extend graded monads to graded conditional
joinads, and similar to Tate, give a class of algebraic structures — joinoids — that give
rise to their semantic structures. As their base, they take graded monads, further assume a
ternary conditional operator ? : (−,−,−) modeling conditionals whose branch approximation
may depend on the conditional expression’s effect, and parallel composition & suitable for
fork-join style concurrency.

Their ternary operator is motivated by considerations of sophisticated effects such as
control effects like backtracking (e.g., continuations). From their ternary operator, they
derive a binary join, and therefore a partial order. However, their required laws for the
ternary operator include only a right distributivity law because effects from the conditional

C. S. Gordon 13:21

expression itself do not in general distribute into the branches. Thus their derived semilattice
structure satisfies only the right distributivity law (a t b) � c = (a � c) t (b � c), and not,
in general, the left-sided equivalent. They also do not require “commutativity” of the branch
arguments. This means that joinoids, in general, do not give rise to effect quantales — some
(small) amount of structure is not necessarily present — and that in general they validate
fewer equivalences between effects. An effect quantale can induce a ternary operator that
ignores its first argument by simply taking the join of its other arguments, in which case
Mycroft et al.’s derived partial order coincides with that derived from the quantale’s join.
As with the relation to graded monads this translates error element concretely rather than
directly modeling partiality.

Joinads originally arose as an extension to monads that captures a class of combinators
typical of composing parallel and concurrent programs in Haskell, in particular a join
(unrelated to lattices) operator of type M A → M B → M (A × B). This is a natural
model of fork-join-style parallel execution, and gives rise to the & operator of joinoids, which
appears appropriate to model the corresponding notion in systems like Nielson and Nielson’s
effect system for CML communication behaviors [46], which is beyond the space of operations
considered for effect quantales. However, & is inadequate for modeling the unstructured
parallelism (i.e., explicit thread creation and termination, or task-based parallelism) found
in most concurrent programming languages, so we did not consider such composition when
deriving effect quantales. We would like to eventually extend effect quantales for unstructured
concurrent programming: this is likely to include adapting ideas from concurrent program
logics that join asynchronously [14], but any adequate solution should be able to induce an
operation satisfying the requirements of joinoids’ parallel composition.

Ultimately, any effect quantale gives rise to a joinoid, by using the effect quantale’s join
for both parallel composition and to induce the ternary operator outlined above.

Fixed Points

Mycroft et al. also give brief consideration to providing iteration operators through the
existence of fixed points, noting the possibility of adding one type of fixed point categorically,
which carried the undesirable side effect of requiring sequential composition to be idempotent:
∀ b. b � b = b. This is clearly too strict, and prohibits equivalents of both the lockset and
atomicity effect quantales we studied. They take this as an indication that every operation
should be explicitly provided by an algebra, rather than attempting to derive operators. By
contrast, our closure operator approach not only imposes semantics that are by construction
compatible with a given sequential composition operator, but critically coincide with manual
definitions for existing systems.

7.4 Limitations of Semantics-Based Work
The semantic work on general models of sequential effect systems has not seriously addressed
iteration. As discussed above, Mycroft et al. note that a general fixed point map could
be added, but this forces a � a = a for all effects a, which is too restrictive to model the
examples we have considered. Our approach to inducing an iteration operation through
closure operators on posets should be generalizable to each of the semantic approaches we
discussed. The semantics of such an approach are, broadly, well-understood, as closure
operators on a poset are equivalent to a certain monad on a poset category; note that
the three properties of closure operators — extensiveness, idemotence, and monotonicity
— correspond directly to the formulation of a monad in terms of return, join (a flattening

ECOOP 2017

13:22 A Generic Approach to Flow-Sensitive Polymorphic Effects

Γ ` e : a
EXP CONST

Γ ` c : B

EXP LOC

Γ ` m : B

EXP FUN
Γ ` e : Γ(f)

Γ ` f (x)e : B

EXP PRIM
Γ ` ei : ai

Γ ` p(e) : (a1; . . . ; an ; Γ(p))

EXP READ

Γ ` xε : B

EXP RRACE

Γ ` x• : A

EXP ASSIGN
Γ ` e : a

Γ ` xε := e : (a; B)

EXP RASSIGN
Γ ` e : a

Γ ` x• := e : (a; A)

EXP LET
Γ ` e1 : a1 Γ ` e2 : a2

Γ ` let x = e1 in e2 : (a1; a2)

EXP IF
Γ ` e : a Γ ` ei : b : i

Γ ` if e e1 e2 : (a; (b1 t b2))

EXP WHILE
Γ ` e1 : a1 Γ ` e2 : a2

Γ ` while e1 e2 : (a1; (a2; a1)
∗
)

EXP INVOKE
Γ ` e : a Γ ` ei : ai

Γ ` eF
(e) : (a1; . . . ; an ; (tf∈FΓ(f)))

EXP FORK
Γ ` e : a

Γ ` fork e : A

EXP ATOMIC
Γ ` e : a a v A

Γ ` atomic e : a

Figure 3 Flanagan and Qadeer’s type and effect system for atomicity of CAT programs.

operation M (M A) → M A unrelated to lattices or joinoids), and fmap. The semantic
work discussed also omits treatment of polymorphism, and singleton or dependent types.
As a result, their claim of adequacy for sequential effect systems is limited, whereas we
have provide in Section 8 a direct implementation of a non-trivial composite sequential
effect system in terms of effect quantales. On the other hand, their claims to generality
are much stronger than ours, not only because the corresponding algebraic structures are
less restrictive, but because they derived these structures by focusing on a few key elements
common to all sequential effect systems (aside from the parallel combination studied for
joinads) rather than directly attempting to generalize from concrete examples of sequential
effect systems. Ultimately we view our work as strictly complementary to this categorical
work — the latter is foundational and deeply general, while ours is driven by practice of
sequential effect systems. Our work fills in a missing connection between these approaches
and the concrete syntactic sequential effect systems most have studied.

The categorical semantics of polymorphism and dependent types (including singleton
indexing as we have) are generally well-understood [47, 15, 35] and have even gained significant
new tools of late [5], so the work discussed here should be compatible with those ideas, even
if it requires adjustment. However, these related approaches would also need to be extended
to account for substitution into effects that may mention program values; the notion of
collapsibility will require an analogue in semantic accounts.

8 Modeling Prior Effect Systems in a Generic Framework

This section demonstrates that we can model significant prior type systems by embedding into
our core language. Embedding here means a type-and-effect-preserving, but not necessarily
semantics-preserving translation. Our language is generic, but clearly lacks concurrency,
exception handling, and other concrete computational effects. Instead, we show how to model
relevant primitives in our core language, giving derived type rules for those constructs, and
translate type judgments to prove we would at least accept the same programs.

8.1 Types for Safe Locking and Atomicity
Here we briefly recall the details of Flanagan and Qadeer’s earlier work on a type system
for atomicity [21] (the full version [20] requires substantially more space and extends Java —
modeling objects would require a more sophisticated type system for embedding). Flanagan
and Qadeer’s CAT language (Figure 3) is minimalist, defined in terms of a family of primitives
(like our core language), with named functions, racing and race-free heap accesses, expected
control constructs, and atomic blocks (which must be atomic). They use semicolons for

C. S. Gordon 13:23

Q(X) = L(X)⊗A
M ∈ LockNames ⇀ Bool
H ∈ Location ⇀ Term
State = M × H
K(lock) = ?
K(ref) = ?⇒ ?⇒ ?

∀ l ∈ dom(m).Σ(l) = lock
∀ r ∈ dom(h). ε; Σ ` h(r) : Σ(r) | I

Q ` (m, h) : Σ

δ(new lock) = unit B→ lock
δ(acquire) = Πx : lock (∅,{x})⊗R−−−−−−−−→ unit
δ(release) = Πx : lock ({x},∅)⊗L−−−−−−−→ unit
δ(alloc) = Πx : lock B→ ∀α :: ?

B→ τ
B→ ref S(x) τ

δ(read•) = Πx : lock B→ ∀α :: ?
B→ ref S(x) τ

(∅,∅)⊗A−−−−−−→τ
δ(readε) = Πx : lock B→ ∀α :: ?

B→ ref S(x) τ
({x},{x})⊗B−−−−−−−−−→τ

δ(write•) = Πx : lock B→ ∀α :: ?
B→ ref S(x) τ

B→ τ
(∅,∅)⊗A−−−−−−→τ

δ(writeε) = Πx : lock B→ ∀α :: ?
B→ ref S(x) τ

B→ τ
({x},{x})⊗B−−−−−−−−−→τ

δ(req atomic) = (bool A→ unit) B→ unit

Jnew lock K((m, h))(Σ) = l, (m[l 7→ false], h),Σ[l 7→ lock] for next l 6∈ dom(m)
Jacquire lK((m[l 7→ false], h))(Σ) = (), (m[l 7→ true], h),Σ
JreleaseK((m[l 7→ true], h))(Σ) = (), (m[l 7→ false], h),Σ
Jalloc l τ vK((m, h))(Σ) = `, (m, h[` 7→ v),Σ[` 7→ ref S(l) τ] for ` 6∈ dom(h)
Jread• l τ `K((m, h))(Σ) = h(`), (m, h),Σ
Jreadε l τ `K((m, h))(Σ) = h(`), (m, h),Σ
Jwrite• l τ ` vK((m, h))(Σ) = v, (m, h[` 7→ v]),Σ
Jwriteε l τ ` vK((m, h))(Σ) = v, (m, h[` 7→ v]),Σ
Jreq atomic f K((m, h))(Σ) = (), (m, h),Σ

Figure 4 Parameters to model Flanagan and Abadi’s Types for Safe Locking [18] (a sequential
variant) and Flanagan and Qadeer’s Types for Atomicity [21] in our framework. We sometimes omit
the locking component of effects when it is simply (∅,∅) to improve readability.

sequencing of atomicity effects. For maximal minimalism, they assume some other type
system has already analyzed the program and identified which heap accesses are racy and
which are well-synchronized. For completeness, we will embed into an instantiation of our
framework that itself distinguishes well-synchronized and racy reads, and establish conditions
under which their abstract notion of well-synchronized is compatible. Thus this section
develops a hybrid of Flanagan and Abadi’s Types for Safe Locking [18] and Flanagan and
Qadeer’s Types for Atomicity [21], further extended to track locks in a flow-sensitive manner
(the former uses synchronized blocks, the latter does not track locks itself). Recall that
in the former, a concurrent functional language with heap is extended by locks, and the
reference type is indexed by a singleton lock identity. The type system tracks the set of
locks held at each program point (there, scoped by lexically scoped synchronized blocks), and
ensures that any access to a heap location guarded by some lock occurs while that lock is
held. This forms the foundation of the ideas behind the better-known RCC/Java [19], which
extends these ideas to the full Java language. We add additional read and write primitives
that may race, to model the atomicity work.

We define in Figure 4 the parameters to the language framework needed to model
locks, mutable heap locations, and lock-indexed reference types, and the primitives to
manipulate them. We define Ti by giving K (which is defined over Ti), and define pi as
LockNames] Location] dom(δ) (locks, heap locations, and primitive operations). The state
consists of a lock heap, mapping locks to a boolean indicating whether each lock is held,
and a standard mutable store. The reference type is indexed by a lock (lifted to a singleton
type). Primitives include lock allocation; lock acquisition and release primitives whose effects
indicate both the change in lock claims and the mover type; allocation of data guarded by a
particular lock; racing (•) and well-synchronized (ε) reads and writes, with effects requiring
(or not) lock ownership as appropriate; and one further primitive for requiring atomicity.
The primitive types are largely similar, so we explain only two in detail. acquire takes one
argument — a lock — that is then bound in the latent effect of the type. That effect is a
product of the locking and atomicity quantales, indicating that the lock acquisition is a right

ECOOP 2017

13:24 A Generic Approach to Flow-Sensitive Polymorphic Effects

mover (R), and that safe execution requires no particular lock claims on entry, but finishes
with the guarantee that the lock passed as an argument is held (we use syntactic sugar for
assumed effect constructors of appropriate arity). The readε primitive for well-synchronized
(non-data-race) reads is akin to a standard dereference operator, but because it works for
any reference — which may be associated with any lock and store values of any type — the
choice of lock and type must be passed as arguments before the reference itself. Given the
lock, cell type, and reference, the final latent effect indicates that the operation requires the
specified lock to be held at invocation, preserves ownership, and is a both mover (B).

We give a stylized definition of the (partial) semantics function for primitives as acting
on not only states but also state types, giving the monotonically increasing state type for
each primitive, as required of the parameters. We also omit restating the dynamic effect in
our J−K; we take it to be the final effect of the corresponding entry in δ with appropriate
value substitutions made — as required by the type system. The definitions easily satisfy the
primitive preservation property assumed by the type system. We take as the partial order
on StateEnv the standard partial order on partial functions, with δ as its least element.

These parameters are adequate to write and type terms like the following atomic function
that reads from a supplied lock-protected reference (permitting syntactic sugar for brevity):

∅ ` λ x. λ r . acquire x; let y = readε x [bool] r in (release x; y)

:

(
Πx : lock (∅,∅)⊗B−−−−−−→ Πr : ref S(x) bool (∅,∅)⊗A−−−−−−→ bool

)
| (∅,∅)⊗ B

CAT is a properly multi-threaded language, while our language is not. As we noted
earlier, our aim is to preserve well-typing, not dynamic semantics, so our translation of fork
will not model concurrent semantics. Blocks of code that do not fork or rely on other threads
should run as expected, though we do not prove this.

CAT’s constants, primitives (new lock, etc.), and mutexes can be translated in almost
the obvious way for our framework, currying their primitives and extending that set with
constants and the mutex names described above. The tricky bit is that CAT presumes some
unspecified race freedom analysis and unspecified type system have already been applied to
distinguish racing and well-synchronized reads, and to rule out basic type errors. Our terms
require lock and type information to be explicitly present in the term, so we assume, beyond
those unspecified analyses, operations LockFor, RefTypeOf, and TypeOf to extract the relevant
local lock names and types. For a term produced using these operations to type-check in our
core language will naturally require a degree of consistency between the unspecified analyses
and the checks of our core language for the lock multiset quantale. However the details are
not necessary to work out, because our relation is conditioned on the assumption that the
translation does type check in our core language.

Conditionals and while loops are translated in the obvious inductive way — note that
aside from CAT’s type system lacking basic types, the handling of atomicity effects is
structured exactly as our rules for those constructs. To handle currying, we adopt the
notations λ x. e ≡ λ x1 . . . λ xn. e for an n-ary closure, and e e′ ≡ (. . . (e e′1) . . . e′n) for n-
ary function application. Note that when typing the expanded forms, the effects of all
but the innermost expanded lambda expression can simply be I , making the overall effect
of the expanded application the left-to-right sequenced effects of the function and each
argument followed by the effect of the inner-most closure. We also use the shorthand
wraplock e ≡ let x = new lock() in (acquire x; e; release x; ()). The atomicity of this
expression is A if and only if e’s atomicity is less than A. Other translations are as follows,
omitting analogous primitive translations:

C. S. Gordon 13:25

J p(e) K =p JeK J eF(e) K =JeK JeK
J f (x)e K =(λ x. JeK) Jatomic eK =req atomic (λ .wraplock JeK); JeK
Jfork eK =let = (λ . JeK) in wraplock () J x• K =read• 〈LockFor(x)〉 〈RefTypeOf(x)〉 x

We assume the translation process produces a mapping from generated subterms back to the
original CAT term (specifically, mapping closures back to CAT’s named functions). atomic
expression are translated to capture the expression in a dynamically-meaningless thunk
passed as a parameter requiring an atomic effect, but run unconditionally. The unconditional
execution allows the actual atomicity of e to be used later, as in CAT. fork operations
are translated in a way that makes the forked thread computationally irrelevant (but, by
induction, preserves typeability and effects) and locally carries an atomic effect as in the
type rule.

The theorem we would like to prove is that translating any well-typed CAT term produces
a term in our core language with the corresponding type and effect. Unfortunately, CAT is
untyped aside from atomicities, so there is no type to translate, and CAT itself cannot check
correct use of well-synchronized vs. racy reads. Instead, we prove an “un-embedding” lemma
by induction on the CAT term:

I Lemma 26 (Unembedding CAT from L ⊗ A). Given a CAT term t, for any Γ, τ , and
effect l ⊗ e ∈ (L⊗A)(Γ) such that Γ ` JtK : τ | l ⊗ e, under the CAT environment Γ̂ mapping
each function name to the final effect of its n-ary closure translation, Γ̂ ` t : e.

9 Related and Future Work

The closely related work is split among three major groups: generic effect systems, algebraic
models of sequential computation, and concrete effect systems.

9.1 Generic Effect Systems
We know of only three generic characterizations of effect systems prior to ours, none of which
handles sequential effects or is extensible with new primitives.

Marino and Millstein give a generic model of a static commutative effect system [42]
for a simple extension of the lambda calculus. Their formulation is motivated explicitly
by the view of effects as capabilities, which pervades their formalism — effects there are
sets of capabilities, values can be tagged with sets of capabilities, and subeffecting follows
from set inclusion. They do not consider polymorphism (beyond the naive exponential-cost
approach of substituting let bindings at type checking). They do however also parameterize
their development by an insightful choice of adjust to change the capabilities available within
some evaluation context and check to check the capabilities required by some redex against
those available, allowing great flexibility in how effects are managed.

Henglein et al. [31] give a simple expository effect system to introduce the technical
machinery added to a standard typing judgment in order to track (commutative) effects.
Like like Marino and Millstein they use qualifiers as a primitive to introduce effects. Because
their goals were instructional rather than technical, the calculus is not used for much (it
precedes a full typed region calculus [55]).

Rytz et al. [50] offer a collection of insights for building manageable effect systems, notably
the relative effect polymorphism mentioned earlier [49] (inspired by anchored exceptions [59])
and an approach for managing the simultaneous use of multiple effect systems with modest
annotation burden. The system was given abstractly, with respect to a lattice of effects.
Toro and Tanter later implemented this as as a polymorphic extension [58] to Schwerter et

ECOOP 2017

13:26 A Generic Approach to Flow-Sensitive Polymorphic Effects

al.’s gradual effect systems [3]. Their implementation is again parameterized with respect to
an effect lattice, supporting only closed effects (i.e., no singletons).

9.2 Algebraic Approaches to Computation
Our effect quantales are an example of an algebraic approach to modeling sequential com-
putation. There are many closely-related approaches beyond those discussed in Section
7, such as action logic [48] and Kleene Algebras (KAs), and Kleene Algebras with Tests
(KATs) [39]. Each of these has some partial order, and an associative binary operation that
distributes over joins (and meets). Some KAs also look very much like effect quantales: one
standard example is a KA of execution traces, similar to the effect systems mentioned in
Section 4.3. However, Kleene Algebras and relatives are intended to model the semantics of
a possibly-failing computation, rather than a classification of “successful” computations, and
thus carries a ring structure unsuitable for effect systems. The requirement that the KA
element 0 of the partial order is nilpotent for sequencing (0 · x = 0 = x · 0) but also least
in the partial order (0 + x = x = x + 0) makes these systems unsuitable for effect systems.
Some effects have no sensible least element: for locking, this would be an effect e that is
considered to both preserve lock sets (e v (∅,∅)) and also change them (e.g., e v (∅, {`})
among others). For those systems where a least element does make sense (atomicity without
locking, or subsuming commutative effects), their least element ⊥ is always the identity for
sequencing — ⊥ � x = x = x � ⊥. The ring requirements would require A � B � A = B for
atomicity, which fails to reflect that such a sequence is not atomic.

9.3 Concrete Effect Systems
We discussed several example sequential effect systems throughout, notably Flanagan and
Abadi’s Types for Safe Locking [18] (the precursor to RCC/Java [19]), and Flanagan and
Qadeer’s Types for Atomicity [21] (again a precursor to a full Java version [20]). This atomicity
work is one of the best-known examples of a sequential effect system. Coupling the atomicity
structures developed there with a sequential version of lockset tracking for unstructured
locking primitives gives rise to interesting effect quantales, which can be separately specified
and then combined to yield a complete effect system.

Suenaga gives a sequential effect system for ensuring deadlock freedom in a language
with unstructured locking primitives [53], which is the closest example we know of to our
lockset effect quantale. However, Suenaga’s lock tracking is structured a bit differently from
ours: he tracks the state of a lock as either explicitly present but unowned (by the current
thread), or owned by the current thread, thus not reasoning about recursive lock acquisition.
This is isomorphic to a set, rather than a multiset, of locks (a subset of a known set of all
locks), and thus checks a different property than our lockset quantale. In fact, most prior
type systems tracking owned locks treat only this binary property. This discrepancy between
prior work and our lockset quantales leads to interesting, and slightly surprising subtleties.

Our first attempt to define the locking effect quantale sought to use only sets of locks,
rather than multisets, and to prohibit recursive lock acquisition. Indeed, such an effect
quantale can be defined, satisfying all required properties, for a fixed set of locks. But once
the set of locks is a parameter, the resulting indexed effect quantale is not collapsible! Viewing
this in terms of the type system, consider the term f = (λ l1. λ l2. acquire l1; acquire l2), which
would have type Πl1 : lock I→ Πl2 : lock (∅,{l1,l2})→ unit (ignoring atomicity). Intuitively,
applying this function to the same lock x twice (f x x) would eventually substitute the same
value for l1 and l2, yielding an expected overall effect of (∅, {x}) — the number of locks

C. S. Gordon 13:27

acquired shrank because the set would collapse, though the underlying term would try to
acquire the same lock twice. Moreover, after reducing the second application, the resulting
term would no longer by type-correct, as (∅, {x}) � (∅, {x}) = Err when holding a lock
twice cannot be represented! This is why the set-based lock tracking is not collapsible. Using
multisets as we do in Section 4 fixes this problem. Suenaga does not encounter this, because
his lack of closures and linear lock ownership do not permit two variables used for locking
to later be unified by substitution. Other work such as RCC/Java [19] avoids the issue
because while the system uses sets, the dynamic semantics permit recursive acquisition and
count recursive claims in the evaluation contexts.

Many other systems that are not typically presented as effect systems can be modeled
as sequential effect systems. Notably this includes systems with flow-sensitive additional
contexts (e.g., sets of capabilities) as alluded to in Section 2, or fragments of type information
in systems that as-presented perform strong updates on the local variable contexts (e.g.,
the state transitions tracked by typestate [60, 24], though richer systems require dynamic
reflection of typestate checks into types [54], which is a richer form of dependent effects than
our framework currently tracks). Other forms of behavioral type systems have at least a close
correspondence to known effect systems, which are likely to be adaptable to our framework
in the future: consider the similarity between session types [32] and Nielson and Nielson’s
effect system for communication in CML [46].

9.4 Limitations and Future Work
There remain a few important aspects of sequential effect systems that neither we, nor related
work on semantic characterizations of sequential effects, have considered. One important
example is the presence of a masking construct [41, 25] that locally suppresses some effect,
such as try-catch blocks or letregion in region calculi. Another is serious consideration of
control effects, which are alluded to in Mycroft et al.’s work [45], but otherwise have not
been directly considered in the algebraic characterizations of sequential effects.

Our generic language carries some additional limitations. It lacks subtyping and “subef-
fecting,” which enhance usability of the system, but these should not present any new
technical difficulties. It also lacks support for adding new evaluation contexts through the
parameters, which is important for modeling constructs like letregion. Allowing this would
require more sophisticated machinery for composing partial semantic definitions [5, 12, 13].

Beyond the effect-flavored variation [41, 55] of parametric polymorphism and the polymor-
phism arising from singleton types as we consider here, the literature contains bounded [30]
(or more generally, constraint-based) effect polymorphism, and unique “lightweight” forms of
effect polymorphism [50, 27] with no direct parallel in traditional approaches to polymorphism.
Extending our approach for these seems sensible and feasible.

Finally, we have not considered concurrency and sequential effects, beyond noting the gap
between joinoids’ fork-join style operator and common source-level concurrency constructs.
As a result we have not directly proven that our multiset-of-locks effect quantale ensures
data race freedom or atomicity for a true concurrent language.

10 Conclusions

We have given a new algebraic characterization — effect quantales — for sequential effect
systems, and shown it sufficient to implement complete effect systems, unlike previous
approaches that focused on a subset of real language features. We used them to model
classic examples from the sequential effect system literature, and gave a syntactic soundness

ECOOP 2017

13:28 A Generic Approach to Flow-Sensitive Polymorphic Effects

proof for the first generic sequential effect system. Moreover, we give the first investigation
of the generic interaction between (singleton) dependent effects and algebraic models of
sequential effects, and a powerful way to derive an appropriate iteration operator on effects
for many effect quantales. We believe this is an important basis for future work designing
complete sequential effect systems, and for generic effect system implementation frameworks
supporting sequential effects.

References
1 Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking: Static

race detection for java. ACM Trans. Program. Lang. Syst., 28(2):207–255, March 2006.
doi:10.1145/1119479.1119480.

2 Samson Abramsky and Steven Vickers. Quantales, observational logic and process se-
mantics. Mathematical Structures in Computer Science, 3(02):161–227, 1993. doi:
10.1017/S0960129500000189.

3 Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. A theory of gradual effect sys-
tems. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’14, pages 283–295. ACM, 2014. doi:10.1145/2628136.2628149.

4 Nick Benton and Peter Buchlovsky. Semantics of an Effect Analysis for Exceptions. In
TLDI, 2007. doi:10.1145/1190315.1190320.

5 Lars Birkedal and Rasmus Ejlers Møgelberg. Intensional type theory with guarded recursive
types qua fixed points on universes. In Logic in Computer Science (LICS), 2013 28th Annual
IEEE/ACM Symposium on, pages 213–222. IEEE, 2013. doi:10.1109/LICS.2013.27.

6 Garrett Birkhoff. Lattice theory, volume 25 of Colloquium Publications. American Mathe-
matical Soc., 1940. Third edition, eighth printing with corrections, 1995.

7 Thomas Scott Blyth. Lattices and ordered algebraic structures. Springer Science & Business
Media, 2006. doi:10.1007/b139095.

8 Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,
Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian.
A Type and Effect System for Deterministic Parallel Java. In OOPSLA, 2009. doi:10.
1145/1640089.1640097.

9 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. In OOPSLA, 2002. doi:10.1145/
582419.582440.

10 Chandrasekhar Boyapati and Martin Rinard. A Parameterized Type System for Race-Free
Java Programs. In OOPSLA, 2001. doi:10.1145/504282.504287.

11 Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a calculus of
capabilities. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 262–275. ACM, 1999. doi:10.1145/292540.292564.

12 Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-theory à la carte.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, pages 207–218. ACM, 2013. doi:10.1145/2429069.
2429094.

13 Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and Bruno C.d.S. Oliveira. Modular
monadic meta-theory. In Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’13, pages 319–330. ACM, 2013. doi:10.1145/2500365.
2500587.

14 Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-guarantee rea-
soning. In Proceedings of the 18th European Symposium on Programming (ESOP), pages
363–377. Springer Berlin Heidelberg, 2009. doi:10.1007/978-3-642-00590-9_26.

http://dx.doi.org/10.1145/1119479.1119480
http://dx.doi.org/10.1017/S0960129500000189
http://dx.doi.org/10.1017/S0960129500000189
http://dx.doi.org/10.1145/2628136.2628149
http://dx.doi.org/10.1145/1190315.1190320
http://dx.doi.org/10.1109/LICS.2013.27
http://dx.doi.org/10.1007/b139095
http://dx.doi.org/10.1145/1640089.1640097
http://dx.doi.org/10.1145/1640089.1640097
http://dx.doi.org/10.1145/582419.582440
http://dx.doi.org/10.1145/582419.582440
http://dx.doi.org/10.1145/504282.504287
http://dx.doi.org/10.1145/292540.292564
http://dx.doi.org/10.1145/2429069.2429094
http://dx.doi.org/10.1145/2429069.2429094
http://dx.doi.org/10.1145/2500365.2500587
http://dx.doi.org/10.1145/2500365.2500587
http://dx.doi.org/10.1007/978-3-642-00590-9_26

C. S. Gordon 13:29

15 Peter Dybjer. Internal type theory. In International Workshop on Types for Proofs and
Programs, pages 120–134. Springer, 1995. doi:10.1007/3-540-61780-9_66.

16 Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R.
Larus, and Steven Levi. Language support for fast and reliable message-based com-
munication in singularity os. In Proceedings of the 1st ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2006, EuroSys ’06, pages 177–190. ACM, 2006.
doi:10.1145/1217935.1217953.

17 Cormac Flanagan and Martín Abadi. Object Types against Races. In CONCUR, 1999.
doi:10.1007/3-540-48320-9_21.

18 Cormac Flanagan and Martín Abadi. Types for Safe Locking. In ESOP, 1999. doi:
10.1007/3-540-49099-X_7.

19 Cormac Flanagan and Stephen N. Freund. Type-Based Race Detection for Java. In PLDI,
2000. doi:10.1145/349299.349328.

20 Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implemen-
tation, PLDI ’03, pages 338–349. ACM, 2003. doi:10.1145/781131.781169.

21 Cormac Flanagan and Shaz Qadeer. Types for atomicity. In Proceedings of the 2003 ACM
SIGPLAN International Workshop on Types in Languages Design and Implementation,
TLDI ’03, pages 1–12. ACM, 2003. doi:10.1145/604174.604176.

22 Laszlo Fuchs. Partially ordered algebraic systems, volume 28 of International Series of
Monographs on Pure and Applied Mathematics. Dover Publications, 2011. Reprint of 1963
Pergamon Press version.

23 Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono. Residuated lattices:
an algebraic glimpse at substructural logics, volume 151 of Studies in Logic and the Foun-
dations of Mathematics. Elsevier, 2007.

24 Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of typestate-
oriented programming. ACM Trans. Program. Lang. Syst., 36(4):12:1–12:44, October 2014.
doi:10.1145/2629609.

25 David K. Gifford and John M. Lucassen. Integrating Functional and Imperative Program-
ming. In Proceedings of the 1986 ACM Conference on LISP and Functional Programming,
LFP ’86, 1986. doi:10.1145/319838.319848.

26 Colin S. Gordon. A Generic Approach to Flow-Sensitive Polymorphic Effects (Extended Ver-
sion). Technical Report arXiv cs.PL 1705.02264, Computing Research Repository (CoRR),
May 2017. URL: https://arxiv.org/abs/1705.02264.

27 Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman. JavaUI: Effects for
Controlling UI Object Access. In Proceedings of the 27th European Conference on Object-
Oriented Programming (ECOOP’13), 2013. doi:10.1007/978-3-642-39038-8_8.

28 Colin S. Gordon, Michael D. Ernst, and Dan Grossman. Static Lock Capabilities for
Deadlock Freedom. In Proceedings of the 8th ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI’12), 2012. doi:10.1145/2103786.2103796.

29 James Gosling, Bill Joy, Guy L Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification: Java SE 8 Edition. Pearson Education, 2014.

30 Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Ch-
eney. Region-based memory management in cyclone. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation, PLDI ’02, pages
282–293. ACM, 2002. doi:10.1145/512529.512563.

31 Fritz Henglein, Henning Makholm, and Henning Niss. Effect types and region-based mem-
ory management. In Benjamin C. Pierce, editor, Advanced Topics in Types and Program-
ming Languages, chapter 3, pages 87–136. MIT Press, 2005.

ECOOP 2017

http://dx.doi.org/10.1007/3-540-61780-9_66
http://dx.doi.org/10.1145/1217935.1217953
http://dx.doi.org/10.1007/3-540-48320-9_21
http://dx.doi.org/10.1007/3-540-49099-X_7
http://dx.doi.org/10.1007/3-540-49099-X_7
http://dx.doi.org/10.1145/349299.349328
http://dx.doi.org/10.1145/781131.781169
http://dx.doi.org/10.1145/604174.604176
http://dx.doi.org/10.1145/2629609
http://dx.doi.org/10.1145/319838.319848
https://arxiv.org/abs/1705.02264
http://dx.doi.org/10.1007/978-3-642-39038-8_8
http://dx.doi.org/10.1145/2103786.2103796
http://dx.doi.org/10.1145/512529.512563

13:30 A Generic Approach to Flow-Sensitive Polymorphic Effects

32 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session
Types. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’08, 2008. doi:10.1145/1328438.1328472.

33 Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion Hodson, James Larus,
Steven Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber. Sealing os processes
to improve dependability and safety. In Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys ’07, pages 341–354. ACM, 2007.
doi:10.1145/1272996.1273032.

34 Galen C. Hunt and James R. Larus. Singularity: Rethinking the software stack. SIGOPS
Oper. Syst. Rev., 41(2):37–49, April 2007. doi:10.1145/1243418.1243424.

35 Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic and the
Foundations of Mathematics. Elsevier, 1999.

36 Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, pages 633–645. ACM, 2014. doi:10.1145/2535838.2535846.

37 Ming Kawaguchi, Patrick Rondon, Alexander Bakst, and Ranjit Jhala. Deterministic Par-
allelism via Liquid Effects. In PLDI, 2012. doi:10.1145/2254064.2254071.

38 Eric Koskinen and Tachio Terauchi. Local temporal reasoning. In Proceedings of the
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, pages 59:1–59:10, New York, NY, USA, 2014. ACM. doi:10.1145/
2603088.2603138.

39 Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages
and Systems (TOPLAS), 19(3):427–443, 1997. doi:10.1145/256167.256195.

40 Richard J. Lipton. Reduction: A Method of Proving Properties of Parallel Programs. Com-
munications of the ACM, 18(12):717–721, December 1975. doi:10.1145/361227.361234.

41 J. M. Lucassen and D. K. Gifford. Polymorphic Effect Systems. In Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
1988. doi:10.1145/73560.73564.

42 Daniel Marino and Todd Millstein. A Generic Type-and-Effect System. In TLDI, 2009.
doi:10.1145/1481861.1481868.

43 Christopher J. Mulvey. &. Suppl. Rend. Circ. Mat. Palermo (2), 12:99–104, 1986.
44 Christopher J Mulvey and Joan W Pelletier. A quantisation of the calculus of relations. In

Canad. Math. Soc. Conf. Proc. 13, pages 345–360, 1992.
45 Alan Mycroft, Dominic Orchard, and Tomas Petricek. Effect systems revisited—control-

flow algebra and semantics. In Semantics, Logics, and Calculi, pages 1–32. Springer, 2016.
doi:10.1007/978-3-319-27810-0_1.

46 Flemming Nielson and Hanne Riis Nielson. From cml to process algebras. In International
Conference on Concurrency Theory (CONCUR), pages 493–508. Springer, 1993. doi:10.
1007/3-540-57208-2_34.

47 Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and modest
sets. Technical Report ECS-LFCS-92-208, University of Edinburgh, 1992.

48 Vaughan Pratt. Action logic and pure induction. In European Workshop on Logics in
Artificial Intelligence, pages 97–120. Springer, 1990. doi:10.1007/BFb0018436.

49 Lukas Rytz and Martin Odersky. Relative Effect Declarations for Lightweight Effect-
Polymorphism. Technical Report EPFL-REPORT-175546, EPFL, 2012.

50 Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight Polymorphic Effects. In
European Conference on Object-Oriented Programming (ECOOP 2012), 2012. doi:10.
1007/978-3-642-31057-7_13.

http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/1272996.1273032
http://dx.doi.org/10.1145/1243418.1243424
http://dx.doi.org/10.1145/2535838.2535846
http://dx.doi.org/10.1145/2254064.2254071
http://dx.doi.org/10.1145/2603088.2603138
http://dx.doi.org/10.1145/2603088.2603138
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1145/361227.361234
http://dx.doi.org/10.1145/73560.73564
http://dx.doi.org/10.1145/1481861.1481868
http://dx.doi.org/10.1007/978-3-319-27810-0_1
http://dx.doi.org/10.1007/3-540-57208-2_34
http://dx.doi.org/10.1007/3-540-57208-2_34
http://dx.doi.org/10.1007/BFb0018436
http://dx.doi.org/10.1007/978-3-642-31057-7_13
http://dx.doi.org/10.1007/978-3-642-31057-7_13

C. S. Gordon 13:31

51 Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. The Semantic Foundations of
Concurrent Constraint Programming. In Proceedings of the 18th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’91, pages 333–352. ACM,
1991. doi:10.1145/99583.99627.

52 Christian Skalka. Types and trace effects for object orientation. Higher-Order and Symbolic
Computation, 21(3):239–282, 2008. doi:10.1007/s10990-008-9032-6.

53 Kohei Suenaga. Type-based deadlock-freedom verification for non-block-structured lock
primitives and mutable references. In Asian Symposium on Programming Languages and
Systems, pages 155–170. Springer, 2008. doi:10.1007/978-3-540-89330-1_12.

54 Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric Tanter. First-class
state change in plaid. In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’11, pages 713–732,
New York, NY, USA, 2011. ACM. doi:10.1145/2048066.2048122.

55 Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference. Jour-
nal of functional programming, 2(03):245–271, 1992. doi:10.1017/S0956796800000393.

56 Ross Tate. The sequential semantics of producer effect systems. In POPL ’13: Proceedings
of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages. ACM, 2013. doi:10.1145/2429069.2429074.

57 Mads Tofte and Jean-Pierre Talpin. Implementation of the Typed Call-by-value λ-calculus
Using a Stack of Regions. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’94, pages 188–201, 1994. doi:10.1145/
174675.177855.

58 Matías Toro and Éric Tanter. Customizable gradual polymorphic effects for scala. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2015, pages 935–953. ACM,
2015. doi:10.1145/2814270.2814315.

59 Marko van Dooren and Eric Steegmans. Combining the robustness of checked exceptions
with the flexibility of unchecked exceptions using anchored exception declarations. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, OOPSLA ’05, pages 455–471. ACM, 2005.
doi:10.1145/1094811.1094847.

60 Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual typestate. In
ECOOP 2011 - Object-Oriented Programming - 25th European Conference, Lancaster, UK,
July 25-29, 2011 Proceedings, pages 459–483, 2011. doi:10.1007/978-3-642-22655-7_22.

61 David N Yetter. Quantales and (noncommutative) linear logic. The Journal of Symbolic
Logic, 55(01):41–64, 1990. doi:10.2307/2274953.

ECOOP 2017

http://dx.doi.org/10.1145/99583.99627
http://dx.doi.org/10.1007/s10990-008-9032-6
http://dx.doi.org/10.1007/978-3-540-89330-1_12
http://dx.doi.org/10.1145/2048066.2048122
http://dx.doi.org/10.1017/S0956796800000393
http://dx.doi.org/10.1145/2429069.2429074
http://dx.doi.org/10.1145/174675.177855
http://dx.doi.org/10.1145/174675.177855
http://dx.doi.org/10.1145/2814270.2814315
http://dx.doi.org/10.1145/1094811.1094847
http://dx.doi.org/10.1007/978-3-642-22655-7_22
http://dx.doi.org/10.2307/2274953

	Introduction
	Background on Commutative and Sequential Effect Systems
	Effect Quantales
	Modeling Prior Sequential Effect Systems with Effect Quantales
	Locking with Effect Quantales
	An Effect Quantale for Atomicity
	Other Examples

	Iteration
	Properties Required of an Iteration Operator
	Iteration via Closure Operators
	Iterating Concrete Effects

	Syntactic Type Soundness for Generic Sequential Effects
	Parameters to the Language
	The Core Language, Formally
	Syntactic Safety

	Relationships to Semantic Notions of Effects
	Productors and Effectoids
	Effect-indexed Monads, a.k.a. Graded Monads
	Joinads and Joinoids
	Limitations of Semantics-Based Work

	Modeling Prior Effect Systems in a Generic Framework
	Types for Safe Locking and Atomicity

	Related and Future Work
	Generic Effect Systems
	Algebraic Approaches to Computation
	Concrete Effect Systems
	Limitations and Future Work

	Conclusions

