
Speeding Up Maximal Causality Reduction with
Static Dependency Analysis∗

Shiyou Huang1 and Jeff Huang2

1 Texas A&M University, College Station, USA
huangsy@tamu.edu

2 Texas A&M University, College Station, USA
jeff@cse.tamu.edu

Abstract
Stateless Model Checking (SMC) offers a powerful approach to verifying multithreaded programs
but suffers from the state-space explosion problem caused by the huge thread interleaving space.
The pioneering reduction technique Partial Order Reduction (POR) mitigates this problem by
pruning equivalent interleavings from the state space. However, limited by the happens-before
relation, POR still explores redundant executions. The recent advance, Maximal Causality Reduc-
tion (MCR), shows a promising performance improvement over the existing reduction techniques,
but it has to construct complicated constraints to ensure the feasibility of the derived execution
due to the lack of dependency information.

In this work, we present a new technique, which extends MCR with static analysis to reduce
the size of the constraints, thus speeding up the exploration of the state space. We also address
the redundancy problem caused by the use of static analysis. We capture the dependency between
a read and a later event e in the trace from the system dependency graph and identify those reads
that e is not control dependent on. Our approach then ignores the constraints over such reads
to reduce the complexity of the constraints. The experimental results show that compared to
MCR, the number of the constraints and the solving time by our approach are averagely reduced
by 31.6% and 27.8%, respectively.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Model Checking, Dynamic Analysis, Program Dependency Analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.16

1 Introduction

Concurrent programs are error prone. Moreover, it is notoriously difficult for developers to
find and reproduce those concurrency bugs because they only manifest in specific interleavings.
Stateless Model checking [11] (which we refer to as SMC in this paper) offers a promising
solution to combat this challenge by systematically exploring all the possible interleavings of
the program. Since the pioneering work of VeriSoft [11, 12] and CHESS [24], SMC has been
successfully applied in real-world programs and has found many deep bugs. To mitigate the
state explosion problem in SMC, a great effort has been dedicated to reduction techniques
such as partial order reduction (POR) [3, 10, 13] which prunes redundant executions from
the state-space and search strategies such as context (or preemption) bounding [24] which
prioritizes executions with fewer context switches in a given state-space.

∗ This work was supported by NSF award CCF-1552935.

© Shiyou Huang and Jeff Huang;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 16; pp. 16:1–16:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

However, POR is limited by the happens-before relation and may explore redundant
executions. To maximally reduce redundancy, Huang [16] recently develops a new reduction
technique called Maximal Causality Reduction (MCR), which gains a promising performance
improvement over prior reduction techniques. To explore the maximal causality between
redundant executions that lead to equivalent states, MCR takes the values of the reads and
writes into consideration and constructs first-order constraints over the events in the trace to
generate schedules. As the new schedule contains at least one read that returns a different
value from that in the prior trace, the program reaches a new state if it is executed following
the derived schedule.

However, MCR is purely dynamic and it only collects information (values and addresses,
etc.) from the trace, which does not reflect the dependency relation of two events. As a
result, MCR has to conservatively enforce all the reads that happen before a considered event
e to return the same value (Section 2) as that in the current trace so that e is reachable in
the derived schedule. Consider the following code snippet.

i n t counter = 0 ;
// thread t1 : // thread t2 :
whi l e (i++ < Max) whi l e (i++ < Max)

counter += 1 ; counter −= 1 ;

This program contains two threads with one global variable counter, one thread increasing
the counter but the other decreasing it. The loop iteration in the program is decided by
Max. For ease of presentation, we extend the while loop with Max = 2 and execute the
program in the program order. The execution by each thread is an alternation of reads and
writes to the shared variable counter, e.g., r1-w1-r2-w2. MCR enumerates all the reads in the
trace and considers all the possible values that each read can return (more details are given
in Section 2). To ensure the reachability of the considered read r, MCR enforces the reads
that happen before r to return the same value (Section 3.1). For example, if MCR considers
the second read r2 in the trace, it will enforce the first read r1 to return the same value to
ensure the reachability of r2. This is because MCR does not know whether or not the value
returned by r1 can influence the evaluation of a predicate (e.g., a if statement), thus affecting
the execution of a later event, such as r2. With the number of reads and writes increasing in
the trace, MCR needs to construct expensive constraints to ensure the reachability of an
event, which on the one hand consumes more memory and on the other more time for the
solver to solve the constraints.

In light of the limitation, the main question we consider is the following: Can we skip
those reads (e.g. r1) that happen before a target event (e.g. r2) in the exploration, thus
reducing the constraints? Combining with the program’s information, we can figure out
whether a read (e.g. r1) affects the reachability of another (e.g. r2). The key contribution
of this work is to integrate the static dependency analysis into the dynamic exploration to
reduce the complexity of the first-order constraints. Although the dependency information
provided by the static analysis may be imprecise due to the limitations of all classic static
analysis, we discuss that the soundness of the dynamic exploration is not impacted by the
imprecision in Section 4.3. We use the system dependency graph (SDG) of the program to
identify whether a read has a control or data dependency on an event in the trace. Then in
the exploration of new schedules from a given trace, we rely on such dependency information
to construct constraints to only make the dependency-related reads return the same value.

Different from program slicing [28, 6] which computes a set of the statements that can
influence the value of a given point, our approach aims to locate the reads that can impact
the evaluation of a predicate that determines the execution of a given point. By our approach,
the number of the constraints and the solving time of the above example (when the value of

S. Huang and J. Huang 16:3

Figure 1 Workflow of MCR. The engine part of MCR constructs SMT constraints over the trace
to explore new program schedules, and the new trace is generated by re-executing the program
under the dynamic scheduler.

Max is 5) are reduced by 35.1% and 44.6%, respectively.
We have implemented our technique based on JOANA [1, 14] and WALA and evaluated it

with a collection of multithreaded Java programs, including two large real-world applications,
Derby and Weblech. On average, our approach reduces the number of the constraints and
the solving time by 31.6% and 27.8%, respectively, compared to MCR. We also evaluate the
total time used to search the state space by our approach. Because it takes time to check the
dependency relation of two events in the exploration, the total time used to search the state
space is not reduced significantly on small benchmarks, although the size of constraints for
these programs is significantly reduced. But for Derby and Weblech, our approach reduces
the total time by 14.1% and 43.1%, respectively, compared to MCR.

In summary, this paper makes the following contributions:
We extend MCR with static dependency analysis to reduce the size of the SMT constraints
and hence speed up the state space exploration of MCR (Section 4).
We analyze the redundancy caused by static analysis and present a modified algorithm
to avoid the redundancy (Section 5).
We validate the effectiveness of our technique on real-world Java programs and the
experimental results show promising performance improvement over MCR with respect
to the size of the constraints and the solving time as well as the total time of state space
exploration (Section 6).

The rest of the paper is organized as follows: Section 2 reviews the key insight of MCR;
Section 3 introduces the background of SDG and our motivation of this work; Section 4
presents our approach to reducing constraints; Section 5 discusses the redundant exploration
by our approach; Section 6 reports our experimental results; Section 7 discusses related work
and Section 8 concludes this paper.

2 Maximal Causality Reduction

This section reviews the key insight of MCR [16]. As Figure 1 illustrated, given a program
with a fixed input, MCR systematically explores all unique interleavings of the program in a
closed loop, with each explored interleaving covering a unique program state. At first, the
instrumented program is executed in a random order to generate the initial trace that is
taken as the input by the engine. Then given an executed trace τ , the engine encodes τ into
an SMT constraints formula (Φmc = Φmhb ∧ Φlock ∧ Φvalidity) to compute a proved maximal
set of traces, denoted as MaxCausal(τ), which contains all the feasible schedules that can
be derived from τ [17]. To prune the redundant executions in MaxCausal(τ), Φmc is then

ECOOP 2017

16:4 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

conjoined with a new state constraint Φstate to generate a final formula Φ = Φmc∧Φstate that
is used to generate a seed interleaving. A seed interleaving is a feasible thread schedule
that drives the program to reach a new state that is not explored before. The essential
insight of Φstate is to enforce the reads in the trace τ to return different values from that in
τ allowed by the SMT constraints formula. By re-executing the program under the scheduler
following the seed interleaving, the program will reach a new state and the trace generated
will be the input of the engine.

In MCR, the following common types of events are considered:
begin(t)/end(t): the first/last event of thread t;
read(t, x, v)/write(t, x, v): read/write x with value v;
lock(t,l)/unlock(t,l): acquire/release a lock l;
fork(t,t′): fork a new thread t′;
join(t,t′): block until thread t′ terminates.

To encode Φ, for each event in the given trace τ , MCR uses an integer variable O to denote
its order in a certain feasible trace in MaxCausal(τ) and encodes the following constraints
over the variables O:
1. must-happen-before constraints (Φmhb);
2. lock-mutual-exclusion constraints (Φlock);
3. data-validity constraints (Φvalidity);
4. New state constraints (Φstate).

Must-happen-before (MHB) constraints (Φmhb)

The Φmhb constraint ensures a minimal set of happens-before relations that events in any
feasible interleaving must obey. It requires that (1) All events by the same thread should
happen in the program order (assuming sequential consistency); (2) The begin event of a
thread should happen after the fork event that starts the thread; (3) A join event for a
thread should happen after the last event of the thread.

Lock-mutual-exclusion constraints (Φlock)

The Φlock constraint ensures that events guarded by the same lock are mutually exclusive. It
is constructed over the ordering of the lock and unlock events. More specifically, for each lock,
MCR extracts all the lock/unlock pairs of events and constructs the following constraints for
each two pairs (l1, u1) and (l2, u2): Ou1 < Ol2 ∨Ou2 < Ol1 .

Data-validity constraints (Φvalidity)

The Φvalidity constraint ensures that all events in any trace in MaxCausal(τ) are reachable.
For an event e to be reachable, all events that must-happen-before e must be feasible, and
every read event that e depends on (excluding e itself) should read the same value as it reads
in τ . A concrete example will be given to illustrate this in Section 3.1.

New state constraints (Φstate)

To eliminate redundant executions, MCR enforces at least one read event in each explored
execution to read a new value, so that no two executions reach the same state. MCR
enumerates each read event in τ on the set of all values by the writes on the same memory
address. For each value that is different from what it reads in τ , a new state constraint is
generated to force the read to read the new value. Consider a read r=read(t,x,v) on x with

S. Huang and J. Huang 16:5

value v, and a value v′ 6= v written by any write on x, Φstate is written as Φvalue(r, v′). Since
all such state constraints are generated, MCR ensures that no non-equivalent interleaving is
missed. Hence the entire state-space will be covered systematically by MCR.

Example

We use the upcoming example to illustrate how MCR works, and we assume all the examples
in this paper are executed under sequential consistent (SC) memory [21]. For ease of
presentation, we use ei to denote the event at line i and Oi (an integer variable) to represent
the order of ei in the trace. For example, if Oi < Oj , then ei will be executed before ej in
the generated interleaving. We keep the notations in the rest of the paper.

i n i t i a l l y x = y = 0 ;
thread 1 : thread 2 :
1 : x = 1 ; /∗w(x) ∗/ 3 : y = 1 ; /∗w(y) ∗/
2 : a = y ; /∗ r (y) ∗/ 4 : b = x ; /∗ r (x) ∗/

Listing 1 An example illustrating how MCR works.

The program has 6 different executions, 3 of which are redundant. MCR is able to explore
all the state-space via only 3 executions.

Suppose in the initial execution, MCR obtains the trace τ0 = 〈e1, e2, e3, e4〉 under SC,
and the program reaches the state (a=0,b=1). MCR constructs the MHB constraints
Φmhb = O1 < O2 ∧O3 < O4. As the trace contains two reads, r(y) and r(x), to generate new
seed interleavings, MCR enforces each of the two reads to read a different value in future
executions. For example, it adds the new state constraint Φstate = O3 < O2 to enforce r(y)
to read from w(y) and return the value 1. By solving this constraint conjoined with Φmhb,
the SMT solver will return a solution: {O1 = 1, O2 = 3, O3 = 2}. From this solution, MCR
generates a new seed interleaving e1-e3-e2, because O1 < O3 < O2. By re-executing the
program following this seed interleaving, MCR will obtain a new execution τ1 = 〈e1, e3, e2, e4〉,
and reach a new state (a=1,b=1). In the new trace, the order of the event that occurs in
the seed interleaving is fixed and MCR only considers the rest of the events, e4 (r(x)) in
this example. Because there is no new value that r(x) can return, the exploration along this
seed interleaving is finished. Likewise, to consider the second read event r(x) in τ0, MCR
generates a new seed interleaving e3-e4, which produces a new execution τ2 = 〈e3, e4, e1, e2〉
that reaches a new state (a=1,b=0). As there is no new state that can be generated from
e1− e2, the exploration is finished. MCR successfully explores all the three different program
states – (a=0,b=1), (a=1,b=1) and (a=1,b=0) – through only three different executions.

3 Motivation and Technical Background

In this section, we discuss the importance and the complexity of Φvalidity constraints via a
simple example. We then introduce the background of the system dependency graph (SDG),
which we rely on to simplify Φvalidity (Section 4).

3.1 Motivation
The motivation of this work stems from the observation that when running MCR on real-
world large programs, it can take a long time to solve the constraints formula even with a
powerful SMT solver, like Z3 [9]. The reason for this is that when MCR encodes long traces,
especially those with lots of reads and writes, it generates extremely huge constraints and
a large part of them are data-validity constraints (Φvalidity). As illustrated in Section 2,

ECOOP 2017

16:6 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

the constraints Φmhb and Φlock ensure that the computed interleaving obeys the semantics
of the given memory model. However, to make the generated interleaving feasible, MCR
also considers the reachability of an event that might be control dependent on a prior read.
Consider the following program.

i n i t i a l l y x = y = 0 ;
thread 1 : thread 2 :
1 : i f (x==0) /∗ r1 (x) ∗/ 3 : x = 1 ; /∗w(x) ∗/
2 : r = x ; /∗ r2 (x) ∗/

Suppose initially the program is executed in the order, e1− e2− e3, and the program reaches
the state r1(x) = 0 and r2(x) = 0. To make r2(x) return the value 1 written by w(x), MCR
enforces Φstate = O3 < O2 so that e3 happens before e2. By conjoining with Φmhb = O1 < O2,
the solver reports a possible solution O3 = 0, O1 = 1, O2 = 2, corresponding to a concrete
schedule e3 − e1 − e2. However, this schedule is infeasible because the if predicate is not
satisfied under this schedule, and hence e2 cannot be executed. To ensure the reachability of
an event, MCR encodes the data-validity constraints into the formula. In a word, all the
reads that happen before the considered event should hold the same value as that in the
prior execution. In this example, when we consider the value of r2(x), we need to guarantee
that r1(x) = 0. Then a correct schedule that makes r2(x) = 1 is e1 − e3 − e2. Let ≺e denote
the set of events that must-happen-before an event e and r = read(t,x,v) denote a read
event in ≺e on a memory location x with value v by thread t. Let W x denote the set of all
writes to x, and W x

v the set of writes to x with value v, the data-validity constraint for e is
encoded as

Φvalidity =
∧

r∈≺e

Φvalue(r, v),

where Φvalue(r, v) is the state constraint that ensures r to read a value v:

Φvalue(r, v) ≡
∨

w∈Wx
v

(Φvalidity(w) ∧Ow < Or∧
w 6=w′∈Wx

(Ow′ < Ow ∨Or < Ow′))

This constraint is complex because it is recursive. As we can see, to match a read r with a
write w, MCR also needs to ensure the reachability of w, which requires all the reads that
must-happen-before w should return the same value. It means we also need to construct
constraints to match those reads with specific writes. Unfortunately, as most events in a
trace are read or write, it can be very expensive to make all the reads in ≺e return the
same value. The second observation of this work is that some reads in ≺e actually do not
influence the reachability of e so that we can remove them from ≺e to reduce the size of
the constraints. For example, for two reads r1-r2 executed by the same thread, there is
no need to consider the value returned by r1 when constructing Φvalidity(e) because there
is no dependency between the two reads. Our idea for reducing the size of Φvalidity is to
only enforce the reads in ≺e, which the event e is control dependent on, to return the same
value. To achieve this idea, we use static analysis on the source code of the program – system
dependency graph, to compute the dependencies between two events. Next we first introduce
the knowledge of system dependency graph in Section 3.2 and then present the details of our
approach in Section 4.

3.2 System Dependency Graph
The system dependency graph (SDG) for a program P, denoted by Gp = (N,E), is a directed
graph, where the nodes in N represent the statements or predicates in P and the edges in E

S. Huang and J. Huang 16:7

Figure 2 The System Dependency Graph of a concrete program, where the dependencies are
distinguished by different edges.

represent the dependencies between the nodes [15]. Figure 2 presents an SDG of a concrete
program, which includes a procedure call add in the main procedure. An SDG is made of
the procedure dependency graphs (PDGs), which model the system’s procedures. In a PDG,
all the nodes are connected by either control dependency edges or data dependency edges.
A node m is control dependent on the node n if the evaluation of n controls the execution
of m. The source of a control dependency edge is either an enter node or a predicate node.
A data-dependency between two nodes indicates that the program’s computation might be
changed if the relative order of the two events represented by the two nodes are reversed. In
the SDG, all the PDGs are connected by the edges between the call sites nodes and the enter
nodes of the called procedures. For example, in Figure 2, there exists a procedure call add in
the main procedure. The two PDGs are connected by a call edge from call add node to the
entry node Enter add of the procedure add. In SDG, for each parameter passing, there exists
an actual-in node and formal-in node, which are connected by a parameter-in edge. For
instance, when passing parameter x to the procedure add, the actual-in node x_in=sum is
connected to the formal-in node x=x_in by a parameter-in edge (the dashed arrow). For each
modified parameter and returned value, there also exists a parameter-out edge connecting the
formal-out node and the actual-out node. Formal-in and -out nodes are control dependent
on the entry node and the Actual-in and -out nodes are control dependent on the call node.
The SDG permits us to analyze the dependency between two events presented by nodes in
the graph by traversing the graph.

4 Our Approach

This section introduces how our approach leverages the SDG to reduce the data-validity
constraints (Φvalidity). We first present the overall algorithm and then the detailed dependency
analysis.

ECOOP 2017

16:8 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

4.1 Constraints Reduction

The essential idea for reducing Φvalidity is to reduce the number of the reads that are required
to return the same value by MCR. We begin with the definition of the set of reads that an
event is control dependent on to help illustrate the algorithm.

I Definition 1. Given an event e in a trace τ , ≺τ (e) denotes the set of the reads that
must-happen-before e, and ≺Dτ (e) ⊆ ≺τ (e) denotes the set of reads that e is dependent on.

The main algorithm of our approach is presented as follows.

Algorithm 1: Φvalidity(e) Reduction
Input : τ - a trace and e - a given event in τ
Output : Φvalidity(e) - data-validity constraints related to e

1 Φvalidity = ∅
2 ≺τ (e)← Happens-before(τ , e)
3 ≺Dτ (e)← DependencyComputation(≺τ (e), e)
4 foreach read r ∈≺Dτ (e) with value v do

// Φvalue(r, v) recursively call DataValidityConstraints ()

5 Φvalidity ∧ = Φvalue(r, v)
6 end
7 return Φvalidity

Algorithm 1 shows how to compute data-validity constraints of a given event e. It takes
as input the current executed trace τ and the considered event e. It first computes the
set of reads that must-happen-before e (line 2) based on the constraints Φmhb in Section
2. Then our algorithm computes a subset of reads ≺Dτ (e) ⊆≺τ (e), and all the reads
in ≺Dτ (e) have a dependency on e (line 3). We will give the details of the function
DependencyComputation() in Section 4.2.3. The algorithm finally enforces that all
the reads return the same value as that in the current trace τ according the encoding of
Φvalue(r, v). The detailed expression of Φvalue(r, v) is presented in Section 3.1.

Because the number of the reads in ≺τ (e) that e is dependent on takes a small
portion of the total number of the reads in ≺τ (e), our algorithm reduces the size
of Φvalidity greatly. Meanwhile, the reduction will not lead to the missing of any
executions explored by MCR.

Proof. To prove the correctness of this approach, it only needs to prove that our new
constraints model Φ′validity is equivalent to Φvalidity presented in Section 2 and 3.1 because
all the rest part of Φmc remain the same. Consider a trace τ = e1, e2, · · · , en. To guarantee
the reachability of an event ei ∈ τ in a new schedule, we only need to make a read event
e ∈ τ to return the same value and e is the last read that ei is control dependent on. Since e
is forced to return the same value, it guarantees that e is reachable and the path containing
ei is evaluated. Then no matter what values returned by the read between e and ei, ei is
always executed. Therefore, our algorithm will not cause any infeasible executions or miss
any executions. J

S. Huang and J. Huang 16:9

Figure 3 Four different cases where a read is control dependent on another marked by the blue
edges.

4.2 Dependency Analysis
In this subsection, we present how we compute ≺Dτ (e) based on the program’s SDG from
two parts, control dependency and data dependency. The insight for identifying that an event
is dependent on another is to check if it exists a path in the SDG between the two events
and the path satisfies a specific pattern. For the rest of the paper, we will abbreviate control
dependency CD, data dependency DD, call CL and parameter in/out PI/PO. The reason
why we distinguish PI/PO and DD is that the SDG that we construct via an existing tool
JOANA [1, 14] contains these edges, and we use the type of the edge labeled by the graph
to find the dependency relation. We use n1 e∗−→ n2 to denote that there is a path p = e∗ in
SDG from node n1 to node n2, and each edge e in p belongs to one of CD, DD, PI, PO and
CALL.

4.2.1 Control Dependency
We first discuss several situations where a read can influence the execution of a later event
and then derive a rule of how to decide that an event is control dependent on a prior read
from the general cases. In SDG, an event is control dependent on a predicate event that is
either a if condition or procedure call related events. But the evaluation of the predicate is
determined by the values returned by some reads. Our goal is to find those reads. We give
the definition of a read that an event is control dependent on as following.

I Definition 2. An event e is control dependent on a read r if r is a read access to a shared
variable, and r has data dependency on the predicate that decides the reachability of e.

We present four different cases in Figure 3 to help understand the definition and then
summarize the rules to help identify the dependency between two events. The variables x
and y in the figure are shared and all the others are local.

Case 1. Figure 3(a) shows the most direct control dependency between two events. The
read r = y is control dependent on the if predicate, which is data dependent on x == 1. As

ECOOP 2017

16:10 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

		"1	$%	"2		Û		"1	 '
∗)* "2,	

				+	 ∶= 	e	
|./	 //	 01	|03	|.4	

	
Figure 4 Rule 1: the condition that a node has control dependency on another in SDG.

a result, the read r = y is control dependent on the read x == 1 and the path between the
two events is x == 1 DD·CD−−−−−→ r = y.

Case 2. Besides direct control dependency, the evaluation of a predicate may depend on a
prior read. As Figure 3(b) shows, although the evaluation of the if predicate is determined
by the value of a, the read access to local variable a is data dependent on a prior read
a = x. Therefore, according to Definition 2, a = x is control dependent on r = y and x == 1
DD·DD·CD−−−−−−−−→ r = y

Case 3. Figure 3(c) illustrates the propagation of the control dependency between different
procedures. The computation of the if predicate depends on the return value of the procedure
func(). It implies that the reachability of a read operation might be decided by a read in
another procedure. In this case, r = y is control dependent on the read return x in func()
and return x PO·DD·DD·CD−−−−−−−−−−−→ r = y. Likewise, the dependency can also be transmitted by a
PI edge in the graph. We omit the discussion of this case in the paper.

Case 4. In this case, the event func() has a special control dependency on r=y. As a
procedure may crash (program exits abnormally) during the execution, all the executions
that occur after the procedure call are not executed if the crash happens. SDG adds a control
dependency edge, also denoted as CD, from the node func() to the node r=y. Through this
edge, we derive r = y is control dependent on x == 1 and x == 1 CD·CD·CD·CD−−−−−−−−−−→ r = y

As all the other cases are either the combination of the four basic cases above or can
be derived using the same way, we only analyze the four basic cases in this paper. From
the analyses on the four basic situations, now we summarize the rule to decide if an event
is control dependent on a prior read in the program. We denote the control dependency
between two events as δc: given two nodes n1 and n2 in an SDG, we use n1 δc n2 to denote
that n2 is control dependent on n1. By analyzing the patterns of the paths in the four cases
above, we derive that given any event e and a read r, to check r δc e is equivalent to check
that if there is a path p ending with a control dependency edge from r to e, and each edge
e in p belongs to one of CD, DD, PI, PO and CALL. We present the rule in Figure 4 to
formalize this process.

4.2.2 Data Dependency

So far we have only considered the control dependency of the nodes. In this Section, we will
point out that under some cases, the reads on which an event is data dependent on should
also be added to the read set ≺Dτ (e) . Recall that when MCR maps a read to a certain write
w, the data validity constraints in Section 2 also need to guarantee the reachability of w. We
have illustrated in Section 4.2.1 that to ensure the reachability of an event e in the trace
τ , we only need to ensure the reads in ≺Dτ (e) to return the same value. However, we also

S. Huang and J. Huang 16:11

		"1	$%	"2		Û		"1	 '
∗)) "2,	

				*	 ∶= 	e	|	..		
	

	Figure 5 Rule 2: the condition that a node has data dependency on another in SDG.

need to guarantee that the value written by w matches with the one expected by the read in
≺Dτ (e). Take the following program as an example.

i n t x = y = 0 ;
// thread 1 : // thread 2 : // thread 3 :
1 : r = y ; /∗ r1 (y) ∗/ 2 : x = 1 ; /∗w1(x) ∗/ 4 : x = 2 ; /∗w2(x) ∗/

3 : y = x ; /∗w(y) , r2 (x) ∗/

Suppose initially the program is executed along the program order: 1-2-3-4. The state
of the program is r1(y) = 0 and r2(x) = 1. Next, to make r(y) = 1 (return the value of
w(y)), we encode O3 < O1. Because there is no event that is control dependent on a read
in this program, we do not consider the data-validity constraints. Then a feasible schedule
generated by our constraints can be 2-4-3-1, making r1(y) = 2 and r2(x) = 2 instead of
r1(y) = 1. This is because our constraints only ensure the reachability of w(y) and does not
constrain the value returned by r2(x), which has a data dependency on w(y). Hence the
value written to w(y) can be any one returned by r2(x).

When considering the reachability of a write w, we also need to ensure that w writes the
same value to the shared address as it does in the original trace. To guarantee this, we force
a read r to return the same value if r is a read access to the same address accessed by w and
has a data dependency on w. Similar to δc, we denote the data dependency between two
events as δd: given two nodes n1 and n2 in an SDG, we use n1 δd n2 to denote that n2 is
data dependent on n1. Then we can derive the data dependency rule following the spirit of
Rule 1. Given a write w and a read r, to check r δd w is equivalent to check that if there is
a path p ending with a data dependency edge from r to w. We present the rule in Figure 4.

The reason why the path may contain several DD edges is that the dependency can be
transmitted via the operations on local variables, similar to Case 2 presented in Section
4.2.1.

4.2.3 Dependency Reads Computation
After the discussion about the control and data dependency, we now present the algorithm of
the function DependencyComputation() in Algorithm 1 to give the details about how to
compute the set of reads that an event is dependent on in the program.

Algorithm 2 takes as input a given event e and the set of the reads ≺τ (e), containing all
the reads in τ that must-happen-before e. The algorithm analyzes two situations. If event
e is a read, it only chooses the reads from ≺τ (e) that e is control dependent on and adds
them to the set ≺Dτ (e). If e is a write, the algorithm adds the reads from ≺τ (e) that e is
control or data dependent on to ≺Dτ (e).

4.3 Discussion
Challenges of static analysis for object-oriented languages, such as Java, stem from object-
and filed- sensitivity, dynamic dispatch and objects as parameters problems and so on. These
statically undecided problems are usually approximated relying on points-to analysis, or
pointer analysis. However, it is difficult to make precise points-to analysis, and even the

ECOOP 2017

16:12 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

Algorithm 2: Computation of ≺Dτ (e)
1 Function DependencyComputation(≺τ (e), e):
2 ≺Dτ (e) = ∅ ;
3 foreach read r in ≺τ (e) do
4 if e is a read then
5 if r δc e then
6 add r to ≺Dτ (e) ;

7 else
8 if r δc e or r δd e then
9 add r to ≺Dτ (e) ;

10 return ≺Dτ (e) ;

precise points-to analysis has to approximate certain undecidable situations which lead to
may-alias. Due to the limitations of all static analysis, it is difficult for us to build fully
precise SDGs so that an SDG may contain false or approximated dependency information.
However, the soundness of our approach is not threatened by the unsound dependency. In
this section, we use two cases to explain why our approach is not affected by imprecise static
analysis.

Case 1: Problem with may-alias

Imprecise points-to analysis may lead to the may-alias problem between two pointers of the
same type. In the construction of the SDG, the may-alias problem may lead to that a later
read is data dependent on several writes to the same memory location. Let us consider the
following example:

1 : p . o = 1 ; //w1
2 : q . o = 2 ; //w2
3 : i f (p . o == 1) ; // r

where p and q are pointers of the same type and o is the field that p and q can access. When
we construct the SDG for the program above, both w1 and w2 have a data dependency on r
(i.e., (w1, w2) δd r) because p and q may alias. However, this does not affect our algorithm to
decide which write that r is exactly data dependent on. This is because when the program is
executed and generates the trace e1 − e2 − e3, our algorithm is aware of the field information
accessed by each event. From the trace, we can identify exactly what event has a dependency
on e3.

Case 2: Problem with path-insensitivity

Because the generated SDG considers all the possible paths of the program, the dependency
read set ≺D computed from the SDG contains reads in all the paths, which leads to imprecise
dependency. Consider the following program as an example.

1 : i f (exp) r = x ; // r1
2 : e l s e r = x ; // r2
3 : y = r ; //w

If we use the SDG to compute the read set that write y = r is data dependent on, both
of the reads r1 and r2 have a data dependency on y = r (i.e., (r1, r2) δd w) because the

S. Huang and J. Huang 16:13

SDG is path-insensitive. But this can be avoided by our approach because we combine static
analysis with the dynamic information. Our algorithm for computing ≺Dτ (e) is based on a
concrete executed trace, i.e., only e1 − e3 or e2 − e3 can be generated. As a result, only one
read, either r1 or r2 has data dependency on w in an concrete execution.

5 Redundant Executions

Extending MCR with static dependency analysis reduces the size of the constraints for
exploring new program’s states, and it will not miss any executions. However, our approach
may explore redundant executions. In this section, we use a simple example to illustrate
how the redundant executions are introduced and explain the root reason that causes the
redundancy. We also propose a solution to the redundancy problem.

i n i t i a l l y x = 0 ;
thread 1 : thread 2 :
1 : x = 1 ; /∗w(x) ∗/ 2 : r1 = x ; /∗ r1 (x) ∗/

3 : r2 = x ; /∗ r2 (x) ∗/

Listing 2 An example that shows redundant explorations by our approach.

Consider the example above. Following the procedure in Section 2, MCR generates only
three different executions to explore the state space of this program.

τ0 =< e1, e2, e3 >, (r1 = 1, r2 = 1);
τ1 =< e2, e1, e3 >, (r1 = 0, r2 = 1);
τ2 =< e2, e3, e1 >, (r1 = 0, r2 = 0).

However, using static dependency analysis, our approach generates one more execution
τ ′1 =< e2, e3, e1 > (r1 = 0, r2 = 0), which is equivalent to τ2. We explain how the same state
is explored twice as follows.

First, the program is executed in the program order and the execution τ0 =< e1, e2, e3 >

(r1 = 1, r2 = 1) is generated. Then the two read events in the trace, r1(x) and r2(x), will be
considered to return a different value. To make r1(x) return a different value 0, r1(x) should
read from the initial write. Then e2 is required to happen before the write e1 and thus we
generate a new execution τ1 =< e2, e1, e3 > (r1 = 0, r2 = 1). Then the analysis on τ0 is
done because r2(x) cannot read from the initial write if we use MCR to model check the
program. The reason is that when considering the second read r2(x) in τ0, MCR enforces
that r1(x) = 1 because r1(x) happens before r2(x) according to the data validity constraints.
This implies that r1(x) should read from w(x) so that e1 should happen before e2. As e2
happens before e3 by the program order, then e1 happens before e3 because of the transitive
relation. Therefore r2(x) is only able to read from w(x) from the analysis on τ0. But by our
approach, we assume that r(1) does not affect the reachability of r2(x). As a consequence,
we do not enforce r1(x) = 1 when considering different values that r2(x) can return. Then a
new execution is allowed by our approach,

τ ′1 =< e2, e3, e1 > (r1 = 0, r2 = 0).
This execution is equivalent to the state of τ2. And τ2 can be derived from τ1. The root
reason why MCR does not generate such a redundant execution is that enforcing the read
to hold a value implicitly causes a happens-before order between the write and the read
(e.g. w(x) and r1(x)), thus indirectly affecting the value by a later reader (e.g. r2(x)). Now
that we do not require those reads to hold the same value, the implicit happens before order
imposed on some writes and reads that access the same memory locations and reside in
different threads is removed.

ECOOP 2017

16:14 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

x	=	1

r1	=	x

r2	=	x

hb

enforce	
r1	=	1

hb

(a)	Order	relation	by	MCR

x	=	1

r1	=	x

r2	=	x

hb
any	
order

(b)	Order	relation	by	our	approach

Figure 6 Removed happens-before between x = 1 and r2 = x by our approach.

Figure 6 shows the difference of the order relation by MCR and our approach on the
example above. The dashed arrow represents the implicit happens-before relation and the
shadowed box represents the read we consider. As we can see in Figure 6(b), x = 1 and
r2 = x can be in any order by our approach, while x = 1 happens before r2 = x in MCR.

5.1 Redundancy Elimination
According to the analysis on the example presented in Listing 2, we observe that when MCR
explores the new values that a considered read r can return, enforcing all the reads that
happen before r, on the one hand, guarantees the reachability of r and on the other hand,
restricts the writes that r can read from. But for the rest of the reads and writes, we are
only concerned about the reachability of them. We address the redundancy problem by
adding constraints to make all the reads that happen before r return the same value. This is
a trade-off between the original MCR and Algorithm 1. We present our algorithm as follows.

Algorithm 3: DataValidityConstraints′(τ, e)
Input : τ - a trace and e - a given event in τ
Output : Φvalidity(e) - data-validity constraints related to e

1 Φvalidity = ∅
2 ≺τ (e)← Happens-before(τ , e)

// target read: read considered to return new values

3 if e is not a target read then
4 ≺Dτ (e)← DependencyComputation(≺τ (e), e)
5 end
6 foreach read r ∈≺Dτ (e) with value v do

// Φvalue(r, v) recursively call DataValidityConstraints ()

7 Φvalidity ∧ = Φvalue(r, v)
8 end
9 return Φvalidity
The only difference between Algorithm 3 and Algorithm 1 lies in line 3. In our new

algorithm, we decide whether to add the reads that happen before e to ≺Dτ (e) based on the
type of e. If e is a read expected to return a new value, we put all the reads that happen
before e into ≺Dτ (e) to avoid the redundant behavior. For the example, in Listing 2, as we
want to explore what values r2(x) can read, we also put r1(x) into ≺Dτ (e) to make r1(x)
return the same value as that in τ0 so that τ ′1 will not be generated by our approach. If e is
an event that we only care about if it will be reached in the next schedule, we handle e in the
way of Algorithm 1. Although this expands ≺Dτ (e) and increases the size of the constraints,
it still generates less constraints than MCR does but with no redundancy. Moreover, if the
solving of the constraints takes much more time than what the execution of the program
needs, we can keep the redundant executions to reduce the overall checking time. We will
have more discussions about this in Section 6.

S. Huang and J. Huang 16:15

Algorithm 3 can remove all the redundancies caused by Algorithm 1, and it will not
miss any executions.

Proof. The proof on the latter part follows the same analysis on Algorithm 1 in Section 4.1.
To prove that Algorithm 3 reduces all the redundancies, we show that by using Algorithm 3,
our approach explores the same executions as MCR does. Given a trace τ , MCR considers
only one read r ∈ τ each time when exploring new schedules. Consequently, the number of
the new executions derived from r depends on the number of the writes that r can read from
in τ . Because we force all the reads that happen before r to return the same value as that in
τ , which remains completely the same as how MCR handles such a read, r reads from the
same writes as that it can read from in MCR. Therefore, our approach explores the same
executions as MCR does. J

6 Implementation and Evaluation

This section presents the implementation of integrating static dependency analysis into MCR
and evaluates the performance improved by using static analysis.

6.1 Implementation
SDG construction

The SDG of the program has been well studied for a long time and there are many framework
that can compute SDG, such as WALA [2] and Soot [27] for Java programs. In this work,
we build the SDG of Java programs based on two existing framework, JOANA [1, 14] and
WALA. JOANA is a information flow tool based on WALA for Java programs. JOANA
implements flow-sensitive, context-sensitive and object-sensitive analysis and it minimizes
false alarms. Considering that JOANA supports full Java bytecode and refines the SDG by
WALA, we choose JOANA as our framework to construct the SDG.

Path Finding

Before the dynamic analysis on the executed trace, we first generates the SDG of the program
and use a map structure to store the information of the graph. Because the SDG of a large
system contains thousands of nodes, we use a distinct integer ID to represent each node to
save the memory space of the map. During the dynamic exploration, we match the event in
the trace with its corresponding node in SDG, and decide the dependency relation of two
events by checking whether the path (if it exists) between the two nodes matches the rule
defined in Figure 4 or 5.

6.2 Methodology
In the rest of this section, we refer to as MCR-S and MCR-S+ the approach that implements
Algorithm 1 and 3, respectively. We evaluate the effectiveness of MCR-S and MCR-S+ by
testing the three approaches on various benchmarks, including two large Java programs. Our
evaluation aims to answer the following three research questions:
RQ1: How many reads and constraints can be reduced by our approach, compared to MCR?
RQ2: To what extent can the solving time be improved after the constraints are reduced,
compared to MCR?
RQ3: How does the redundancy by MCR-S affect the total time spent on the state-space
exploration?

ECOOP 2017

16:16 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

Table 1 Benchmarks.

Program time(s) memory(M) #nodes #edges
Counter 2.00 69 289 1,440
Airline 2.10 79 809 4,902

Pingpong 2.52 83 914 5,244
BubbleSort 2.14 81 911 5,710

Pool 3.67 75 2,848 17,586
StringBuf 2.96 111 2,129 12,310
Weblech 8.01 219 22,094 167,492
Derby 69.67 1,385 115,658 2,409,784

In Section 6.3, we address RQ1 by comparing MCR-S and MCR-S+ with MCR, with respect
to the number of the reads, constraints and the solving time. In Section 6.4, we consider
RQ3 via evaluating the total time spent in exploring the state space of the program by the
three approaches. We expect to see how the overall performance is improved by the static
analysis and meanwhile the influence by the redundant executions. The comparison between
MCR-S and MCR-S+ reveals which improves the performance more, the maximal constraints
reduction with redundant executions or the partial constraints reduction with no redundancy.

The experiments were run on a MacBook with 2.6 GHz Intel Core i5 processor, 8 GB
DDR3 memory and JDK 1.7. All results were averaged over three runs.

Benchmarks

To show the effectiveness improved by our hybrid analysis, we run our approach on the same
benchmark set used by prior work [16] so that we can make a direct comparison. Table 1
summarizes the benchmarks evaluated in this work. Counter is the example introduced in
Section 1, and we take Max = 5 during the evaluation. Airline is a program that can sell
more tickets than the capacity. Pingpong can arouse an NPE error on the shared variable
player. BubbleSort is a small but read-write intense program with more than 10 million
interleavings. Pool contains a concurrency bug in Apache Commons Pool causing more
instances than allowed in the pool. StringBuf contains an atomicity violation. Weblech
and Derby are two large real-world programs with long trace and complicated constraints.
We present the time and memory used to construct the program’s SDG in the second and
third column, respectively. The last two columns show the number of the nodes and edges in
the graph generated.

6.3 Reduction Analysis
Table 2 reports the results by MCR, MCR-S and MCR-S+ on the benchmarks. Column
#reads lists the number of the reads the three approaches considered totally when constructing
constraints to explore new interleavings. Column #constraints gives the total number of
data-validity (Φvalidity) constraints that map a read to a certain write. The number is the
sum of the constraints generated by each exploration in the whole state-space search. As the
other constraints remain the same for MCR and the new approaches, we just discuss the
read-write constraints in the evaluation. Column time shows the time used by the solver to
solve the constraints.

Figure 7 presents the reduction results by MCR-S and MCR-S+ compared to MCR on
the number of the reads and constraints as well as the solving time. The figure is best viewed
in color. The blue bar represents the results by MCR, green for MCR-S and yellow for

S. Huang and J. Huang 16:17

Table 2 Results of the number of the reads and constraints as well as solving time generated by
MCR, MCR-S and MCR-S+ to explore the state-space of the benchmarks, respectively. one hour.

Program MCR MCR-S MCR-S
#reads #consts time(sec) #reads #consts time(sec) #reads #consts time(sec)

Counter 55,886 202,039 22.11 37,515 108,270 7.41 45,972 131,053 12.25
Airline 15,632 24,643 2.43 15,328 24,475 2.39 15,599 24,625 2.38

Pingpong 1,905 5,225 1.42 1,376 3,684 1.38 1,906 5,227 1.32
BubbleSort 5,583,561 3,487,802 679.27 3,574,528 2,158,422 546.75 5,087,528 3,046,852 586.42

Pool∗ 143 68 < 1 94 12 < 1 117 36 < 1
StringBuf∗ 102 30 < 1 102 30 < 1 102 30 < 1
Weblech 120,161 5,676 13.75 103,155 3,920 6.39 90,096 4,217 5.24
Derby 46,222,858 22,008,512 477.13 22,530,501 12,184,850 347.98 36,461,542 17,412,201 300.58
Avg. 8,666,667 4,288,982 199.35 4,377,067 2,413,936 151.03 6,950,440 3,437,362 151.26

* The exploration time on these two benchmarks is far less than 1 second and we ignore them when we compute the average results.

MCR-S+, respectively. For comparison, we normalize MCR’s results to 1 as the baseline
and length of the green and yellow bars represents the ratio of the results of MCR-S and
MCR-S+ to that of MCR.

Number of reads reduced.

Figure 7(a) summarizes the comparison on the number of the reads reduced by MCR and
our approaches. Averagely, MCR-S reduces the number of the reads by 27.1% and MCR-S+
by 12.1% compared to MCR. And the reduction percentage by MCR-S ranges from 14.2%
to 51.3%, and MCR-S makes the greatest reduction on the Derby benchmark. Comparing
to MCR-S, MCR-S+ makes less reduction because it needs to constrain more reads into
the formula to avoid the redundant executions (Section 5). But MCR-S+ still makes a
reduction that ranges from 8.9% to 25.0% compared to MCR. Among the 6 benchmarks,
neither MCR-S or MCR-S+ makes a reduction on Airline. The reason is that in the routine
run() of Airline, all the reads and writes are control dependent on a read in the if predicate.
As introduced in Section 4, we can’t reduce any reads for this benchmark. In addition to
Airline, the other benchmark that MCR-S+ fails to reduce the reads is Pingpong, while
MCR-S reduces the reads by 28.2%. Note that for benchmark Weblech, MCR-S considers
more reads than MCR-S+ does. This is because that MCR-S explores more executions than
MCR-S+ does due to the redundancy, and we take as the final result the total number of
reads the approaches have considered in the whole state-space exploration.

Number of constraints reduced.

Figure 7(b) reports the reduction of the data validity constraints by MCR-S and MCR-S+.
As the reads are reduced by our approaches, we do not need to constrain those reads to
return the same value, and thus reduce the size of the constraints. Given a read r that
returns the value by the write w, we count the constraint as one, and the constraint enforces
another write that writes a different value from that by w to the same location to either occur
before w or after r. On average, MCR-S reduces the number of constraints by 31.6%, while
MCR-S+ by 15.7%. As Figure 7(b) shows, the reduction on the constraints is consistent
with that on the reads in Figure 7(a).

Solving time reduced.

Figure 7(c) presents the results of the solving time by each method. From Figure 7(b) and (c),
we can see that though MCR-S approximately makes two times as much constraints reduction

ECOOP 2017

16:18 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

Figure 7 Reduction on the number of the reads and constraints as well as the solving time
achieved by MCR-S and MCR-S+ comparing to MCR. The results generated by MCR are normalized
to one as the baseline.

0

0.2

0.4

0.6

0.8

1
(a) number of reads reduced

Co
un
ter
Air
line

Pin
gp
on
g

Bu
bb
leS
ort

We
ble
ch
De
rby Av

g.
0

0.2

0.4

0.6

0.8

1
(b) number of constraints reduced

Co
un
ter
Air
line

Pin
gp
on
g

Bu
bb
leS
ort

We
ble
ch
De
rby Av

g.
0

0.2

0.4

0.6

0.8

1
(c) solving time reduced

Co
un
ter
Air
line

Pin
gp
on
g

Bu
bb
leS
ort

We
ble
ch
De
rby Av

g.

MCR
MCR-S
MCR-S+

Table 3 The total number of executions and time taken by the three methods to explore the
state-space of the benchmarks.

Program MCR MCR-S MCR-S+
#executions time(sec) #executions time(sec) #executions time(sec)

Counter 4,523 181 6,550 247 3,485 133
Airline 14 4 14 5 14 5

Pingpong 394 13 535 16 394 15
BubbleSort 5,823 OOT 1,828 OOT 6,885 OOT
Weblech 967 677 756 511 668 385
Derby 15 787 16 797 15 676

as MCR-S+ does, the solving time taken by the two approaches is quite close to each other.
Among the 6 benchmarks, MCR-S reduces the solving time by 27.8% compared to MCR,
on average, while 26.2% by MCR-S+. Moreover, for benchmarks Weblech and Derby, it
takes more time for MCR-S to solve the constraints than MCR-S+. This is because MCR-S
explores more executions than MCR-S+ does, and thus the size of the total constraints
generated by MCR-S actually is greater than that by MCR-S+. Likewise, though MCR-S
reduces the size of constraints by 29.5% on the benchmark Airline, it takes almost the same
time for MCR-S to solve the constraints as that for MCR.

6.4 Overall Checking Performance Comparison
Table 3 summarizes the state-space exploration results by the three approaches, in terms of
the number of executions explored and time (seconds) taken to finish the exploration. Note
that we do not report the results of Pool and StringBuf because the execution time for
these two benchmarks is too small to be tracked. We run BubbleSort with an input which
contains four integers. Because BubbleSort is a read and write intensive benchmark, none
of three methods can finish the exploration in a reasonable time. Therefore, we set one hour
as an upper bound for the exploration and use OOT to represent that the exploration runs
out of time. As discussed in Section 5, MCR-S may introduce some redundant executions
into the exploration. Consider the Counter and Pingpong benchmarks. It takes 6, 550 and
535 executions for MCR-S to explore the state-space, respectively. But it only takes 4, 553
and 394 executions for MCR and 3, 485 and 394 for MCR-S+. Although MCR-S reduces

S. Huang and J. Huang 16:19

more reads and constraints than MCR-S+ does, it also introduces redundant executions.
As a result, it takes more time for MCR-S to check the two benchmarks. But MCR-S+
reduces the total time of the exploration of Counter by 48 seconds, compared to MCR. For
the BubbleSort benchmark, all of the three methods fail to finish the exploration in one
hour. MCR-S+ explores the most executions while MCR-S explores the least among the
three methods in the bounded time, meaning that the average time of MCR-S+ spent on
each execution is the least. MCR-S+ fails to reduce the total exploration time on Pingpong
and Airline for two reasons: (1)First, the two benchmarks generates light constraints and
the solving time of the constraints only takes a small portion of the total time. (2) Second,
it takes time for MCR-S+ to check the dependency between two events in the dynamic
exploration.

For the benchmark Weblech, both MCR-S and MCR-S+ reduce the exploration time by
about 3 and 5 minutes, respectively. Although MCR-S and MCR-S+ explores less executions
on Weblech, interestingly, all of the three methods expose the null pointer exception in the
benchmark. For Derby, MCR-S+ reduces the checking time by about 2 minutes, compared
to MCR and MCR-S, and MCR-S spent 10 more seconds than MCR does. Among the six
benchmarks, MCR-S+ achieves the best effect. This is because MCR-S+ reduces the size of
the constraints, and meanwhile it does not introduce any redundant executions.

7 Related Work

Stateless Model Checking

SMC is a powerful systematic testing technique that can verify the correctness of concurrent
programs by automatically exploring all the possible interleavings by the program. SMC
prevails since the pioneering work of VeriSoft [11]. To mitigate the state explosion problem,
a great effort has been dedicated to reduction techniques to prune the equivalent executions
from the state space. The most popular techniques known are Partial Order Reduction (POR)
[7, 10] and context bounding [24, 23], while context bounding does not reduce redundancy
but limits the search space to polynomial. A number of techniques [8, 23, 4] based on
POR or combining them have been proposed to improve and optimize the performance of
POR. However, as pointed out in the MCR work [16], the effectiveness of POR is limited by
happens-before: it can not reduce the redundant interleavings that have different happens-
before relations.

MCR [16] is new reduction technique to explore new program states by using SMT
or SAT solvers to search new interleavings. The new interleaving is produced by solving
the constrains over the order variables of the events. As discussed before, the size of the
constraints can be arbitrarily large and complicated, in general cubic in the size of the trace.
Huang et al. [20] recently extended MCR from SC [21] to TSO and PSO [5, 26]. Our work
can also be applied to optimize the constraints in this technique.

Program Slicing

Our work is closely related to program slicing technique, originally defined in [28], which aims
to compute a slice consisting of all statements and predicates that can influence the value of
a certain point in the program. Ottenstein et al. [25] brought program dependence graph
(PDG) into slicing and pointed out that PDG is well-suited for representing the procedures
in software development environment. Horwitz et al. [15] addressed interprocedural-slicing
problem by introducing the system dependence graph (SDG) to represent the whole program.

ECOOP 2017

16:20 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

To find the statements that influence the value of a point under specific input instead of
all inputs, Agrawal and Horgan [6] proposed the notion of the dynamic slicing based on a
dynamic dependence graph to narrow the slice.

Different from the above techniques, our work is only interested in the reads which
influence the evaluation of a predicate, and thus influencing the reachability of a certain point.
Moreover, our slice is based on the executed trace. As a result, although the dependence
graph is statically computed, we only include the statements that do affect the occurrence of
a specific event because all the statements are from the executed trace.

Other Works

Another work that our approach shares partial similarities with is TAME [18] by Huang
and Rauchwerger. TAME tries to find what branches in the given trace have the chance to
explore a different path due to the program’s schedule. It is feasible to combine our work
with TAME. We can first run TAME on the trace to exclude those branches that will not
take a different path no matter how the program schedules and then only consider reads that
relate to schedule-sensitive branches.

Cortex [22] is an extension on CLAP [19] that helps expose and understand schedule-
and path-dependent concurrency bugs. Cortex is able to synthesize failure executions from
correct production runs by flipping branches and alternating the order of concurrent events.
It leverages symbolic execution to identify the path conditions and inverts the path condition
to synthesize a different control flow. Our approach can also first instrument those reads
related to path conditions and record them in the trace. Then we can directly identify those
reads when we construct constraints over the trace.

8 Conclusion

In this work, we present a new technique to reduce the size of the constraints formula to
speed up MCR via static dependency analysis. We use system dependency graph to capture
the dependency between a read and an event e in the trace and exclude those reads that e is
not control dependent on. We then can ignore the constraints over such reads to make them
return the same value and thus reducing the complexity of the formula. The experimental
results show that comparing to MCR, the number of the constraints and the solving time by
our approach are averagely reduced by 31.6% and 27.8%, respectively.

Acknowledgements. We would like to thank our shepherd, Anders Møller, and the an-
onymous reviewers for their valuable feedback.

References
1 Joana: Information flow control framework for java. http://pp.ipd.kit.edu/projects/

joana/.
2 Wala. https://github.com/wala/WALA.
3 Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Optimal dy-

namic partial order reduction. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL, 2014.

4 Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Optimal dy-
namic partial order reduction. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 2014.

http://pp.ipd.kit.edu/projects/joana/
http://pp.ipd.kit.edu/projects/joana/
https://github.com/wala/WALA

S. Huang and J. Huang 16:21

5 Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.
computer, 29(12):66–76, 1996.

6 Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceedings of the
ACM SIGPLAN 1990 Conference on Programming Language Design and Implementation,
PLDI, 1990.

7 Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press, 1999.
8 Katherine E. Coons, Madanlal Musuvathi, and Kathryn S. Mckinley. Bounded partial-

order reduction. In In Proceedings of the 2013 Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 833–848, 2013.

9 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.

10 Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model check-
ing software. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, 2005.

11 Patrice Godefroid. Model checking for programming languages using verisoft. In Proceedings
of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM, 1997.

12 Patrice Godefroid. Software model checking: The verisoft approach. Formal Methods in
System Design, 2005.

13 Patrice Godefroid, J van Leeuwen, J Hartmanis, G Goos, and Pierre Wolper. Partial-
order methods for the verification of concurrent systems: an approach to the state-explosion
problem, volume 1032. Springer Heidelberg, 1996.

14 Jurgen Graf. Speeding up context-, object- and field-sensitive sdg generation. In Proceedings
of the 2010 10th IEEE Working Conference on Source Code Analysis and Manipulation,
SCAM, 2010.

15 S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In
Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation, PLDI, 1988.

16 Jeff Huang. Stateless model checking concurrent programs with maximal causality reduc-
tion. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’15, 2015.

17 Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal sound predictive race
detection with control flow abstraction. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, 2014.

18 Jeff Huang and Lawrence Rauchwerger. Finding schedule-sensitive branches. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE, 2015.

19 Jeff Huang, Charles Zhang, and Julian Dolby. Clap: Recording local executions to re-
produce concurrency failures. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI, 2013.

20 Shiyou Huang and Jeff Huang. Maximal causality reduction for tso and pso. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA, 2016.

21 Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. Computers, IEEE Transactions on, 100(9):690–691, 1979.

22 Nuno Machado, Brandon Lucia, and Luís Rodrigues. Production-guided concurrency de-
bugging. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’16, 2016.

23 Madanlal Musuvathi and Shaz Qadeer. Partial-order reduction for context-bounded state
exploration. Technical report, Tech. Rep. MSR-TR-2007-12, Microsoft Research, 2007.

ECOOP 2017

16:22 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

24 Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga
Nainar, and Iulian Neamtiu. Finding and reproducing heisenbugs in concurrent programs.
In OSDI, volume 8, pages 267–280, 2008.

25 Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in a software
development environment. In Proceedings of the First ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, SDE 1, 1984.

26 Scott Owens, Susmit Sarkar, Peter Sewell, and A Better. x86 memory model: x86-tso.
In Proceedings of the 22nd International Conference on Theorem Proving in Higher Order
Logics, 2009.

27 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a java bytecode optimization framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on Collaborative Research, CASCON, 1999.

28 Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on
Software Engineering, ICSE, 1981.

	Introduction
	Maximal Causality Reduction
	 Motivation and Technical Background
	Motivation
	System Dependency Graph

	Our Approach
	Constraints Reduction
	Dependency Analysis
	Control Dependency
	Data Dependency
	Dependency Reads Computation

	Discussion

	Redundant Executions
	Redundancy Elimination

	Implementation and Evaluation
	Implementation
	Methodology
	Reduction Analysis
	Overall Checking Performance Comparison

	Related Work
	Conclusion

