
Approximate Range Counting Revisited∗†

Saladi Rahul

Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN, USA
sala0198@umn.edu

Abstract
We study range-searching for colored objects, where one has to count (approximately) the num-
ber of colors present in a query range. The problems studied mostly involve orthogonal range-
searching in two and three dimensions, and the dual setting of rectangle stabbing by points. We
present optimal and near-optimal solutions for these problems. Most of the results are obtained
via reductions to the approximate uncolored version, and improved data-structures for them. An
additional contribution of this work is the introduction of nested shallow cuttings.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases geometric data structures, range searching, rectangle stabbing, approx-
imate counting, colors

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.55

1 Introduction

Let S be a set of n geometric objects in Rd which are segregated into disjoint groups (i.e.,
colors). Given a query q ⊆ Rd, a color c intersects (or is present in) q if any object in S of
color c intersects q, and let k be the number of colors of S present in q.

q

In the approximate colored range-counting problem, the task is to preprocess S into a data
structure, so that for a query q, one can efficiently report the approximate number of colors
present in q. Specifically, return any value in the range [(1− ε)k, (1 + ε)k], where ε ∈ (0, 1)
is a pre-specified parameter.

Colored range searching and its related problems have been studied before [8, 10, 11, 12].
They are known as GROUP-BY queries in the database literature. A popular variant is the
colored orthogonal range searching problem: S is a set of n colored points in Rd, and q is an
axes-parallel rectangle. As a motivating example for this problem, consider the following
query: “How many countries have employees aged between X1 and X2 while earning annually

∗ The full version of this work with the title “Approximate Range Counting Revisited" can be found on
https://arxiv.org/abs/1512.01713v3.

† This research was partly supported by a Doctoral Dissertation Fellowship (DDF) from the Graduate
School of University of Minnesota.

© Saladi Rahul;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.55
https://arxiv.org/abs/1512.01713v3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

55:2 Approximate Range Counting Revisited

more than Y rupees?". An employee is represented as a colored point (age, salary), where
the color encodes the country, and the query is the axes-parallel rectangle [X1, X2]× [Y,∞).

1.1 Previous work and background.
In the standard approximate range counting problem there are no colors. One is interested
in the approximate number of objects intersecting the query. Specifically, if k is the number
of objects of S intersecting q, then return a value in the range [(1− ε)k, (1 + ε)k].

General reduction to companion problems. Aronov and Har-Peled [3], and Kaplan, Ramos
and Sharir [9] presented general techniques to answer approximate range counting queries. In
both instances, the authors reduce the task of answering an approximate counting query, into
answering a few queries in data-structures solving an easier (companion) problem. Aronov
and Har-Peled’s companion problem is the emptiness query, where the goal is to report
whether |S ∩ q| = 0. Specifically, assume that there is a data structure of size S(n) which
answers the emptiness query in O(Q(n)) time. Aronov and Har-Peled show that there is
a data structure of size O(S(n) logn) which answers the approximate counting query in
O(Q(n) logn) time (for simplicity we ignore the dependency on ε). Kaplan et al.’s companion
problem is the range-minimum query, where each object of S has a weight associated with it
and the goal is to report the object in S ∩ q with the minimum weight.

Even though the reductions of [3] and [9] seem different, there is an interesting discussion
in Section 6 of [3] about the underlying “sameness" of both techniques.

Levels. Informally, for a set S of n objects, a t-level of S is a surface such that if a point
q lies above (resp., on/below) the surface, then the number of objects of S containing q is
> t (resp., ≤ t). Range counting can be reduced in some cases to deciding the level of a
query point. Unfortunately, the complexity of a single level is not well understood. For
example, for hyperplanes in the plane, the t-level has super-linear complexity Ω(n2

√
log t)

in the worst-case (the known upper bound is O(nt1/3) and closing the gap is a major open
problem). In particular, the prohibitive complexity of such levels makes them inapplicable
for the approximate range counting problem, where one shoots for linear (or near-linear)
space data-structures.

Shallow cuttings A t-level shallow cutting is a set of simple cells, that lies strictly below the
2t-level, and their union covers all the points below (and on) the t-level. For many geometric
objects in two and three dimensions, such t-shallow cuttings have O(n/t) cells. Using such
cuttings leads to efficient data-structures for approximate range counting. Specifically, one
uses binary search on a “ladder” of approximate levels (realized via shallow cuttings) to find
the approximation.

For halfspaces in R3, Afshani and Chan [1] avoid doing the binary search and find the
two consecutive levels in optimal O(log n

k) expected time. Later, Afshani, Hamilton and
Zeh [2] obtained a worst-case optimal solution for many geometric settings. Interestingly,
their results hold in the pointer machine model, the I/O-model and the cache-oblivious
model. However, in the word-RAM model their solution is not optimal and the query time is
Ω(log logU + (log logn)2).

Specific problems. Approximate counting for orthogonal range searching in R2 was studied
by Nekrich [11], and Chan and Wilkinson [5] in the word-RAM model. In this setting, the

S. Rahul 55:3

input set is points in R2 and the query is a rectangle in R2. A hyper-rectangle in Rd is
(d + k)-sided if it is bounded on both sides in k out of the d dimensions and unbounded
on one side in the remaining d− k dimensions. Nekrich [11] presented a data structure for
approximate colored 3-sided range searching in R2, where the input is points and the query
is a 3-sided rectangle in R2. However, it has an approximation factor of (4 + ε), whereas
we are interested in obtaining a tighter approximation factor of (1 + ε). To the best of our
knowledge, this is the only work directly addressing an approximate colored counting query.

1.2 Motivation
Avoiding expensive counting structures. A search problem is decomposable if given two
disjoint sets of objects S1 and S2, the answer to F (S1 ∪ S2) can be computed in constant
time, given the answers to F (S1) and F (S2) separately. This property is widely used in the
literature for counting in standard problems (going back to the work of Bentley and Saxe [4]
in the late 1970s). For colored counting problems, however, F (·) is not decomposable. If
F (S1) (resp. F (S2)) has n1 (resp. n2) colors, then this information is insufficient to compute
F (S1 ∪ S2), as they might have common colors.

As a result, for many exact colored counting queries the known space and query time
bounds are expensive. For example, for colored orthogonal range searching problem in
Rd, existing structures use O(nd) space to achieve polylogarithmic query time [10]. Any
substantial improvement in the preprocessing time and the query time would lead to a
substantial improvement in the best exponent of matrix multiplication [10] (which is a major
open problem). Similarly, counting structures for colored halfspace counting in R2 and R3 [8]
are expensive.

Instead of an exact count, if one is willing to settle for an approximate count, then this
work presents a data structure with O(n polylog n) space and O(polylog n) query time.

Approximate counting in the speed of emptiness. In an emptiness query, the goal is to
decide if S ∩ q is empty. The approximate counting query is at least as hard as the emptiness
query: When k = 0 and k = 1, no error is tolerated. Therefore, a natural goal while answering
approximate range counting queries is to match the bounds of its corresponding emptiness
query.

1.3 Our results and techniques

1.3.1 Specific problems
The focus of the paper is building data structures for approximate colored counting queries,
which exactly match or almost match the bounds of their corresponding emptiness problem.

1.3.1.1 3-sided rectangle stabbing in 2d and related problems

In the colored interval stabbing problem, the input is n colored intervals with endpoints in
JUK = {1, . . . , U}, and the query is a point in JUK. We present a linear-space data structure
which answers the approximate counting query in O(log logU) time. The new data structure
can be used to handle some geometric settings in 2d: the colored dominance search (the input
is a set of n points, and the query is a 2-sided rectangle) and the colored 3-sided rectangle
stabbing (the input is a set of n 3-sided rectangles, and the query is a point). The results are
summarized in Table 1.

SoCG 2017

55:4 Approximate Range Counting Revisited

Table 1 A summary of the results obtained for several approximate colored counting queries. To
avoid clutter, the O(·) symbol and the dependency on ε is not shown in the space and the query
time bounds. For the second column in the table, the first entry is the input and the second entry
is the query. For each of the results column in the table, the first entry is the space occupied by
the data structure and the second entry is the time taken to answer the query. WR denotes the
word-RAM model and PM denotes the pointer machine model.

Dime- Input, New Results Previous Approx. Exact Counting Model
-nsion Query Counting Results Results

1 intervals, S: n, S: n, S: n,

point Q: log log U Q: log log U+ Q: log log U + logw n WR
2 points, (log log n)2

2-sided rectangle
2 3-sided rectangles, Theorem 1

point

2 points, S: n, S: n log2 n,

3-sided rectangle Q: log n Q: log2 n not studied PM
Theorem 15(A)

2 points, S: n log n, S: n log3 n, S: n2 log6 n,

4-sided rectangle Q: log n Q: log2 n Q: log7 n PM
Theorem 15(B) Kaplan et al. [10]

3 points, S: n log∗ n, S: n log2 n,

3-sided rectangle Q: log n · log log n Q: log2 n not studied PM
Theorem 7

1.3.1.2 Range searching in R2

The input is a set of n colored points in the plane. For 3-sided query rectangles, an optimal
solution (in terms of n) for approximate counting is obtained. For 4-sided query rectangles, an
almost-optimal solution for approximate counting is obtained. The size of our data structure
is off by a factor of log logn w.r.t. its corresponding emptiness structure which occupies
O(n log n

log log n) space and answers the emptiness query in O(logn) time [6]. The results are
summarized in Table 1.

1.3.1.3 Dominance search in R3

The input is a set of n colored points in R3 and the query is a 3-sided rectangle in R3 (i.e., an
octant). An almost-optimal solution is obtained requiring O(n log logn) space and O(logn)
time to answer the approximate counting query.

1.3.2 General reductions
We present two general reductions for solving approximate colored counting queries by
reducing them to “easy" companion queries.

Reduction-I (Reporting + C-approximation). In the first reduction a colored approximate
counting query is answered using two companion structures: (a) reporting structure (its
objective is to report the k colors), and (b) C-approximation structure (its objective is to

S. Rahul 55:5

report any value z s.t. k ∈ [z, Cz], where C is a constant). Significantly, unlike previous
reductions [3, 9], there is no asymptotic loss of efficiency in space and query time bounds
w.r.t. to the two companion problems.

Reduction-II (Only Reporting). The second reduction is a modification of the Aronov and
Har-Peled [3] reduction. We present the reduction for the following reasons: (A) Unlike
reduction-I, this reduction is “easier" to use since it uses only the reporting structure and
avoids the C-approximation structure, and (B) the analysis of Aronov and Har-Peled is
slightly complicated because of their insistence on querying emptiness structures. We show
that by using reporting structures the analysis becomes simpler. This reduction is useful
when the reporting query is not significantly costlier than the emptiness query. The full
version of this work will describe this reduction and its applications.

1.3.3 Our techniques
The results are obtained via a non-trivial combination of several techniques. For example,
(a) new reductions from colored problems to standard problems, (b) obtaining a linear-
space data structure by performing random sampling on a super-linear-size data structure,
(c) refinement of path-range trees of Nekrich [11] to obtain an optimal data structure for
C-approximation of colored 3-sided range search in R2, and (d) random sampling on colors
to obtain the two general reductions.

In addition, we introduce nested shallow cuttings for 3-sided rectangles in 2d. The idea
of using a hierarchy of cuttings (or samples) is, of course, not new. However, for this specific
setting, we get a hierarchy where there is no penalty for the different levels being compatible
with each other. Usually, cells in the lower levels have to be clipped to cells in the higher
levels of the hierarchy, leading to a degradation in performance. In our case, however, cells
of the lower levels are fully contained in the cells of the level above it.

1.3.3.1 Paper organization

In Section 2, we present a solution to the colored 3-sided rectangle stabbing in 2d problem. In
Section 3 we present a solution to the colored dominance search in R3 problem. In Section 4,
the first general reduction is presented. In Section 5, the application of the first reduction
to colored orthogonal range search in R2 problem is shown. Most of the proofs have been
omitted and can be found in the full version.

2 3-sided Rectangle Stabbing in 2d

The goal of this section is to prove the following theorem.

I Theorem 1. Consider the following three colored geometric settings:
1. Colored interval stabbing in 1d, where the input is a set S of n colored intervals in

one-dimension and the query q is a point. The endpoints of the intervals and the query
point lie on a grid JUK.

2. Colored dominance search in 2d, where the input is a set S of n colored points in
2d and the query q is a quadrant of the form [qx,∞)× [qy,∞). The input points and the
point (qx, qy) lie on a grid JUK× JUK.

3. Colored 3-sided rectangle stabbing in 2d, where the input is a set S of n colored
3-sided rectangles in 2d and the query q is a point. The endpoints of the rectangles and
the query point lie on a grid JUK× JUK.

SoCG 2017

55:6 Approximate Range Counting Revisited

Then there exists an Oε(n) size word-RAM data structure which can answer an approximate
counting query for these three settings in Oε(log logU) time. The notation Oε(·) hides the
dependency on ε.

Our strategy for proving this theorem is the following: In Subsection 2.1, we present a
transformation of these three colored problems to the standard 3-sided rectangle stabbing in
2d problem. Then in Subsection 2.2, we construct nested shallow cuttings and use them to
solve the standard 3-sided rectangle stabbing in 2d problem.

2.1 Transformation to a standard problem
From now on the focus will be on colored 3-sided rectangle stabbing in 2d problem, since
the geometric setting of (1) and (2) in Theorem 1 are its special cases. We present a
transformation of the colored 3-sided rectangle stabbing in 2d problem to the standard
3-sided rectangle stabbing in 2d problem.

Let Sc ⊆ S be the set of 3-sided rectangles of a color c. In the preprocessing phase, we
perform the following steps: (1) Construct a union of the rectangles of Sc. Call it U(Sc).
(2) The vertices of U(Sc) include original vertices of Sc and some new vertices. Perform a
vertical decomposition of U(Sc) by shooting a vertical ray upwards from every new vertex of
U(Sc) till it hits +∞. This leads to a decomposition of U(Sc) into Θ(|Sc|) pairwise-disjoint
3-sided rectangles. Call these new set of rectangles N (Sc).

Given a query point q, we can make the following two observations:
If Sc ∩ q = ∅, then N (Sc) ∩ q = ∅.
If Sc ∩ q 6= ∅, then exactly one rectangle in N (Sc) is stabbed by q.

Let N (S) =
⋃
∀cN (Sc), and clearly, |N (S)| = O(n). Therefore, the colored 3-sided

rectangle stabbing in 2d problem on S has been reduced to the standard 3-sided rectangle
stabbing in 2d problem on N (S).

2.2 Standard 3-sided rectangle stabbing in 2d
In this subsection we will prove the following lemma.

I Lemma 2 (Standard 3-sided rectangle stabbing in 2d). In this geometric setting, the input
is a set S of n uncolored 3-sided rectangles of the form [x1, x2]× [y,∞), and the query q is a
point. The endpoints of the rectangles lie on a grid JUK× JUK. There exists a data structure
of size Oε(n) which can answer an approximate counting query in Oε(log logU) time.

By a standard rank-space reduction, the rectangles of S can be projected to a J2nK× JnK
grid: Let Sx (resp., Sy) be the list of the 2n vertical (resp., n horizontal) sides of S in increasing
order of their x− (resp., y−) coordinate value. Then each rectangle r = [x1, x2]×[y,∞) ∈ S is
projected to a rectangle [rank(x1), rank(x2)]× [rank(y),∞), where rank(xi) (resp., rank(y))
is the index of xi (resp., y) in the list Sx (resp., Sy). Given a query point q ∈ JUK × JUK,
we can use the van Emde Boas structure to perform a predecessor search on Sx and Sy in
O(log logU) time to find the position of q on the J2nK× JnK grid. Now we will focus on the
new setting and prove the following result.

I Lemma 3. For the standard 3-sided rectangle stabbing in 2d problem, consider a setting
where the rectangles have endpoints lying on a grid J2nK × JnK. Then there exists a data
structure of size Oε(n) which can answer the approximate counting query in Oε(1) time.

S. Rahul 55:7

upper segments

2t

t
t

2t

22t

23t

qqy

(a) (b) (c)

(logn, n)-structure

k ≤ √logn: bit tricks

(
√
logn, logn)-structure

t 2t

Figure 1 (a) A portion of the t-level and 2t-level is shown. Notice that by our construction, each
cell in the t-level is contained inside a cell in the 2t-level. (b) A cell in the t-level and the set Cr

associated with it. (c) A high-level summary of our data structure.

2.2.1 Nested shallow cuttings
To prove Lemma 3, we will first construct shallow cuttings for 3-sided rectangles in 2d. Unlike
the general class of shallow cuttings, the shallow cuttings we construct for 3-sided rectangles
will have a stronger property of cells in the lower level lying completely inside the cells of a
higher level.

I Lemma 4. Let S be a set of 3-sided rectangles (of the form [x1, x2]×[y,∞)) whose endpoints
lie on a J2nK× JnK grid. A t-level shallow cutting of S produces a set C of interior-disjoint
3-sided rectangles/cells of the form [x1, x2]× (−∞, y]. There exists a set C with the following
three properties:
1. |C| = 2n/t.
2. If q does not lie inside any of the cell in C, then |S ∩ q| ≥ t.
3. Each cell in C intersects at most 2t rectangles of S.

Proof. Refer to the full version. J

I Observation 5 (Nested Property). Let t and i be integers. Consider a t-level and a 2it-level
shallow cutting. By our construction, each cell in 2it-level contains exactly 2i cells of the
t-level. More importantly, each cell in the t-level is contained inside a single cell of 2it-level
(see Figure 1(a)).

2.2.2 Data structure
Now we will use nested shallow cuttings to find a constant-factor approximation for the
3-sided rectangle stabbing in 2d problem. In [2], the authors show how to convert a constant-
factor approximation into a (1 + ε)-approximation for this geometric setting. The solution is
based on (t, t′)-level-structure and (≤

√
logn)-level shared table.

2.2.2.1 (t, t′)-level structure

Let i, t and t′ be integers s.t. t′ = 2it. If q(qx, qy) lies between the t-level and the t′-level
cutting of S, then a (t, t′)-level-structure will answer the approximate counting query in O(1)
time and occupy O

(
n+ n

t log t′
)
space.

SoCG 2017

55:8 Approximate Range Counting Revisited

Structure. Construct a shallow cutting of S for levels 2jt,∀j ∈ [0, i]. For each cell, say r, in
the t-level we do the following: Let Cr be the set of cells from the 21t, 22t, 23t, . . . , 2it-level,
which contain r (Observation 5 guarantees this property). Now project the upper segment of
each cell of Cr onto the y-axis (each segment projects to a point). Based on the y-coordinates
of these |Cr| projected points build a fusion-tree [7]. Since there are O(n/t) cells in the t-level
and |Cr| = O(log t′), the total space occupied is O(n

t log t′). See Figure 1(b).

Query algorithm. Since qx ∈ J2nK, it takes O(1) time to find the cell r of the t-level whose
x-range contains qx. If the predecessor of qy in Cr belongs to the 2jt-level, then 2jt is a
constant-factor approximation of k. The predecessor query also takes O(1) time.

2.2.2.2 (≤
√

log n)-level shared table

Suppose q lies in a cell in the
√

logn-level shallow cutting of S. Then constructing the
(≤
√

logn)-level shared table will answer the exact counting query in O(1) time. We will
need the following lemma.

I Lemma 6. For a cell c in the
√

logn-level shallow cutting of S, its conflict list Sc is
the set of rectangles of S intersecting c. Although the number of cells in the

√
logn-level is

O

(
n√
log n

)
, the number of combinatorially “different" conflict lists is merely O(

√
n).

Proof. Refer to the full version. J

Shared table. Construct a
√

logn-level shallow cutting of S. For each cell c, perform a
rank-space reduction of its conflict list Sc. Collect the combinatorially different conflict
lists. On each conflict list, the number of combinatorially different queries will be only
O(|Sc|2) = O(logn). In a lookup table, for each pair of (Sc, q) we store the exact value of
|Sc ∩ q|. The total number of entries in the lookup table is O(n1/2 logn).

Query algorithm. Given a query q(qx, qy), the following three O(1) time operations are
performed: (a) Find the cell c in the

√
logn-level which contains q. If no such cell is found,

then stop the query and conclude that k ≥
√

logn. (b) Otherwise, perform a rank-space
reduction on qx and qy to map it to the J2|Sc|K × J|Sc|K grid. Since, |Sc| = O(

√
logn), we

can build fusion trees [7] on Sc to perform the rank-space reduction in O(1) time. (c) Finally,
search for (Sc, q) in the lookup table and report the exact count.

2.2.2.3 Final structure

At first thought, one might be tempted to construct a (0, n)-level-structure. However, that
would occupy O(n logn) space. The issue is that the (t, t′)-level structure requires super-linear
space for small values of t. Luckily, the (≤

√
logn)-level shared table will efficiently handle

the small values of t.
Therefore, the strategy is to construct the following: (a) a (≤

√
logn)-level shared table,

(b) a (
√

logn, logn)-level-structure, and (c) a (logn, n)-level-structure. Now, the space
occupied by all the three structures will be O(n). See Figure 1(c) for a summary of our data
structure.

S. Rahul 55:9

3 Colored Dominance Search in R3

I Theorem 7. In the colored dominance search in R3 problem, the input set S is n colored
points in R3 and the query q is a point. Then there is a pointer machine data structure of size
Oε(n log∗ n) which can answer an approximate colored counting query in Oε(logn · log logn)
time. The notation Oε(·) hides the dependency on ε.

The strategy to prove this theorem is the following. First, we reduce the colored dominance
search in R3 problem to a standard problem of 5-sided rectangle stabbing in R3. Then in the
remaining section we solve the standard 5-sided rectangle stabbing in R3 problem.

3.1 Reduction to 5-sided rectangle stabbing in R3

In this subsection we present a reduction of colored dominance search in R3 problem to the
standard 5-sided rectangle stabbing in R3 problem. Let S be a set of n colored points lying
in R3. Let Sc ⊆ S be the set of points of color c, and p1, p2, . . . , pt be the points of Sc in
decreasing order of their z-coordinate value. With each point pi(pix, piy, piz), we associate a
region φi in R3 which satisfies the following invariant: a point (x, y, z) belongs to φi if and
only if in the region [x,+∞)× [y,+∞)× [z,+∞) the point of Sc with the largest z-coordinate
is pi. The following assignment of regions ensures the invariant:

φ1 = (−∞, p1x]× (−∞, p1y]× (−∞, p1z]
φi = (−∞, pix]× (−∞, piy]× (−∞, piz] \

⋃i−1
j=1 φj ,∀i ∈ [2, |Sc|].

By our construction, each region φi is unbounded in the negative z-direction. Each
region φi is broken into disjoint 5-sided rectangles via vertical decomposition in the xy-plane.
The vertical decomposition ensures that the total number of disjoint rectangles generated is
bounded by O(|Sc|). Now we can observe that (i) if a color c has at least one point inside
q, then exactly one of its transformed rectangle will contain q, and (ii) if a color c has no
point inside q, then none of its transformed rectangles will contain q. Therefore, the colored
dominance search in R3 has been transformed to the standard 5-sided rectangle stabbing
query.

3.2 Initial strcuture
I Lemma 8. In the standard 5-sided rectangle stabbing in R3 problem, the input is a set S
of n 5-sided rectangles in R3 and the query q is a point. Then there exists a pointer machine
data structure of size Oε(n log logn) which can answer an approximate counting query in
Oε(logn · log logn) time.

The rest of the subsection is devoted to proving this lemma.

Recursion tree. Define a parameter t = log1+ε n. We will assume that the 5-sided rectangles
are unbounded along the z-axis. Consider the projection of the rectangles of S on to the
xy-plane and impose an orthogonal

q
2
√

n
t

y
×

q
2
√

n
t

y
grid such that each horizontal and

vertical slab contains the projections of
√
nt sides of S. Call this the root of the recursion

tree. Next, for each vertical and horizontal slab, we recurse on the rectangles of S which
are sent to that slab. At each node of the recursion tree, if we have m rectangles in the
subproblem, then t is changed to log1+ε m and the grid size changes to

q
2
√

m
t

y
×

q
2
√

m
t

y
.

We stop the recursion when a node has less than c rectangles, for a suitably large constant c.

SoCG 2017

55:10 Approximate Range Counting Revisited

(a) (b) (c) (d)

Figure 2

(a) (b) (c) (d)

Figure 3

Assignment of rectangles. For a node in the tree, the intersection of every pair of horizontal
and vertical grid line defines a grid point. Each rectangle of S is assigned to Oε(log logn)
nodes in the tree. The assignment of a rectangle to a node is decided by the following three
cases:

Case-I. The xy-projection of a rectangle intersects none of the grid points, i.e., it lies
completely inside one of the row slab or/and the column slab. Then the rectangle is not
assigned to this node, but sent to the child node corresponding to the row or column the
rectangle lies in.

Case-II. The xy-projection of a rectangle r intersects at least one of the grid points. Let cl

and cr be the leftmost and the rightmost column of the grid intersected by r. Similarly, let
rb and rt be the bottommost and the topmost row of the grid intersected by r.

Then the rectangle is broken into at most five disjoint pieces: a grid rectangle, which is
the bounding box of all the grid points lying inside r (see Figure 2(b)), two column rectangles,
which are the portions of r lying in column cl and cr (see Figure 2(d)), and two row rectangles,
which are the remaining portion of the rectangle r lying in row rb and rt (see Figure 2(c)).
The grid rectangle is assigned to the node. Note that each column rectangle (resp., row
rectangle) is now a 4-sided rectangle in R3 w.r.t. the column (resp., row) it lies in, and is
sent to its corresponding child node.

Case-III. The xy-projection of a 4-sided rectangle r intersects at least one of the grid
points. Without loss of generality, assume that the 4-sided rectangle r is unbounded along
the negative x-axis. Then the rectangle is broken into at most four disjoint pieces: a grid
rectangle, as shown in Figure 3(b), one column rectangle, as shown in Figure 3(d), and two
row rectangles, as shown in Figure 3(c). The grid rectangle and the two row rectangles are
assigned to the node. Note that the two row rectangles are now 3-sided rectangles in R3

w.r.t. their corresponding rows (unbounded in one direction along x−, y− and z−axis). The
column rectangle is sent to its corresponding child node. Analogous partition is performed
for 4-sided rectangles which are unbounded along positive x-axis, positive y-axis and negative
y-axis.

I Observation 9. A rectangle of S gets assigned to at most four nodes at each level in the
recursion tree.

S. Rahul 55:11

Proof. Consider a rectangle r ∈ S. If r falls under Case-II, then its grid rectangle is assigned
to the node. Note that r can fall under Case-II only once, since each of its four row and
column rectangles are now effectively 4-sided rectangles. Let r′ be one of these row or column
rectangles. If r′ falls under Case-III at a node, then it gets assigned there. However, this
time exactly one of the broken portion of r′ will be sent to the child node. Therefore, there
can be at most four nodes at each level where rectangle r (and broken portions of r) can get
assigned. J

Data structures at each node. We build two types of structures at each node in the tree.

Structure-I. A rectangle r′ is higher than rectangle r′′ if r′ has a larger span than r′′ along
z-direction. For each cell c of the grid, based on the rectangles which completely cover c, we
construct a sketch as follows: select the rectangle with the (1 + ε)0, (1 + ε)1, (1 + ε)2, . . .-th
largest span. For a given cell, the size of the sketch will be O(log1+ε m).

Structure-II. For a given row or column in the grid, let Ŝ be the 3-sided rectangles in R3

assigned to it. We build the linear-size structure of [2] on Ŝ, which will return a (1 + ε)-
approximation of |Ŝ ∩ q| in Oε(logn) time. This structure is built for each row and column
slab.

Space analysis. Consider a node in the recursion tree with m rectangles. There will
be
(
2
√

m
t

)
×
(
2
√

m
t

)
= 4 m

t cells at this node. The space occupied by structure-I will
be O

(
m
t · log1+ε m

)
= O(m). The space occupied by structure-II will be O(m). Using

Observation 9, the total space occupied by all the nodes at a particular level will be
O(n). Since the height of the recursion tree is Oε(log logn), the total space occupied is
Oε(n log logn).

Query algorithm. Given a query point q, we start at the root node. At each visited node,
the following three steps are performed:
1. Query structure-I. Locate the cell c on the grid containing q. Scan the sketch of cell c to

return a (1 + ε)-approximation of the number of rectangles which cover c and contain q.
This takes Oε(logm) time.

2. Query structure-II. Next, query structure-II of the horizontal and the vertical slab
containing q, to find a (1 + ε)-approximation of the 3-sided rectangles containing q. This
takes Oε(logm) time.

3. Recurse. Finally, we recurse on the horizontal and the vertical slab containing q.

The final output is the sum of the count returned by all the nodes queried.

Query time analysis. Let Q(n) denote the overall query time. Then

Q(n) = 2Q(
√
nt) +Oε(logn), t = log1+ε n.

This solves to Q(n) = Oε(logn · log logn). This finishes the proof of Lemma 8.

3.3 Final structure
I Lemma 10. In the standard 5-sided rectangle stabbing in R3 problem, the input is a set
S of n 5-sided rectangles in R3 and the query q is a point. Then there exists a pointer
machine data structure of size Oε(n log∗ n) which can solve an approximate counting problem
in Oε(logn · log logn) time.

Refer to the full version for a proof of this lemma.

SoCG 2017

55:12 Approximate Range Counting Revisited

4 Reduction-I: Reporting + C-approximation

Our first reduction states that given a colored reporting structure and a colored C-approximation
structure, one can obtain a colored (1 + ε)-approximation structure with no additional loss
of efficiency. We need a few definitions before stating the theorem. A geometric setting is
polynomially bounded if there are only nO(1) possible outcomes of S∩q, over all possible values
of q. For example, in 1d orthogonal range search on n points, there are only Θ(n2) possible
outcomes of S∩q. A function f(n) is converging if

∑t
i=0 ni = n, then

∑t
i=0 f(ni) = O(f(n)).

For example, it is easy to verify that f(n) = n logn is converging.

I Theorem 11. For a colored geometric setting, assume that we are given the following two
structures:

a colored reporting structure of Srep(n) size which can solve a query in O(Qrep(n) + κ)
time, where κ is the output-size, and
a colored C-approximation structure of Scapp(n) size which can solve a query in O(Qcapp(n))
time.

We also assume that: (a) Srep(n) and Scapp(n) are converging, and (b) the geometric setting
is polynomially bounded. Then we can obtain a (1 + ε)-approximation using a structure that
requires Sεapp(n) space and Qεapp(n) query time, such that

Sεapp(n) = O(Srep(n) + Scapp(n)) (1)
Qεapp(n) = O

(
Qrep(n) +Qcapp(n) + ε−2 · logn

)
. (2)

4.1 Refinement Structure
The goal of a refinement structure is to convert a constant-factor approximation of k into a
(1 + ε)-approximation of k.

I Lemma 12 (Refinement structure). Let C be the set of colors in set S, and C ∩ q be the set
of colors in C present in q. For a query q, assume we know that:

k = |C ∩ q| = Ω(ε−2 logn), and
k ∈ [z, Cz], where z is an integer.

Then there is a refinement structure of size O
(
Srep

(
ε−2n log n

z

))
which can report a value

τ ∈ [(1− ε)k, (1 + ε)k] in O(Qrep(n) + ε−2 logn) time.

The following lemma states that sampling colors (instead of input objects) is a useful
approach to build the refinement structure.

I Lemma 13. Consider a query q which satisfies the two conditions stated in Lemma 12.
Let c1 be a sufficiently large constant and c be another constant s.t. c = Θ(c1 log e). Choose a
random sample R where each color in C is picked independently with probabilityM = c1ε−2 log n

z .
Then with probability 1− n−c we have

∣∣∣k − |R∩q|
M

∣∣∣ ≤ εk.
Proof. Refer to the full version. J

I Lemma 14 (Finding a suitable R). Pick a random sample R as defined in Lemma 13. Let
nR be the number of objects of S whose color belongs to R. We say R is suitable if it satisfies
the following two conditions:∣∣∣k − |R∩q|

M

∣∣∣ ≤ εk for all queries which have k = Ω(ε−2 logn).
nR ≤ 10nM . This condition is needed to bound the size of the data structure.

A suitable R always exists.

Proof. Refer to the full version. J

S. Rahul 55:13

Refinement structure and query algorithm

In the preprocessing stage pick a random sample R ⊆ C as stated in Lemma 13. If the sample
R is not suitable, then discard R and re-sample, till we get a suitable sample. Based on all the
objects of S whose color belongs to R, build a colored reporting structure. Given a query q,
the colored reporting structure is queried to compute |R∩q|. We report τ ←− (|R ∩ q|/M) as
the final answer. The query time is bounded by O(Qrep(n) + ε−2 logn), since by Lemma 13,
|R∩q| ≤ (1+ε) ·kM = O(ε−2 logn). This finishes the description of the refinement structure.

4.2 Overall solution
Data structure

The data structure consists of the following three components:
1. Reporting structure. Based on the set S we build a colored reporting structure. This

occupies O(Srep(n)) space.
2.
√
C-approximation structure. Based on the set S we build a

√
C-approximation structure.

The choice of
√
C will become clear in the analysis. This occupies O(Scapp(n)) space.

3. Refinement structures. Build the refinement structure of Lemma 12 for the values z =
(
√
C)i · ε−2 logn,∀i ∈

[
0, log√C

(⌈
ε2n
⌉)]

. The total size of all the refinement structures
will be

∑
O (Srep(nM)) = O(Srep(n)), since Srep(·) is converging and

∑
nM = O(n).

Note that our choice of z ensures that the size of the data structure is independent of ε.

Query algorithm

The query algorithm performs the following steps:
1. Given a query object q, the colored reporting structure reports the colors present in S ∩ q

till all the colors have been reported or ε−2 logn+ 1 colors have been reported. If the
first event happens, then the exact value of k is reported. Otherwise, we conclude that
k = Ω(ε−2 logn). This takes O(Qrep(n) + ε−2 logn) time.

2. If k > ε−2 logn, then
a. First, query the

√
C-approximation structure. Let ka be the

√
C-approximate value

returned s.t. k ∈ [ka,
√
Cka]. This takes O(Qcapp(n)) time.

b. Then query the refinement structure with the largest value of z s.t. z ≤ ka ≤
√
Cz. It

is trivial to verify that k ∈ [z, Cz]. This takes O(Qrep(n) + ε−2 logn) time.

5 Colored Orthogonal Range Search in R2

To illustrate an application of Reduction-I, we study the approximate colored counting query
for orthogonal range search in R2. We only prove Theorem 15(1) here. Refer to the full
version for the proof of Theorem 15(2).

I Theorem 15. Consider the following two problems:
1. Colored 3-sided range search in R2. In this setting, the input set S is n colored points

in R2 and the query q is a 3-sided rectangle in R2. There is a data structure of O(n)
size which can answer the approximate colored counting query in O(ε−2 logn) time. This
pointer machine structure is optimal in terms of n.

2. Colored 4-sided range search in R2. In this setting, the input set S is n colored points
in R2 and the query q is a 4-sided rectangle in R2. There is a data structure of O(n logn)
size which can answer the approximate colored counting query in O(ε−2 logn) time.

SoCG 2017

55:14 Approximate Range Counting Revisited

5.1 Colored 3-sided range search in R2

We use the framework of Theorem 11 to prove the result of Theorem 15(1). For this geometric
setting, a colored reporting structure with Srep = n and Qrep = logn is already known [12].
The path-range tree of Nekrich [11] gives a (4 + ε)-approximation, but it requires super-linear
space. The C-approximation structure presented in this subsection is a refinement of the
path-range tree for the pointer machine model.

I Lemma 16. For the colored 3-sided range search in R2 problem, there is a C-approximation
structure which requires O(n) space and answers a query in O(logn) time.

We prove Lemma 16 in the rest of this subsection. Our solution is based on an interval tree
and we will need the following fact about it.

I Lemma 17. Using interval trees, a query on (3 + t)-sided rectangles in R3 can be broken
down into O(logn) queries on (2 + t)-sided rectangles in R3. Here t ∈ [1, 3].

Proof. Refer to the full version. J

5.1.1 Initial structure
I Lemma 18. For the colored 3-sided range search in R2 problem, there is a 2-approximation
structure which requires O(n) space and answers a query in O(log3 n) time.

Proof. By a simple exercise, the colored 3-sided range search in R2 can be reduced to the
colored dominance search in R3. Therefore, using the reduction of Subsection 3.1 the colored
3-sided range search in R2 also reduces to standard 5-sided rectangle stabbing problem (for
brevity, call it 5-sided RSP).

There is a simple linear-size data structure which reports inO(log3 n) time a 2-approximation
for the 5-sided RSP: By inductively applying Lemma 17 twice, we can decompose 5-sided
RSP to O(log2 n) 3-sided RSPs. For 3-sided RSP, there is a linear-size structure of which
reports a 2-approximation in O(logn) time [2]. By using this structure the 5-sided RSP can
be solved in O(log3 n) time. J

5.1.2 Final structure
Now we will present the optimal C-approximation structure of Lemma 16.

Structure. Sort the points of S based on their x-coordinate value and divide them into
buckets containing log2 n consecutive points. Based on the points in each bucket, build a
D-structure which is an instance of Lemma 18. Next, build a height-balanced binary search
tree T , where the buckets are placed at the leaves from left to right based on their ordering
along the x-axis. Let v be a proper ancestor of a leaf node u and let Π(u, v) be the path from
u to v (excluding u and v). Let Sl(u, v) be the set of points in the subtrees rooted at nodes
that are left children of nodes on the path Π(u, v) but not themselves on the path. Similarly,
let Sr(u, v) be the set of points in the subtrees rooted at nodes that are right children of
nodes on the path Π(u, v) but not themselves on the path. For each pair (u, v), let S′l(u, v)
(resp., S′r(u, v)) be the set of points that each have the highest y-coordinate value among the
points of the same color in Sl(u, v) (resp., Sr(u, v)).

Finally, for each pair (u, v), construct a sketch, S′′l (u, v), by selecting the 20, 21, 22, . . .-th
highest y-coordinate point in S′l(u, v). A symmetric construction is performed to obtain
S′′r (u, v). The number of (u, v) pairs is bounded by O((n/ log2 n) × (logn)) = O(n/ logn)
and hence, the space occupied by all the S′′l (u, v) and S′′r (u, v) sets is O(n).

S. Rahul 55:15

Query algorithm. To answer a query q = [x1, x2]× [y,∞), we first determine the leaf nodes
ul and ur of T containing x1 and x2, respectively. If ul = ur, then we query the D-structure
corresponding to the leaf node and we are done. If ul 6= ur, then we find the node v which
is the least common ancestor of ul and ur. The query is now broken into four sub-queries:
First, report the approximate count in the leaves ul and ur by querying the D-structure of
ul with [x1,∞)× [y,∞) and the D-structure of ur with (−∞, x2]× [y,∞). Next, scan the
list S′′r (ul, v) (resp., S′′l (ur, v)) to find a 2-approximation of the number of colors of Sr(ul, v)
(resp., Sl(ur, v)) present in q.

The final answer is the sum of the count returned by the four sub-queries. The time taken
to find ul, ur and v isO(logn). Querying the leaf structures takesO((log(log2 n))3) = O(logn)
time. The time taken for scanning the lists S′′r (ul, v) and S′′l (ur, v) is O(logn). Therefore,
the overall query time is bounded by O(logn). Since each of the four sub-queries give a
2-approximation, overall we get a 8-approximation.

References
1 Peyman Afshani and Timothy M. Chan. On approximate range counting and depth. Dis-

crete & Computational Geometry, 42(1):3–21, 2009.
2 Peyman Afshani, Chris H. Hamilton, and Norbert Zeh. A general approach for cache-

oblivious range reporting and approximate range counting. Computational Geometry: The-
ory and Applications, 43(8):700–712, 2010.

3 Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems.
SIAM Journal of Computing, 38(3):899–921, 2008.

4 Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: Static-to-
dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980.

5 Timothy M. Chan and Bryan T. Wilkinson. Adaptive and approximate orthogonal range
counting. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 241–251, 2013.

6 Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM Journal of
Computing, 15(3):703–724, 1986.

7 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. Journal of Computer and System Sciences (JCSS), 47(3):424–436, 1993.

8 Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Computational geometry: Gen-
eralized intersection searching. In Handbook of Data Structures and Applications. 2004.

9 Haim Kaplan, Edgar Ramos, and Micha Sharir. Range minima queries with respect to a ran-
dom permutation, and approximate range counting. Discrete & Computational Geometry,
45(1):3–33, 2011.

10 Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Counting colors in boxes. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
785–794, 2007.

11 Yakov Nekrich. Efficient range searching for categorical and plain data. ACM Transactions
on Database Systems (TODS), 39(1):9, 2014.

12 Qingmin Shi and Joseph JáJá. Optimal and near-optimal algorithms for generalized inter-
section reporting on pointer machines. Information Processing Letters (IPL), 95(3):382–388,
2005.

SoCG 2017

	Introduction
	Previous work and background.
	Motivation
	Our results and techniques
	Specific problems
	General reductions
	Our techniques

	3-sided Rectangle Stabbing in 2d
	Transformation to a standard problem
	Standard 3-sided rectangle stabbing in 2d
	Nested shallow cuttings
	Data structure

	Colored Dominance Search in R3
	Reduction to 5-sided rectangle stabbing in R3
	Initial strcuture
	Final structure

	Reduction-I: Reporting + C-approximation
	Refinement Structure
	Overall solution

	Colored Orthogonal Range Search in R2
	Colored 3-sided range search in R2
	Initial structure
	Final structure

