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Abstract
Let R,B ⊂ Rd, for constant d, be two point sets with |R| + |B| = n, and let λ : R ∪ B → N
such that

∑
r∈R λ(r) =

∑
b∈B λ(b) be demand functions over R and B. Let d(·, ·) be a suitable

distance function such as the Lp distance. The transportation problem asks to find a map
τ : R × B → N such that

∑
b∈B τ(r, b) = λ(r),

∑
r∈R τ(r, b) = λ(b), and

∑
r∈R,b∈B τ(r, b)d(r, b)

is minimized. We present three new results for the transportation problem when d(·, ·) is any Lp
metric:

For any constant ε > 0, an O(n1+ε) expected time randomized algorithm that returns a
transportation map with expected cost O(log2(1/ε)) times the optimal cost.
For any ε > 0, a (1 + ε)-approximation in O(n3/2ε−d polylog(U) polylog(n)) time, where
U = maxp∈R∪B λ(p).
An exact strongly polynomial O(n2 polylogn) time algorithm, for d = 2.
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1 Introduction

Let R and B be two point sets in Rd with |R| + |B| = n, where d is a constant, and
let λ : R ∪ B → N be a function satisfying

∑
r∈R λ(r) =

∑
b∈B λ(b). We denote U :=

maxp∈R∪B λ(p). We call a function τ : R×B → N, a transportation map between R and B
if
∑
b∈B τ(r, b) = λ(r) for all r ∈ R and

∑
r∈R τ(r, b) = λ(b) for all b ∈ B. Informally, for a

point r ∈ R, the value of λ(r) represents the supply at r, while for a point b ∈ B, the value
of λ(b) represents the demand at b. A transportation map represents a plan for moving the
supplies at points in R to meet the demands at points in B.

The cost of a transportation τ is defined as µ(τ) =
∑

(r,b)∈R×B τ(r, b)d(r, b), where
d(·, ·) is a suitable distance function such as the Lp distance. The Hitchcock-Koopmans
transportation problem (or simply transportation problem) on Σ = (R,B, λ) is to find the
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7:2 Faster Algorithms for the Geometric Transportation Problem

minimum-cost transportation map for Σ, denoted τ∗ := τ∗(Σ). The cost µ(τ∗) is often
referred to as the transportation distance or earth mover’s distance.

The transportation problem is a discrete version of the so-called optimal transport, or
Monge-Kantarovich, problem, originally proposed by the French mathematician Gaspard
Monge in 1781. This latter problem has been extensively studied in mathematics since
the early 20th century. See the book by Villani [27]. In addition to this connection, the
(discrete) transportation problem has a wide range of applications, including similarity
computation between a pair of images, shapes, and distributions, computing the barycenter
of a family of distributions, finding common structures in a set of shapes, fluid mechanics,
and partial differential equations. Motivated by these applications, this problem has been
studied extensively in many fields including computer vision, computer graphics, machine
learning, optimization, and mathematics. See e.g. [20, 14, 12, 23, 13] and references therein
for a few examples.

The transportation problem can be formulated as an instance of the uncapacitated min-
cost flow problem in a complete bipartite graph, in which edges have no capacity constraints.
The min-cost flow problem has been widely studied; see [18] for a detailed review of known
results. The uncapacitated min-cost flow problem in a graph with n vertices and m edges can
be solved in O((m+ n logn)n logn) time using Orlin’s algorithm [19] or Õ(m

√
n polylogU)

time1 using the algorithm by Lee and Sidford [18].
For transportation in geometric settings, Atkinson and Vaidya [8] adapted the Edmonds-

Karp algorithm to exploit geometric properties, and obtained an Õ(n2.5 logU) time algorithm
for any Lp-metric, and Õ(n2) for L1, L∞-metrics. The Atkinson-Vaidya algorithm was
improved using faster data structures for dynamic nearest-neighbor searching, first by [1] and
most recently by [17], for a running time of Õ(n2 logU). Sharathkumar and Agarwal [21]
designed a (1 + ε)-approximation algorithm with a Õ((n

√
nU + U logU) log(n/ε)) running

time.
More efficient algorithms are known for estimating the the optimal cost (earth mover’s

distance) without actually computing the transportation, provided that U = nO(1). Indyk [16]
gave an algorithm to find an O(1)-approximate estimate in Õ(n) time with probability at
least 1/2. Cabello et al. [9] reduced the problem to min-cost flow using a geometric spanner,
obtaining an (1 + ε)-approximate estimate in Õ(n2) time. Andoni et al. [4] give a streaming
algorithm that finds a (1 + ε)-approximate estimate in O(n1+oε(1)) time. However, in many
applications, one is interested in computing the map itself and not just the transportation
distance [13, 12]. This is the problem that we address in this paper.

The special case of the transportation problem where every point has unit demand/supply
is called the geometric bipartite matching problem. After a sequence of papers [25, 26, 21, 3],
a near-linear Õ(n) time (1 + ε)-approximation was found by Agarwal and Sharathkumar [22]
for this problem. On the other hand, before our work, no constant-factor approximation in
subquadratic time was known for the transportation problem with arbitrary demands and
supplies, even for the special case of U = O(n2).

Our results. We present three new results for the geometric transportation problem, for
any Lp-metric.

Our first result (Section 2) is a randomized algorithm that for any ε > 0, computes in
O(n1+ε) expected time a transportation map whose expected cost is O(log2(1/ε))µ(τ∗). The

1 We use Õ(f(n)) to denote O(f(n) polylog(n)).
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expected cost improves to O(log(1/ε))µ(τ∗) if the spread2 of R ∪ B is nO(1). The overall
structure of our algorithm is a simpler version of the matching algorithm by Agarwal and
Varadarajan [3], but several new ideas are needed to handle arbitrary demands and supplies.

We note that our algorithm can be extended to spaces with bounded doubling dimension.
For example, suppose R,B lie in a subspace of Rd such that the doubling dimension with
respect to d(·, ·) is a constant, d(·, ·) is computable in O(1) time, and the spread of R ∪B
is nO(1). Then our algorithm can be adapted so that it computes in O(n1+ε) expected
time a transportation map whose expected cost is O(log(1/ε))µ(τ∗). Recall that Indyk’s
algorithm [16] estimates the cost of τ∗ within an O(1) factor assuming that U = nO(1). Using
our ideas, his algorithm can be extended to arbitrary values of U . In particular, µ(τ∗) can
be estimated within an O(1) factor in Õ(n) time.

Our second result (Section 3) is a (1 + ε)-approximation algorithm to the transportation
problem that runs in Õ(n3/2ε−d polylog(U)) time. Using a quad-tree based well-separated
pair decomposition (WSPD) [11] of a point set, we construct a graph G with O(n) vertices and
O(n/εd) edges, and reduce the problem of computing a (1 + ε)-approximate transportation
map to computing the min-cost flow in G. Next, we compute a min-cost flow f∗ in G using
the Lee-Sidford [18] algorithm. Finally, we recover in O(n/εd) time a transportation map
τ : R×B → N from f∗ such that µ(τ) ≤ (1+ε)µ(τ∗). Our algorithm can be extended to spaces
with bounded doubling dimension by using the appropriate WSPD construction [24] for such
spaces. In particular, if the doubling dimension is D and the spread of R∪B is nO(1), then a
(1 + ε)-approximate transportation map can be computed in time Õ(n3/2ε−O(D) polylog(U)).

Our third result is an exact, strongly polynomial Õ(n2) time algorithm for d = 2, thereby
matching (up to poly-logarithmic factors) the best exact algorithm for geometric matching
[17]. Our algorithm is an implementation of Orlin’s strongly polynomial min-cost flow
algorithm [19], an augmenting-paths algorithm with edge contractions. A naive application of
Orlin’s algorithm has a running time of Õ(n3). By exploiting the geometry of the underlying
graph, we improve this running time to Õ(n2) in the plane.

Proofs of many lemmas, extensions of our approximation algorithms, and the details of
our exact algorithm are omitted from this extended abstract due to space constraints. They
will appear in the full version of the paper.

2 A Near-Linear Approximation

Let Σ = (R,B, λ) be an instance of the transportation problem in Rd. We say that Σ
has bounded spread if the spread of R ∪B is bounded by na for some constant a > 0. We
present a randomized recursive algorithm that, given Σ and a parameter ε > 0, returns a
transportation map in O(n1+ε) expected time whose expected cost is O(log(1/ε))µ(τ∗) if Σ
has bounded spread, and O(log2(1/ε))µ(τ∗) otherwise (recall that τ∗ is the optimal map).
We assume that n is sufficiently large so that nε is at least a suitably large constant.

We first give a high-level description of the algorithm without describing how each step is
implemented efficiently. Next, we analyze the cost of the transportation map computed by
the algorithm. We then discuss an efficient implementation of the algorithm. For simplicity,
we describe the algorithm and its analysis for dimension d = 2; the algorithm extends to
d > 2 in a straightforward manner.

2 The spread of a point set S is the ratio of the maximum and the minimum distance between a pair of
points in S.
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7:4 Faster Algorithms for the Geometric Transportation Problem

Figure 1 Moats, a safe grid (solid), an unsafe grid (dotted).

We need the notion of randomly shifted grids, as in [5, 3]. Formally, let � = [a− `, a]×
[b− `, b] be a square of side length ` with (a, b) as its top right corner. For a parameter ∆ > 0
(grid cell length), set l = dlog2

(
1 + `

∆
)
e, and L = 2l+1∆. Let �L = [a − L, a] × [b − L, b]

be the square of side length L with (a, b) as its top-right corner. We choose uniformly at
random a point ξ ∈ [0,∆)2 and set �shifted := �L + ξ. Note that � ⊆ �shifted. Let G(�,∆)
be the partition of �shifted into the uniform grid of side length ∆; G(�,∆) has 2l+1 × 2l+1

grid cells. G(�,∆) is called the randomly shifted grid on �.

2.1 A high-level description
A recursive subproblem Σ = (R,B, λ) consists of point sets R and B, a demand function
λ : R ∪ B→ N such that λ(R) = λ(B). We denote |R ∪ B| = m. If m ≤ nε/4, we call Σ a base
subproblem and compute an optimal transportation using Orlin’s algorithm. Thus, assume
that m > nε/4.

Let δ = 1/6. Also, let � be the smallest axis-aligned square containing R ∪ B, with its
sidelength denoted `. Set ∆ = `/mδ. The first step of the algorithm is to choose a randomly
shifted grid G = G(�,∆) that has the following additional property: any two points in R∪B
that are within a distance of `/m3 lie in the same grid cell. We call a grid G satisfying this
property safe. Algorithmically, we place an axis-parallel square of side length 2`/m3 around
every p ∈ R ∪ B, called the moat of p; G is safe if none of its grid lines cross any moat (see
Figure 1). If G is not safe, we sample a new random shift. It can be verified that G is safe
with probability at least 1− 1/m.

Let Π ⊆ G be the set of nonempty grid cells, i.e., ones that contain at least one point
of R ∪ B. For each cell π ∈ Π, we create a recursive instance Σπ, which we refer to as an
internal subproblem. Each Σπ aims to transport as much as possible within π. Whatever we
are unable to transport locally within cells of Π, we transport globally with a single external
subproblem Σ�. We now describe these subproblems in more detail.

For each cell π ∈ Π, we define the excess χπ of π to be the absolute difference between
the red and blue demand in π. Without loss of generality, assume λ(R ∩ π) ≥ λ(B ∩ π),
i.e. that the excess of π is red. Roughly speaking, the entirety of B ∩ π is used for the
internal subproblem, while R ∩ π is arbitrarily partitioned such that λ(B ∩ π) red demand
is used for the internal subproblem, and the remainder (of total demand = χπ) is used for
the external subproblem. We pick an arbitrary maximal subset of points (Rex)π ⊆ R ∩ π
such that λ((Rex)π) ≤ χπ. Let Rπ = (R ∩ π) \ (Rex)π, Bπ = B ∩ π, and (Bex)π = ∅. If
λ((Rex)π) < χπ, we arbitrarily pick a point p in Rπ, and split p into two copies, say p′ and
p′′, with λ(p′) = χπ − λ((Rex)π) and λ(p′′) = λ(p) − λ(p′). We then add p′ to (Rex)π and
replace p with p′′ in Rπ. This step ensures that λ((Rex)π) = χπ. Let λπ be the restriction
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Figure 2 A subproblem (a) with its internal subproblems (b) and external subproblem (c).
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Figure 3 Primary-secondary classification of recursive problems.

of λ to Rπ ∪ Bπ; by construction, λπ(Rπ) = λπ(Bπ). The internal subproblem for π is
Σπ = (Rπ,Bπ, λπ).

We now describe the external subproblem. Let Rex =
⋃
π∈Π(Rex)π, Bex =

⋃
π∈Π(Bex)π,

and set λex as the restriction of λ to Rex ∪ Bex. To solve the excess demand instance
Σex = (Rex,Bex, λex), we merge the excess in each cell into a single artificial point at the
center of the cell. The resulting transportation instance has relatively few points (O(m2δ))
and distorts the “real” distances by an amount proportional to the side length of the cell.
If λ(R ∩ π) > λ(B ∩ π), we create a red point rπ at the center of π and define the demand
of rπ, denoted λ�(rπ), to be χπ. Similarly, if λ(B ∩ π) > λ(R ∩ π), we create a blue point
bπ at the center of π with λ�(bπ) = χπ. Let R� (resp., B�) be the set of red (resp., blue)
points that were created at the centers of cells in Π. We create the external subproblem
Σ� = (R�,B�, λ�); Σ� acts as an approximate view of the actual excess instance Σex. See
Figure 2.

For each cell π ∈ Π, we recursively compute a transportation map τπ on the internal
subproblem Σπ. If the root instance – the original input to our transportation problem – has
bounded spread, we compute an optimal solution τ� for the external subproblem Σ� using
Orlin’s algorithm. If the root instance does not have bounded spread, then we recursively
compute an approximately optimal solution τ� for the external subproblem Σ�. Note that
irrespective of the spread of the original instance, every external subproblem Σ� has spread
bounded by O(nδ), i.e., has bounded spread. We categorize subproblems by the number of
external subproblems in the recursive chain leading to them: Σ is primary if there are none;
secondary if there is exactly one; and tertiary if there are two. All tertiary problems are
solved exactly using Orlin’s algorithm, as are base subproblems in the primary and secondary
recursion. See Figure 3 for a visualization of the recursion tree of the algorithm.

Finally, we construct a transportation map τ for Σ by combining the solutions to the
internal and external subproblems. For a pair (r, b) ∈ Rπ×Bπ, we simply set τ(r, b) = τπ(r, b).
For the external subproblem, we first convert the transportation map τ� on Σ� into a map

SoCG 2017



7:6 Faster Algorithms for the Geometric Transportation Problem

for Σex, as follows: For each red point rπ ∈ R� (resp., blue point in B�), at the center of a
cell π ∈ Π, we “redistribute” the transport from rπ (resp., bπ) to the points of (Rex)π (resp.,
(Bex)π) to compute a transportation map τex of Σex. That is, for any rπ, bπ ∈ R� × B�, we
assign the units of τ�(rπ, bπ) among the pairs in (Rex)π × (Bex)π in an arbitrary manner,
while respecting the demands. We then set τ(r, b) = τex(r, b) for (r, b) ∈ Rex × Bex. This
completes the description of the algorithm.

2.2 Cost analysis
There are two sources of error in our algorithm: the distortion between Σ� and Σex, and the
error from restricting the solution to the internal/external partitioning of demand.

δ-closeness. We first formalize the way that Σ� approximates Σex when it shifts demand
to cell centers. We introduce a notion called δ-closeness between transportation instances:
informally, two instances are δ-close if we can shift the demands of one to form the other,
without moving any demand more than δ. We give a formal definition next.

Let Σ = (R,B, λ) be an instance of the transportation problem and τ a transportation
map for Σ. We define µ∞(τ) = max(r,b):τ(r,b)>0 d(r, b) as the maximum distance used in τ .
Let Σ′ = (R′, B′, λ′) be another instance of the transportation problem with λ(R) = λ′(R′).
Consider the transportation instances ΣR = (R,R′, λR) and ΣB = (B,B′, λB) where λR
(resp., λB) is the demand of points in R and R′ (resp., B and B′) in Σ and Σ′ respectively.
We call Σ and Σ′ δ-close if there exist transportation maps τR and τB of ΣR and ΣB such
that µ∞(τR), µ∞(τB) ≤ δ, i.e., demands of R (resp., B) (and therefore the units of τ) points
of R′ (resp., B′) within distance δ. We then say that the resulting transportation τ ′ in Σ′ is a
map derived from τ in Σ. The next lemma follows immediately from definition of δ-closeness.

I Lemma 1. Let Σ and Σ′ be two δ-close instances of the transportation problem with U being
the total demand of each. Let τ be a transportation map of Σ and let τ ′ be a transportation
map of Σ′ derived from τ . Then, |µ(τ ′)− µ(τ)| ≤ 2δU .

I Observation 2. Any point in a grid cell of side length ∆ is within (∆/
√

2) of the center;
so Σ� and Σex are (∆/

√
2)-close.

Thus, the lemma relates the transportation map for Σex to the solution for Σ� produced by
the external subproblem.

Partitioning of demand. Now that we have quantified the error between Σ� and Σex,
we begin our analysis of the second source of error. First, we bound the error in a single
subproblem (i.e. one subdividing grid), and then the error for a single pair (r, b) ∈ R × B
across all subproblems. Eventually, we combine these two arguments to bound the expected
error due to the partitioning across all subproblems and all pairs of points.

Fix a recursive problem Σ = (R,B, λ), with cell side length ∆. Let χπ, Rπ, Bπ, (Rex)π,
(Bex)π for π ∈ Π and R�, B�, Rex, Bex, λex, be as defined in Section 2.1 for the instance
Σ = (R,B, λ). Let I =

⋃
π∈ΠRπ × Bπ be the set of “local” point pairs, solved by the

algorithm within internal subproblems. We refer to a pair (r, b) ∈ (R×B) \ I as “non-local”.
The next lemma outlines a method for deforming an arbitrary transportation map to one

that respects the local/non-local partitioning used by the algorithm.

I Lemma 3. Let Σ = (R,B, λ) be a recursive subproblem with cell side length ∆, and let
τ̂ be an arbitrary transportation map for Σ. Let X̂ =

∑
(r,b)/∈I τ̂(r, b) be the total non-local
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transport in τ̂ , and X =
∑
π∈Π χπ be the total excess of Σ. Then, there exists a transportation

map τ̃ comprising local solutions τ̃π for each Σπ and a non-local solution τ̃ex for Σex, such
that the following properties hold:
(A) The cost of the transportation map τ̃ is given by

µ(τ̃) =
∑
π∈Π

µ(τ̃π) + µ(τ̃ex) ≤ µ(τ̂) + 8
√

2∆X̂.

(B) The local transport in τ̃ satisfies τ̃(r, b) ≥ τ̂(r, b) for all (r, b) ∈ I, and the difference∑
(r,b)∈I (τ̃(r, b)− τ̂(r, b)) ≤ 3X̂.

(C) The non-local transport in τ̃ satisfies X̂ ≥ X = X̃ :=
∑

(r,b)/∈I .τ̃(r, b).

Error parameter η. In the previous lemma, we bounded the error due to a single subproblem.
We now bound the error due to a single pair of points (r, b) ∈ R×B, using a random variable
η(r, b), defined as the cell side length of the first recursive grid to split (r, b) into different
cells.

Formally, recall that a recursive subproblem may split a point p ∈ R ∪B into two copies
p′ and p′′ with λ(p′) + λ(p′′) = λ(p); one of them passed to the external subproblem, and the
other passed down to an internal subproblem. Abusing notation slightly, we use R and B to
denote the multisets that contain all copies of points that are split along with the updated
demands. Hence, for any base subproblem (Ri, Bi, λi) (i.e., the recursive base case) every
point p ∈ Ri ∪Bi can be identified with a point p ∈ R∪B such that λi(p) = λ(p). With this
interpretation, we define a function η : R×B → R≥0 as follows: If there is a base subproblem
(Ri, Bi, λi) such that (r, b) ∈ Ri × Bi, we set η(r, b) = 0. Otherwise, there is a recursive
subproblem such that (r, b) ∈ R×B, and r and b are split into different cells of the randomly
shifted grid. In this case, η(r, b) denotes the side length of the grid cells, i.e. η(r, b) = `/mδ

where ` is the length of the smallest square containing R ∪ B, and m = |R ∪ B|.
The next lemma bounds the expected value of the error parameter η(r, b) in terms of the

distance d(r, b) for any pair of points (r, b) ∈ R×B. Its proof uses our choice of safe grids to
argue that, though the recursion depth can be large, the number of recursive subproblems
that can potentially split (r, b) is small.

I Lemma 4. There exists a constant c1 > 0 such that for any (r, b) ∈ R×B, the expectation
E [η(r, b)] ≤ c1 log2(1/ε)d(r, b).

Proof. Let n be the number of points in the input instance, and m be the number of
points in the subproblem which splits (r, b), and ` the side length of the smallest orthogonal
bounding square of that subproblem (i.e. η(r, b) = `/mδ). We can assume that m > nε/4,
since otherwise the subproblem is a base case and η(r, b) = 0.

Define ` := d(r, b)/
√

2, clearly, ` ≥ `. We partition the interval [nε/4, n] into u =
dlog2(4/ε)e intervals of the form [nj , n2

j ], where nj = n2−j , for 1 ≤ j ≤ u. There exists an
index j∗ where m ∈ [nj∗ , n2

j∗ ], and ` ≤ ` := (n2
j∗)3d(r, b) because the grid is safe. Thus, (r, b)

must be split by a grid with ` in the interval [`, `], where `/` =
√

2n6
j∗ .

The interval [`, `] can be covered by 7/δ > (1/δ)(6 + log2(
√

2)/ log(nj∗)) intervals of the
form Ji = [niδj∗`, n

(i+1)δ
j∗ `] for 0 ≤ i ≤ 7/δ = O(1). For each value of i, algorithm produces at

most one subproblem – whose bounding square contains both r, b – with side length in Ji.
The total set of intervals, by enumeration, bounds the number of subproblems whose grids
could possibly split (r, b) as O(log(1/ε)).

For our subproblem withm points and side length `, the probability that a (safe) randomly
shifted grid splits (r, b) is no more than 3d(r, b)/(`/mδ). Recall that the value of η(r, b), in

SoCG 2017
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this case, is `/mδ. Summing over the O(log(1/ε)) subproblems where (r, b) can be split, the
expected value of η(r, b) is O(log(1/ε))d(r, b). J

Expected cost of algorithm. We are now ready to analyze the expected cost of τ , the
algorithm’s transportation map. First, we analyze the cost if Σ has bounded spread. Recall
that, in this case, our algorithm computes an optimal solution for each external subproblem
(using Orlin’s algorithm).

I Lemma 5. If Σ is a transportation instance with bounded spread, then there exists a
constant c2 > 0 such that for any transportation map τ̂ of Σ,

µ(τ) ≤ µ(τ̂) + c2
∑

(r,b)∈R×B

τ̂(r, b)η(r, b).

An immediate corollary of Lemmas 4 and 5 is:

I Corollary 6. If Σ has bounded spread, then E[µ(τ)] = O(log(1/ε))µ(τ∗).

Proof of Lemma 5. We prove the lemma by induction on the number of points in the
subproblem. If Σ is a base problem, then τ is an optimal transport of Σ and the lemma
holds. Otherwise �, the smallest square containing R ∪ B, is split into a set of grid cells.
Following the notation in Section 2.1, let Π be the set of non-empty cells and ∆ the side
length of each grid cell.

Recall that τ is the combination of solutions τπ for the internal subproblems Σπ =
(Rπ, Bπ, λπ) of π ∈ Π, and the map τex for Σex = (Rex, Bex, λex) derived from the solution
τ� to the external subproblem Σ� = (R�, B�, λ�). From Observation 2, Σ� and Σex are
(∆/
√

2)-close; thus Lemma 1 implies µ(τ�) ≤ µ(τex) +
√

2∆X. We have

µ(τ) = µ(τex) +
∑
π∈Π

µ(τπ) ≤ µ(τ�) +
√

2∆X +
∑
π∈Π

µ(τπ). (1)

Thus, using (1), we can bound τ by bounding the local (τπ) and non-local (τ�) solutions
individually.

Let τ̃ be the transportation map created by deforming τ̂ in Lemma 3, with τ̃π and τ̃ex its
restrictions to local and non-local pairs of points respectively. To bound τ�, notice that that
τ̃ex solves Σex = (Rex, Bex, λex), and Σex is (∆/

√
2)-close to Σ�. We apply Lemma 1 and

optimality of τ� to conclude,

µ(τ�) ≤ µ(τ̃ex) +
√

2∆X. (2)

We now bound the local solutions. Since τ̃π is a transportation map of the internal subproblem
Σπ, by the induction hypothesis,

µ(τπ) ≤ µ(τ̃π) + c2
∑

(r,b)∈Rπ×Bπ

τ̃π(r, b)η(r, b). (3)
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We can now combine (2) and (3) to bound τ in (1).

µ(τ) ≤ µ(τ�) +
∑
π∈Π

µ(τπ) +
√

2∆X

≤ µ(τ̃ex) + 2
√

2∆X +
∑
π∈Π

µ(τ̃π) + c2
∑
π∈Π

∑
(r,b)∈Rπ×Bπ

τ̃π(r, b)η(r, b)

 (by (2), (3))

= µ(τ̃) + c2
∑

(r,b)∈I

τ̃(r, b)η(r, b) + 2
√

2∆X (Lem. 3(A))

≤ µ(τ̂) + c2
∑

(r,b)∈I

τ̃(r, b)η(r, b) + 10
√

2∆X̂ (Lem. 3(A), 3(C))

= µ(τ̂) + c2
∑

(r,b)∈R×B

τ̂(r, b)η(r, b) + Γ,

where Γ = c2
∑

(r,b)∈I

(τ̃(r, b)− τ̂(r, b)) η(r, b) + 10
√

2∆X̂ − c2
∑

(r,b)/∈I

τ̂(r, b)η(r, b).

By definition, η(r, b) = ∆ for (r, b) 6∈ I, η(r, b) ≤ ∆/nε/4 ≤ ∆/4 for (r, b) ∈ I, and∑
(r,b)/∈I τ̂(r, b) = X̂. Therefore, using Lemma 3(B),

Γ ≤ c2
∆
4 · 3X̂ + 10

√
2∆X̂ − c2∆X̂ =

(
10
√

2− c2
4

)
∆X̂ ≤ 0.

provided that c2 ≥ 40
√

2. Hence, µ(τ) ≤ µ(τ̂) + c2
∑

(r,b) τ̂(r, b)η(r, b). This completes the
proof of the lemma. J

The general case. We now analyze the cost of the transportation map for the general case,
when the spread of R ∪B is arbitrary.

Recall Figure 3 and the categorization of recursive subproblems as primary, secondary,
or tertiary based on the number of external subproblem invocations on its path in the
recursion tree of the algorithm. We now introduce two functions η1, η2 : R × B → R≥0
corresponding to the errors introduced in the primary and secondary recursions. (Note that
tertiary subproblems are solved exactly; hence, there is no error introduced in solving a
tertiary subproblem.)

The function η1 corresponds to the primary recursion and is the same as the η defined
above, i.e., η1(r, b) = 0 if (r, b) belongs to a primary base subproblem, otherwise it is the length
of the grid cell at the subproblem which splits r and b. The function η2(r, b) corresponds
to the secondary recursion for (r, b). If (r, b) belongs to a primary base problem (i.e. does
not appear in any secondary recursion), then we set η2(r, b) = 0. Otherwise, let r̄ ∈ R� and
b̄ ∈ B� be the centers of the grid cells of the primary subproblem where r and b were split.
Then, η2(r, b) is defined to be η(r̄, b̄) for the secondary recursion on (R�, B�).

We now state two lemmas that are counterparts of Lemmas 4 and 5 for the general case.

I Lemma 7. For any pair (r, b) ∈ R×B, E [η2(r, b)] = O(log2(1/ε))d(r, b).

I Lemma 8. There exists a constant c3 > 0 such that for any transportation map τ̂ of Σ,

µ(τ) ≤ µ(τ̂) + c3
∑

(r,b)∈R×B

τ̂(r, b) [η1(r, b) + η2(r, b)] .

The bound on the expected cost follows directly from the above two lemmas.

I Corollary 9. E[µ(τ)] = O(log2(1/ε))µ(τ∗).
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2.3 An efficient implementation
We now explain how the various steps of the algorithm are implemented to run in O(n1+ε)
time. There are three main steps in the algorithm:
(i) partitioning a recursive subproblem Σ = (R,B, λ) into internal subproblems and an

external subproblem;
(ii) solving subproblems recursively;
(iii) recovering the transportation map τ of Σ from the internal and external solutions τπ

(π ∈ Π) and τ�.
A recursive subproblem partitions its points into internal subproblems, but generates an
additional set of points (at cell centers) for its external subproblem; let us call these external
points. We bound the number of external points generated in the next lemma.

I Lemma 10. The total number of external points over all recursive subproblems is O(n).

A base subproblem of size ni ≤ nε/4 is solved in O(n3
i logni) time using Orlin’s algorithm.

We distribute this on the ni points by charging O(n2
i logni) = O(nε/2 logn) to each point.

Note every point in R ∪ B, as well as every external point, belongs to at most one base
subproblem. Since, by Lemma 10, the number of external points is O(n), it follows that the
total time spent solving base subproblems is O(n) ·O(nε/2 logn) = O(n1+ε).

The time spent in recovering the transportation map τ for Σ from its internal and external
subproblems is proportional to the number of external points in Σ. Hence, by Lemma 10,
step (iii) takes O(n) time.

Finally, implementation of step (i) depends on whether the instance Σ = (R,B, λ) has
bounded spread.

The bounded spread case. In this case, step (i) is implemented naively. We choose a
random shift, distribute the points of R ∪ B among the grid cells in O(m logm) time, where
|R ∪ B| = m, and check in additional O(m) time whether the shift is safe. So step (i) can be
implemented in O(m logm) expected time. We charge O(logm) time to each point of R ∪ B.
Since the spread is nO(1), the depth of recursion is O(1/ε). Therefore, each input point is
charged O( 1

ε logn) units of time, implying that steps (i) over all subproblems take O(n logn)
expected time (note that ε is a constant). As the size of the external subproblem at R ∪ B is
O(m2δ), and δ = 1/6, the time for solving it exactly is O(m). Putting everything together
and applying Corollary 6, we obtain the following.

I Theorem 11. Let Σ be an instance of the transportation problem in Rd, where d is a
constant. Let Σ have size n and bounded spread, and let ε > 0 be a constant. A transportation
map of Σ can be computed in O(n1+ε) expected time whose expected cost is O(log(1/ε))µ(τ∗),
where τ∗ is an optimal transport of Σ.

The general case. Let Σ = (R,B, λ) be a recursive subproblem, and � the smallest square
containing R ∪ B. As defined earlier, let Σ� = (R�,B�, λ�) be the external subproblem
generated by Σ using the points of Rex,Bex. Since Σ� has bounded spread and is solved
recursively, the running time to solve Σ� is O(|R� ∪ B�|1+ε) = O(|Rex ∪ Bex|1+ε). Summing
over all recursive problems, by Lemma 10, the total time spent in solving all external
subproblems is O(n1+ε).

Step (i) is more challenging in this case because the depth of recursion can be as large
as Ω(n). We can neither spend linear time at a recursive subproblem, nor can we afford to
visit each cell of the randomly shifted grid G explicitly to compute the set Π of non-empty
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cells. To avoid checking all cells of G explicitly, we (implicitly) construct a quad tree T on G
– i.e. leaves of T are cells of G and the root of T is �. The depth of T is O(logm). The role
of T will be to guide the search for non-empty cells of G. Again, we will not construct T
explicitly.

To avoid spending Ω(m) time in step (i), we do not maintain the set R ∪ B explicitly. We
build a 2D dynamic orthogonal range searching data structure that maintains a set X ⊂ R2

of weighted points, and supports the following operations:
Wt(ρ): Given a rectangle ρ, return w(X ∩ ρ).
Report(ρ,∆): Report a maximal subset Y of X ∩ ρ such that w(Y ) ≤ ∆.
Empty(ρ): Return Yes if X ∩ ρ = ∅ and No otherwise.
Delete(p): Delete p from X.
ReduceWt(p,∆): Update w(p) := w(p)−∆, assuming w(p) ≥ ∆.

Using a range-tree based data structure, each operation except for Report can be performed
in O(log2m) time [2]. Report requires O(log2 n+k) time, where k is the number of reported
points.

We maintain two copies DR,DB of this data structure. The first one is initialized with R
and the supplies, and the second with B and the demands. We use R and B to denote the
current sets in these data structures.

With each recursive subproblem Σ = (R,B, λ) we associate a bounding rectangle ρ that
contains R∪B. For the root problem, ρ is the smallest square containing R∪B; for others it
is defined recursively. We maintain the invariant that when the subproblem Σ = (R,B, λ) is
being processed,
(i) R ∩ ρ = R and for any r ∈ R ∩ ρ, w(r) = λ(r),
(ii) B ∩ ρ = B and for any b ∈ B ∩ ρ, w(b) = λ(b).

We first compute Π, the set of non-empty cells of G, using T and the data structures
DR,DB. We visit T in a top-down manner. Suppose we are at a node v ∈ T, and let �v
be the square associated with v. We call Empty(ρ ∩ �v) on both DR and DB to check
whether (R ∪ B) ∩ �v = ∅. If Yes, we ignore the subtree rooted at v. If No and v is a
leaf of T, i.e., �v is a nonempty cell of G, we add �v to Π. If v is an internal node and
(R∪B)∩�v 6= ∅, we recursively search the children of v in T. Since the depth of T is O(logn),
the above procedure visits O(|Π| logn) nodes of T. The total time spent in computing Π is
thus O(|Π| log3 n).

For each cell π ∈ Π, we can compute the total demands of λ(R ∩ π) and λ(B ∩ π) – and
thus χπ – using the Wt(ρ ∩ π) operations on DR,DB. Without loss of generality, assume
λ(R∩ π) > λ(B∩ π). Using Report(ρ∩ π, χ), we report a maximal subset of points of R∩ π
whose total weight is at most χ. We then delete each of these points (by Delete) and reduce
the weight (by Reduce) of one additional point in R∩π or B∩π if needed. Let (Rπ, Bπ, λπ)
be the recursive (internal) subproblem generated for π with ρπ = ρ ∩ π as the associated
rectangle. Then the above update operation ensures that R ∩ ρπ = Rπ, B ∩ ρπ = Bπ, and
their weights are consistent with λπ.

DR and DB can also be used to test whether the random shift is safe: For each π ∈ Π,
we check whether the moat of any point in (R ∪ B) ∩ π intersects an edge of π. This is
equivalent to checking whether �π ∩ (R ∪ B) = ∅, where �π is the set of points that are
within distance `/m3 from the boundary of π. This test can be done in O(log2 n) time using
the Empty procedure. The total expected time spent in generating internal subproblems
Σπ and external subproblems Σ� of Σ is O(|Π| log3 n+m� log2 n), where m� is the total
number of external points.
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By Lemma 10, the total number of nonempty cells over all subproblems is O(n), and
the number of external points is O(n). Thus, the expected time spent in step (i) overall is
O(n log3 n). Putting everything together, we obtain the main result of this section.

I Theorem 12. Let Σ be an instance of the transportation problem in Rd, where d is a
constant. Let Σ have size n, and let ε > 0 be a constant. A transportation map of Σ can be
computed in O(n1+ε) expected time whose expected cost is O(log2(1/ε))µ(τ∗), where τ∗ is an
optimal transport of Σ.

3 A (1 + ε)-Approximate Algorithm

In this section, we describe a (1 + ε)-approximation algorithm for the transportation problem,
based on a reduction to min-cost flow. As in Section 2, we hierarchically cluster points, but
this time for the purpose of approximately representing all Θ(n2) pairwise distances between
R and B compactly. At a high level, our algorithm is as follows:
(i) Compute a hierarchical clustering of R ∪B, using a quadtree (input points are leaves).
(ii) Construct a sparse directed acyclic graph G = (V,E) over the clusters with R as the

set of source nodes, and B as the set of sink nodes with the following property: for
every pair (r, b) ∈ R × B, there is a unique path in G from r to b, with cost roughly
d(r, b). Then, a minimum-cost flow from sources to sinks in G approximates the optimal
transportation map on (R,B, λ).

(iii) Compute an optimal flow f∗ in G using the algorithm by Lee and Sidford [18].
(iv) Recover a transportation map τ from f∗.

The hierarchical structure is important to us for two reasons: it is the foundation for
the compact representation (well-separated pair decomposition), and enables a near-linear
time procedure for recovering the transportation map (step 4). This fast recovery step is
what distinguishes this algorithm from the similar reduction in Cabello et al. [9], and why
geometric spanners [10, 7, 6], as black boxes, seem to be insufficient.

Construction of the graph. For simplicity, we describe the algorithm in R2 under Euclidean
distance. Let � be the smallest orthogonal square containing R ∪ B. We construct a
compressed quad tree T on R ∪ B with � as the square associated with the root of T . A
compressed quadtree prunes certain interior nodes of a standard quadtree, guaranteeing that
T has O(n) nodes. We can construct a compressed quadtree in O(n logn) time, see e.g. [15].
Each node v of T is associated with a square �v. For each node v ∈ T , let Rv = R ∩�v and
Bv = B ∩�v. The sets Rv, Bv form a hierarchical clustering of R ∪B.

To construct G = (V,E), we make two copies of T : the up-tree T ↑ = (V ↑, E↑) and
down-tree T ↓ = (V ↓, E↓). We orient the edges of E↑ upward – from a node to its parent,
and orient the edges of E↓ downward – from a node to its child. We delete blue points
from T ↑ and red points from T ↓, thus T ↑ contains only R, and T ↓ contains only B. We set
V = V ↑ ∪ V ↓ and E = E↑ ∪ E↓ ∪

−→
E where −→E ⊆ V ↑ × V ↓ is a set of cross edges connecting

T ↑ to T ↓ that we define below. See Figure 4.
Originally proposed by Callahan and Kosaraju [11], the notion of a well-separated pair

decomposition (WSPD) of a point set S is widely used to represent the pairwise distances
of S approximately in a compact manner. A simple WSPD construction using compressed
quadtrees is described in Chapter 3 of [15]. Using this algorithm, we construct −→E as follows:
Set δ = ε

4 . For a pair of nodes u, v ∈ T ↑ × T ↓, we define c(u, v) = min{d(x, y) | x ∈ �u, y ∈
�v} to be the minimum distance between the squares �u and �v. Using the algorithm in
[15], we compute a pair decomposition D ⊆ V ↑ × V ↓ with the following properties:
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(c) Decomposition of flow.

Figure 4 Construction of G and recovering the transportation.

(W1) For every (r, b) ∈ R×B, there is a unique pair (u, v) ∈ D such that r ∈ Ru, b ∈ Bv.
(W2) For every (u, v) ∈ D, max {diam(�u), diam(�v)} ≤ δ · c(u, v).
(W3) |D| = O(n/ε2).
After having constructed T ↑ and T ↓, that algorithm constructs D in O(n/ε2) time. We set
−→
E = D with each edge oriented from T ↑ to T ↓. The cost of each edge in E↑ ∪ E↓ is set
to 0, and the cost of each (u, v) ∈ −→E is c(u, v). Finally, we define the excess χ(v) at each
node v of G: we set χ(v) = 0 for all internal nodes v of T ↑ ∪ T ↓, χ(r) = λ(r) for r ∈ R, and
χ(b) = −λ(b) for b ∈ B. The capacity of all edges in G is set to ∞. Let (G, c, χ) be the
resulting min-cost flow instance. The total time spent in constructing G is O(n logn+ n/ε2).

Cost analysis. Flow moves up from the leaves of T ↑ through its interior, crosses along the
cross edges into T ↓, and finally descends to the sinks at leaves of T ↓. By construction and
3, any pair (r, b) ∈ R × B has a unique path p(r, b) from r to b in G, using a single cross
edge. We can map any transport τ (injectively) to a feasible flow fτ on G, by placing a flow
of τ(r, b) on p(r, b). Similarly, any flow f can be mapped to a feasible transportation τf by
decomposing f into flow on source-sink paths: by the classical flow decomposition theorem, f
can be decomposed into a set {f(p(r, b)} of flows on the p(r, b) (since G is a directed acyclic
graph, any decomposition has no flow cycles, only paths). Then, setting τf (r, b) = f(p(r, b))
for all (r, b) ∈ R×B is a feasible transportation.

By 3 and the triangle inequality, µ(fτ ) ≤ µ(τ) and µ(τf ) ≤ (1 + ε)µ(f). We can apply
these transformations to bound the approximation quality of a transportation recovered by
decomposing the optimal flow f∗ of G. We have

µ(τ∗) ≤ µ(τf∗) ≤ (1 + ε)µ(f∗) ≤ (1 + ε)µ(fτ∗) ≤ (1 + ε)µ(τ∗).

If we compute the optimal f∗ on G and construct some τf∗ by a flow decomposition of f∗,
then τf∗ meets the claimed approximation quality – this is precisely what we do. Note that
this cost analysis applies regardless of the specific flow decomposition of f∗. Our recovery
procedure in 4 is a greedy decomposition.

Recovering a transportation map. Let f∗ be the optimal flow from R to B in G. We use
a two-part greedy algorithm to decompose f∗: assigning the flow from R to the cross edges
through the up-tree, then claiming the assigned flow using the down-tree. Both steps amount
to performing a flow decomposition on the portion of the flow lying in each tree, treating
the cross edge endpoints as sinks (resp., sources) with demand equal to the sum of outgoing
(resp., incoming) flow. Both are arborescences, so flow decomposition can be done with a
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7:14 Faster Algorithms for the Geometric Transportation Problem

postorder traversal. After solving both trees, we combine the paths assigned into and out of
each cross edge to find end-to-end path flows.

We only describe the decomposition for T ↑ in detail; it is nearly identical for T ↓. For
each cross edge (u, v) ∈ −→E , this produces lists AR(u, v) and AB(u, v) which hold pairs (p, F )
indicating point p ∈ R∪B contributes F units of the flow through (u, v). The tree is processed
in postorder: a node is visited only after all its children. Denote the children of node u by
children(u). Each node u ∈ T ↑ maintains a list L(u) of the positive-demand red points in
its subtree, and a list N(u) of the positive-flow cross edges leaving u. L(u) is initialized
by joining lists L(w) from each w ∈ children(u) (at the leaves, we initialize L(r) = {r} for
r ∈ R). While N(u) is not empty, let (u, v) ∈ N(u) with flow f∗(u, v) > 0. Take any point
r ∈ L(u) and add to AR(u, v) a pair (r, F ), with F = min{λ(r), f∗(u, v)}, also updating
λ(r)← λ(r)− F and f∗(u, v)← f∗(u, v)− F . This has the effect of removing either r from
L(u), (u, v) from N(u), or both. Once N(u) = ∅, all cross edges leaving u have their flow
assigned.

Finally, we complete the decomposition using AR(u, v) and AB(u, v), for each cross edge
(u, v). While both AR(u, v) and AB(u, v) are nonempty, let (r, Fr) ∈ AR(u, v) and (b, Fb) ∈
AB(u, v). Output τ(r, b) := min{Fr, Fb}, update Fr ← Fr − τ(r, b) and Fb ← Fb − τ(r, b),
and remove from the lists any pair (p, F ) for which F = 0.

We charge the list union which constructs L(u) to the children of u. Each iteration
performs a constant number of list operations and either removes a node from L(u), or a
cross edge from N(u). Each removal occurs exactly once for every r ∈ R and (u, v) ∈ −→E ,
so we charge iterations to the r ∈ R or (u, v) ∈ −→E removed that iteration. The processing
of AR(u, v) and AB(u, v) can also be charged per iteration to the pair (p, F ) removed in
that iteration, which is then charged back to the p ∈ R ∪ B or (u, v) ∈ −→E whose removal
introduced (p, F ). Thus, the total running time is O(|V |+ |−→E |) = O(n/ε2).

We computed an optimal flow f∗ : E → N using the algorithm by Lee and Sid-
ford [18]. Since |E| = O(n/ε2), their algorithm takes Õ(n3/2ε−2 polylogU) time; recall,
U = maxp∈R∪B λ(p) is the maximum demand. This step dominates the running time com-
pared to the construction of G and the recovery algorithm. We state the main theorem in
terms of an arbitrary d.

I Theorem 13. Let Σ be an instance of the transportation problem in Rd where d is a
constant. Let Σ have size n, and let ε > 0 be a constant. A transportation map τ for Σ can
be computed in Õ(n3/2ε−d polylogU) time with cost µ(τ) ≤ (1 + ε)µ(τ∗).
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