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Abstract
In this paper we study a natural special case of the Traveling Salesman Problem (TSP) with
point-locational-uncertainty which we will call the adversarial TSP problem (ATSP). Given a
metric space (X, d) and a set of subsets R = {R1, R2, ..., Rn} : Ri ⊆ X, the goal is to devise an
ordering of the regions, σR, that the tour will visit such that when a single point is chosen from
each region, the induced tour over those points in the ordering prescribed by σR is as short as
possible. Unlike the classical locational-uncertainty-TSP problem, which focuses on minimizing
the expected length of such a tour when the point within each region is chosen according to some
probability distribution, here, we focus on the adversarial model in which once the choice of σR
is announced, an adversary selects a point from each region in order to make the resulting tour as
long as possible. In other words, we consider an offline problem in which the goal is to determine
an ordering of the regions R that is optimal with respect to the “worst” point possible within each
region being chosen by an adversary, who knows the chosen ordering. We give a 3-approximation
when R is a set of arbitrary regions/sets of points in a metric space. We show how geometry
leads to improved constant factor approximations when regions are parallel line segments of the
same lengths, and a polynomial-time approximation scheme (PTAS) for the important special
case in which R is a set of disjoint unit disks in the plane.
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1 Introduction

We consider the travelling salesperson problem (TSP) on uncertain sites. We are given as
input a set of n uncertainty regions R = {R1, R2, . . . , Rn}, each of which is known to contain
exactly one site that must be visited by the tour. In the standard TSP, the regions Ri are
singleton points. In the TSP with neighborhoods (TSPN), or one-of-a-set TSP, model, the
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(a) Optimal solution ≈ n (b) T SPc
(c) Adversarial tour on T SPc

ordering ≈
√

2n

Figure 1 TSP on center points ordering does not always provide an optimal solution to ATSP.

goal is to compute an optimal tour that visits some point of each region Ri, and we are
allowed to pick any point pi ∈ Ri to visit, making this choice in the most advantageous way
possible, to minimize the length of the resulting tour that we compute. In models of TSP
with locational uncertainty, the regions Ri model the support sets of probability distributions
for the uncertain locations of the (random variable) sites pi. The objective, then, may be
to optimize some statistic of the tour length; e.g., we may wish to minimize the expected
tour length, or minimize the probability that the tour length is greater than some threshold,
etc. In this paper, we study the version of the stochastic TSP model in which our goal is to
optimize for the worst case choice of pi within each Ri. We call this problem the adversarial
TSP, or ATSP, as one can think of the choice of pi within each Ri as being made by an
adversary. Our goal is to compute a permutation σR on the regions Ri so that we minimize
the length of the resulting tour on the points pi, assuming that an adversary makes the
choice of pi ∈ Ri, given our announced permutation σR on the regions. While the TSPN
seeks an optimal tour for the best choices of pi ∈ Ri, the ATSP seeks an optimal tour for the
worst choices of pi ∈ Ri.

Another motivation for the ATSP solution is that one may seek a single permutation of
the set of input sets Ri so that the permutation is “good” (controls the worst-case choices of
pi ∈ Ri) for any of the numerous (|R1| · |R2| · |R3| · · · |Rn|) instances of TSP associated with
the sets Ri, thereby avoiding repeated computations of TSP tours. In certain vehicle routing
applications, it may also be beneficial to establish a fixed ordering of visits to clients, even if
the specific locations of these visits may vary in the sets Ri. Further, in locationally uncertain
TSP one may expect that probability distributions over the regions Ri are imperfect and not
known precisely, and that customer locations are known imprecisely (possibly for privacy
concerns, with deliberate noise added for protecting the identity/privacy of users), making it
important to optimize over all possible choices of site locations.

In Figure 1 we give a simple example showing that the ordering given by a TSP on center
points (TSPc) can be suboptimal, by at least a factor of

√
2. The input R is a

√
n ×
√
n

grid of vertical unit-length line segments with distance 1 between midpoints of horizontally
adjacent segments and with distance 1 + ε between midpoints of vertically adjacent segments.
In Figure 2 we show that the ordering prescribed by a TSPN over the input regions can be
at least a factor 2 away from optimal. The input is a set of n segments, n/2 of which have
length 1, and the remainder have length ε; they are arranged in alternating order radially
around a point or the boundary of a small circle.

In this paper, we initiate the study of the ATSP. We give a 3-approximation when R is
a set of arbitrary regions/sets of points in a metric space. We exploit geometry to give an
improved approximation bound for the case of regions that are unit line segments of the
same orientation in the plane; we compute a permutation with adversarial tour length at
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(a) Optimal solution ≈ n/2 (b) TSPN (c) Adversarial tour on TSPN
ordering ≈ n

Figure 2 TSPN ordering does not always provide an optimal solution to ATSP.

most (7/3 + ε)|OPT | + 1, where |OPT | is the length of an optimal solution. We further
exploit geometry to give a polynomial time approximation scheme (PTAS) for the important
special case when R is a set of disjoint unit disks in the plane.

Related Work

Geometric problems on imprecise points have been the subject of many recent investigations.
Löffler et al. [11] study, given a set of n uncertainty regions in the plane, the problem of
selecting a single point within each region so that the area of the resulting convex hull is
as large/small as possible. They show a number of results, including an O(n3)-time and an
O(n7)-time exact algorithm for maximizing the area of the convex hull of selected points
when the uncertainty regions are parallel line segments and disjoint axis aligned squares
respectively. They show that this problem is NP-Hard when the regions are line segments
with arbitrary orientations. In the same paper, Löffler et al. show that the problem of
selecting a point within each region so that the resulting minimum spanning tree over those
points is as small as possible is NP-Hard when the uncertainty regions are overlapping disks
and squares. In his thesis [6], Fraser extends the prior minimum spanning tree result to show
that the problem is still NP-Hard even when the regions are pairwise disjoint. He provides
several constant factor approximation algorithms for the special case of disjoint disks in the
plane. Dorrigiv et al. [4] show that neither the minimization nor the maximization version
of this problem admit an FPTAS when the regions are disjoint disks. Yang et al. [16] give
a PTAS for the minimization version. In a thesis by Montanari [15], it is shown that the
minimization version when the input regions are vertically or horizontally aligned segments is
NP-Hard and that this problem does not admit a FPTAS. Interestingly, in another paper by
Liu and Montanari [10] it is shown that selecting a point from each region so that diameter
of a minimum spanning tree on the selected points is minimized is polynomially solvable
when the regions are arbitrary sized (possibly overlapping) disks in the plane.

Montanari [15] also studies the problem of placing a single point within each region so
that the resulting shortest s, t path is either maximized or minimized. They show that the
minimization version of this problem can be solved in polynomial time in the L1 metric
when the polygons are rectilinear (not necessarily disjoint, or convex). They also show
that the maximization version of the problem is NP-Hard to approximate to any factor
(1− ε) : ε < 1/4 even in the case where the polygons are vertically aligned segments.

There has been a considerable amount of work done on studying TSP variants with
point-existential uncertainty. Two main models in the literature are the a priori model
proposed by Bertsimas et al. [2] and Jaillet [7], in which each point xi (with a known, fixed,
location) is independently present with probability pi, and the universal model [8], which
asks for a tour over the entire data set such that for any subset of active requests, the master
tour restricted to this active subset is close to optimal.

SoCG 2017
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The TSP with neighborhoods (TSPN) problem was introduced by Arkin and Hassin [1] and
has been studied extensively from the perspective of approximation algorithms, particularly
in geometric domains (see, e.g.,[13]). Kamousi et al [9] study a stochastic TSPN model where
each client lies within a region, a disk with a fixed center and stochastic radius.

Preliminaries

We are given regions R = {R1, R2, . . . , Rn}, with each Ri a subset of a metric space (X, d).
We seek a cyclic permutation σ = (σ1, σ2, . . . , σn) (an ordering) of the regions R, in order to
minimize the length, maxpi∈Ri

[d(pσ1 , pσ2) + d(pσ2 , pσ3) + · · ·+ d(pσn−1 , pσn
) + d(pσn

, pσ1)],
of a cycle on adversarial choices of the points in the respective regions. We let σ∗R denote
an optimal ordering for R, and we let |OPT | denote the length of the corresponding cycle,
OPT , that is based on the optimal adversarial choices of the points pi ∈ Ri, for the ordering
σ∗R. The following lemmas are shown in the full paper [3].

I Lemma 1. The length, |OPT |, of OPT satisfies TSPN∗ ≤ |OPT | ≤ TSPN∗+
∑
Ri∈R 2 ·

diam(Ri), where TSPN∗ is the length of an optimal TSPN tour on the regions R, and
diam(Ri) denotes the diameter of region Ri ∈ R.

I Lemma 2. For a set R of convex regions in the Euclidean plane, and any ordering σ of
the regions R, any longest cycle corresponding to an adversarial choice of points pi ∈ Ri
is a polygonal cycle, with edges (pσi

, pσi+1) and with each point pσi
an extreme point of its

corresponding region, Rσi
.

2 3-Approximation for Arbitrary Regions in a Metric Space

We begin by giving a 3-approximation to the ATSP problem when R is a set of arbitrary
regions in a metric space.

Consider the complete graph Ĝ whose nodes are the regions R and whose edges join
every pair of regions with an edge, (Ri, Rj), whose weight is defined to be w(Ri, Rj) =
maxs∈Ri,t∈Rj

{d(s, t)}, the maximum distance between a point s ∈ Ri and a point t ∈ Rj .
For distinction, we will speak of edge “weights” in the graph Ĝ and of edge “lengths” in the
original metric space (X, d). It is not hard to see that the edge-weighted graph Ĝ defines a
metric (see the full paper [3]).

I Lemma 3. An optimal TSP tour in Ĝ yields a 2-approximation to the ATSP on R.

Proof. Let σ∗R =< R∗1, R
∗
2, ..., R

∗
n > be an optimal (cyclic) permutation of the regions R for

the adversarial TSP on R, and let p∗i ∈ R∗i be the adversary’s choice of points corresponding
to σ∗R. Then, |OPT | = d(p∗1, p∗2) + d(p∗2, p∗3) + · · · + d(p∗n, p∗1) is the length of the cycle
C =< p∗1, p

∗
2, . . . , p

∗
n >, an optimal adversarial TSP solution.

Let wσ∗
R

= w(R∗1, R∗2) + w(R∗2, R∗3) + · · ·+ w(R∗n, R∗1) be the total weight of the cycle σ∗R
in Ĝ. Let w∗TSP be the total weight of a minimum-weight Hamiltonian cycle, given by (cycle)
permutation σTSP , in Ĝ; then, w∗TSP ≤ wσ∗

R
.

Our goal is to show that the permutation σTSP yields a 2-approximation for the adversarial
TSP on R. Since the length of the adversarial cycle corresponding to σTSP is at most wTSP ,
and since w∗TSP ≤ wσ∗

R
, it suffices to show that wσ∗

R
≤ 2|OPT |.

Consider the cycle C =< p∗1, p
∗
2, . . . , p

∗
n > whose length is |OPT |. If we modify C by

choosing points within each region R∗i differently from p∗i ∈ R∗i , the length of C can only go
down, since the points p∗i were chosen adversarially to make the cycle C as long as possible
(for the given permutation σ∗R). Consider two copies of C (of total length 2|OPT |); we will
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modify these two cycles into two (possibly shorter) cycles, C1 and C2, by making different
choices for the points in each region R∗i .

Consider first the case that n is even. Then, we define C1 to be the modification of cycle
C in which the points are chosen in regions R∗i in order to maximize the lengths of the
“odd” edges, (R∗1, R∗2), (R∗3, R∗4), . . . , (R∗n−1, R

∗
n), and we define C2 to be the modification of

cycle C in which the points are chosen in regions R∗i in order to maximize the lengths of
the “even” edges, (R∗2, R∗3), (R∗4, R∗5), . . . , (R∗n, R∗1). The cycle C1, then, has length at least
w(R∗1, R∗2) +w(R∗3, R∗4) + · · ·+w(R∗n−1, R

∗
n), the total weights of the odd edges in the cycle in

Ĝ corresponding to σ∗R. Similarly, the cycle C2 has length at least w(R∗2, R∗3) + w(R∗4, R∗5) +
· · ·+ w(R∗n, R∗1), the total weights of the even edges in the cycle in Ĝ corresponding to σ∗R.
Together, then, the lengths of the two cycles C1 and C2 total at least the weight, wσ∗

R
, of the

cycle σ∗R in the graph Ĝ. Since each of the weights of C1 and C2 are at most |OPT | (the
weight of C), we conclude that wσ∗

R
≤ 2|OPT |, as claimed.

The case in which n is odd is handled similarly; details appear in the full paper [3]. J

I Theorem 4. The permutation σR corresponding to a Christofides 3/2-approximate TSP
tour in Ĝ yields a 3-approximation to the adversarial TSP on R.

3 Unit Line Segments of the Same Orientation in the Plane

In this section, we assume that R consists of a set of n unit-length segments of the same
orientation; without loss of generality, we assume the segments are vertical. We show that
the ordering, TSPc, given by an optimal TSP tour on the segment center points yields an
adversarial tour of length at most (7/3)|OPT |+ 1; thus, a PTAS to approximate TSPc yields
an algorithm with adversarial tour length at most (7/3 + ε)|OPT |+ 1, for any fixed ε.

I Lemma 5. For the ATSP on a set R of unit vertical segments in the plane, |OPT | ≥ TSP ∗c ,
where TSP ∗c is the length of an optimal TSP tour on the segment center points.

Proof. Consider an ATSP optimal ordering σ∗R of the vertical segments R. The cycle γc
that visits the center points of segments R in the order σ∗R has length at least TSP ∗c , and
the length, |OPT |, of an adversarial cycle for σ∗R is at least the length of γc. J

I Lemma 6. |OPT | ≥ 3
4 (n− 1) when n is odd and |OPT | ≥ 3

4n when n is even.

Proof. It suffices to show the claim for ATSP paths; an ATSP cycle is at least as long. The
proof is by induction on n = |R|. First, suppose that n is odd. The base case is trivially
true. Assume that the claim holds for n ≤ k, for k odd. Next, consider an instance S′ with
k + 2 segments. We know that for the first k segments in an optimal permutation for S′,
that |OPT | ≥ 3

4 (k − 1). Next, we show that regardless of the placement of the next two unit
segments in S′, sk+1 and sk+2, an adversary can make us pay at least 3/2 units for every
independent pair of consecutive segments in σ∗S . We can assume that (vertical) segments
sk+1 and sk+2 are vertically collinear. Next we assume, without loss of generality, that sk+2
is above sk+1. Let a be the point on sk that the adversary chose; refer to Figure 3. Let b1
(resp., c1) be the top endpoint of sk+1 (resp., sk+2). Let b2 (resp. c2) be the bottom endpoint
of sk+1 (resp., sk+2). Now, let |b1a| = x and |c2b1| = y. This implies that |ab2| = 1 − x,
|c2b2| = 1− y and |c1b1| = 1− y. The three candidate routes for the adversary to take are
(a, b2, c1) or (a, b1, c2) or (a, b1, c1). These paths have lengths 3 − x − y, x + y, x + 1 − y,
respectively. Thus, we solve min−maxx,y{{3−x−y, x+y, x+1−y} : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
to find the minimum possible length of the adversarial route; the solution is 3/2. Thus, the
adversary can make us pay 3/2 for each pair of segments; thus, |OPT | ≥ 3

4 (n− 1) for n odd.

SoCG 2017
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x

1− x

y

1− y

1− y

a

b1
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c1

c2

sk+1

sk+2

Figure 3 Illustration of the induction step in the proof of Lemma 6.

In the case that n is even, the adversary can make us pay at least 3/2 between every
consecutive pair of segments in the optimal ordering; thus, |OPT | ≥ 3

4n. J

I Theorem 7. For the ATSP on a set R of unit-length vertical segments, the ordering given
by an optimal TSP on the segment center points yields an adversarial tour of length at
most (7/3)|OPT |+ 1. Thus, a PTAS for the TSP on center points yields an approximation
algorithm for ATSP, with tour length at most (7/3 + ε)|OPT |+ 1.

Proof. Let APXc be the ordering in which the segments are visited by a (1 + ε)-approximate
TSP tour on their center points, and let |APXc| be the cost of the resulting adversarial
tour for this ordering. We know that |APXc| ≤ |TSPc| + n, where |TSPc| is the length
of an optimal TSP on center points, since a tour on the center points can be made to
detour to either endpoint and back, for each segment, at a total increase in length of n.
Since |TSPc| ≤ |OPT | (by Lemma 5) and n ≤ 4/3|OPT |+ 1 (by Lemma 6), we have that
|APX| ≤ (7/3 + ε)|OPT |+ 1. J

4 PTAS for Disjoint Unit Disks in the Plane

In this section we give a PTAS for the adversarial TSP problem when the regions R =
{d1, . . . , dn} are n disjoint unit-diameter disks in the plane. We employ the m-guillotine
method [12], which has been applied to give approximation schemes for a wide variety of
geometric network optimization problems, including the Euclidean TSP and the TSP with
Neighborhoods (TSPN) when the regions are disjoint disks or fat regions in the plane [5, 14].

The challenge in applying known PTAS techniques is being able to handle the adversarial
nature of the tour. For the TSPN problem, one computes (using dynamic programming) a
shortest connected m-guillotine, Eulerian, spanning subgraph of the regions; a tour visiting
each region can then be extracted from this network. A structure lemma shows that an
optimal TSPN solution can be converted to an m-guillotine solution whose weight is at most
(1 + ε)|OPT |. Since m-guillotine networks have a recursive structure, we can apply dynamic
programming in order to find the cheapest such structure over the input. Then, by extracting
a tour from the optimal m-guillotine network, we obtain a permutation of the input disks, as
well as a particular point within each region that the tour visits.

For the ATSP problem, we require new ideas and a new structure theorem to account
for the fact that our algorithm must search for a permutation of the input disks that is
good with respect to an adversarial path through the ordered disks. We seek to optimize
a network that has a recursive structure (to allow dynamic programming to be applied)
and that yields an ordering of the disks so that the length of the adversary’s tour is “very
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close” to optimal among all possible permutations. We do this by searching for a shortest
(embedded) network having an m-guillotine structure that has additional properties that
guarantee that the adversary’s path through the sequence of regions we compute is not much
longer than that of the network we compute. To accomplish this, we will require several
structural results about an optimal solution to ATSP.

4.1 Discretization and a Structural Theorem
In order to make our problem and our algorithm discrete, for a fixed integer m = O(1/ε), we
place m sample points evenly spaced around the boundaries of each of the n disks di ∈ R.
Let G be the set of all nm sample points. Let EG denote the set of edges (line segments)
between two sample points of G that lie on the boundaries of different disks of R. The
following lemma shows that for any adversarial (polygonal) tour T associated with σR there
is a polygonal tour T ′ visiting the sequence σR whose vertices are among the sample points
G and whose length is at least (1−O(1/m))|T |.

I Lemma 8. Given an adversarial (polygonal) path/cycle, T , associated with a sequence σR
of input disks, there is a polygonal path/cycle T ′ that visits sample points G, exactly one per
disk, in the order σR, such that |T | ≤ (1 +O(1/m))|T ′|.

Proof. We let T ′ be the path/cycle obtained from T by rounding each of its vertices to the
closest sample point of the associated (unit-diameter) disk. This rounding results in each
edge decreasing in length by at most 2 · πm , since the sample points are spaced on the disk
boundary at distance (along the boundary) of 2π(1/2)

m . Thus, |T | ≤ |T ′|+ 2π
m n. We obtain a

lower bound on |T ′|, in terms of n, using an area argument (as done in [5], but included here
for completeness). Let A(T ′) be the area swept by a disk of radius 1 whose center traverses
T ′; it is well known that the area swept by a disk of radius δ whose center moves on a curve
of length λ is at most 2δλ+πδ2, implying that A(T ′) ≤ 2|T ′|+π. Since T ′ meets all n of the
unit-diameter disks di, we know that A(T ′) ≥ n · π(1/2)2. Thus, n ≤ (8/π)|T ′|+ 4 ≤ O(|T ′|)
(assuming that |T ′| ≥ c, for some constant c, which holds if n ≥ 2). Since n ≤ O(|T ′|), the
inequality |T | ≤ |T ′|+ 2π

m n implies that |T | ≤ (1 +O(1/m))|T ′|, as desired. J

A corollary of Lemma 8 is that, for purposes of obtaining a PTAS, it suffices to search
for an optimal adversarial tour in the discrete graph of edges EG on sample points.

For two consecutive disks, di and di+1 in an ordering σR, we refer to the convex hull of
di and di+1 as the fat edge associated with (di, di+1). The collection of such fat edges will be
called the convex hull tour associated with σR.

I Theorem 9. No point p ∈ R2 in the plane lies within more than a constant number of fat
edges of the convex hull tour, OPT , associated with an optimal ordering σ∗R.

Proof. Consider an arbitrary point p ∈ R2 and consider its intersection with the convex hull
tour of OPT . Center a disk Dp, of radius K centered at p, with K = O(1) a constant to be
determined later. Since the disks di are disjoint, there are only a constant number (O(K2))
that intersect Dp. We remove from R these disks, as well as the (at most two) disks adjacent
to them in the tour OPT . Let R′ be the remaining set of disks after these (constant number
of) disks are removed from R.

We claim that p is contained in no more than a constant number of the fat edges of
OPT joining two disks of R′. Assume to the contrary that more than a constant number
of remaining fat edges of the convex hull tour of OPT connecting disks of R′ contain p.
Consider two such fat edges, (d1, d2) and (d3, d4), containing p in the region where they

SoCG 2017
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p

d1

d2

d3
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v1
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v4

v6

v5
v3

v2

p
p′

(b) Case 2.

Figure 4 Case analysis for fat edge swapping.

properly cross. Each of these fat edges must pass “nearly” diametrically across Dp. That
is they must cross Dp in such a way that they contain its center point p. We will show
that by uncrossing these two fat edges we obtain a strictly shorter adversarial tour, thereby
contradicting the optimality assumption. Suppose, without loss of generality, that, in order to
preserve connectivity, the uncrossing replaces (d1, d2) and (d3, d4) with (d1, d4) and (d3, d2).
Let vi be the point of intersection closest to di where the adversarial edge incident on di
crosses the boundary of Dp. There are two cases.

Case 1: First suppose that ∠v1p
′v4 = ∠v3p

′v2 ≤ π/2, where p′ is the point where the
adversarial edges correspond to (d1, d2) and (d3, d4) cross; refer to Figure 4a. Note that we
could delete the portions of adversarial edges (v1, v2), and (v3, v4) crossing Dp and replace
these with the two portions of the circumference of Dp connecting points v1, v4 and v2, v3
(see Figure 4a). In deleting the portions of the adversarial edges which intersect the interior
of Dp, we saved at least 4

√
K2 − 1. This value comes from the fact that the adversarial edge

is contained within the fat edge connecting these two disks, which needs only “nearly” pass
diametrically across Dp; it could be the case that p is contained within a fat edge on its
boundary. In replacing the deleted portions of adversarial edges with two arcs comprising at
most half of the circumference of Dp (with arc length at most πK) we still get an overall
savings of at least 4

√
K2 − 1− πK. Thus, we need to choose K so that 4

√
K2 − 1− πK ≥ 9

implying K ≥ 11 = O(1). We will show later that this savings of 9 units of tour length is
more than enough to compensate for the adversarial increase in the new proposed ordering.

Case 2: Next, suppose that ∠v1p
′v4 = ∠v3p

′v2 > π/2 for any pair of fat edges still
containing p. We will begin by breaking the plane into quadrants whose origin is p and
now consider triples of fat edges that contain p. We will only consider those triples of fat
edges whose disk endpoints lie in quadrants I, and III, as we can repeat this process a finite
number of times, each with a new perturbed (rotated) set of quadrants who’s origin is p so
that eventually all remaining fat edges containing p have this property.

Let (d1, d2) be some remaining fat edge containing p whose disk endpoints are in quadrants
I, and III. Let (d3, d4), (d5, d6) be the second and third fat edge respectively that contain p,



G. Citovsky, T. Mayer, and J. S. B. Mitchell 32:9

and have an endpoint in each of quadrants I and III, found in order by walking along the
optimal tour from d2 away from d1. As in case 1, let vi be the point of intersection of the
adversarial edge emanating from disk di and the boundary of Dp. We have that all of the vi
are in quadrants I or III as well (see Figure 4b). Given that v1, v2 are in opposite quadrants,
as well as points v3, v4, and v5, v6, a simple case analysis will show that we can delete two
edges (vi, vi+1), (vj , vj+1) that cross the interior of Dp, and replace them with two arcs of
Dp, lying strictly within quadrants I and III, which make up at most half the circumference
of Dp, while preserving connectivity of the tour. This case analysis is independent of the
specifics of which quadrant contains disk di, and only requires that each triple of edges we
try to uncross go between opposite quadrants.

Thus, as in Case 1, we can argue that in replacing two edges crossing Dp (saving at least
4
√
K2 − 1 in length) and replacing these with the two arcs of Dp (which comprise at most

half the circumference of Dp) we have a net savings of at least 4
√
K2 − 1− πK, which is at

least 9 when K ≥ 11.

Each round of uncrossing (Case 1 or Case 2) reduces the tour length by a positive amount
and reduces the depth of p by at least one. Therefore, this process will terminate in a finite
number of rounds. The number of fat edges containing p remaining after the process (Case 2)
terminates will be at most (another) constant.

Finally, we argue that the constant 9 we save in tour length in each local uncrossing is
enough to compensate for whatever global increase in adversarial tour length may occur due
to the new proposed ordering (since the adversary gets to re-optimize his selection of points).

Again, consider an uncrossing of the original, hypothesized optimal tour, replacing (d1, d2)
and (d3, d4) with (d1, d4) and (d2, d3). Let x, y, u, v be the (original) points adversarially
chosen in disks d1, d2, d3, d4. After performing the uncrossing, we get a new tour, and thus
the adversary gets to re-optimize by choosing a different set of points. From the adversarial
property of the initial solution, we have that the initial paths from x to u and from v to y
were as long as possible over the intermediate choice of disks if we fix points x, y, u, v. The
new path chosen between disks d1 and d3 is at most that of the original path between x
and u, plus two diameters, one per disk. That is, suppose the adversary chose new points
x′, u′ in disks d1, d3 respectively. We can model the new path as traveling from x′ to x in
d1 following the original path from x to u and then traveling from u to u′ in d3 costing at
most two diameters. Similarly for the path between v, and y. Finally, in arguing about the
additional length reconnecting the tour after the swap, we can upper bound, by triangle
inequality, the length of the edge (x′, v′) and (u′, y′) as at most four diameters, one per disk
d1, d2, ..., d4 the portions of the edges (x, y) (u, v) strictly exterior to Dp as well as at most
half the circumference of Dp. However, we have the savings of removing those portions of
edges (x, y) and (u, v) that were strictly interior to Dp. Recall that the diameter of Dp

was chosen such that removing two edges that pass “nearly” diametrically across Dp and
replacing them with two arcs comprising at most half of its circumference results in a net
savings of 9 units. Therefore in adding at most 8 diameters (or 8 units) upper bounding the
adversarial increase, we still have a net savings of at least 1 unit. Thus, we have a strictly
shorter adversarial tour after performing the uncrossing, thereby contradicting the optimality
assumption of the original tour. J

4.2 The m-Guillotine Structure Theorem
We begin with some notation largely following [5, 12]. Let G be an embedded planar straight
line graph (PSLG) with edge set E of total length L, and let R = {d1, . . . , dn} be a set of
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disjoint unit-diameter disks di in the plane. (In our setting, there will be exactly one vertex
of G within each disk di ∈ R.) Let B be an axis-aligned bounding square of R. We refer to
an axis-aligned box W ⊂ B as a window, which will correspond to a particular subproblem
of our dynamic program. We refer to an axis-parallel line ` that intersects window W as a
cut of window W .

Consider a cut ` for window W ; assume, without loss of generality, that ` is vertical. The
intersection ` ∩ (E ∩W ) of ` with the edge set contained in W consists of a, possibly empty,
set of subsegments (which include, as a degenerate case, singleton points) along `. We let
ξ be the number of endpoints of subsegments along `, and let these endpoints along ` be
denoted by β1, β2, . . . , βξ ordered by decreasing y coordinate. For a positive integer m we
define the m-span σm(`) of ` to be ∅ if ξ ≤ 2(m− 1), and the possibly zero length segment
βm, βξ−m+1, joining the mth and the mth from the last endpoints along ` otherwise.

The intersection of `∩R∩W consists of a possibly empty set of ξR ≤ |R∩W | subsegments
of `, one subsegment for each disk (bounding box) intersected by `∩W . Let these disk/boxes
be d1, d2, . . . , dξR

in order of decreasing y coordinate. For a positive integer m we define
the m-disk-span σm,R(`) of ` to be the (possibly empty) line segment joining the bottom
endpoint of dm ∩ ` to the top endpoint of dξR−m+1 ∩ `. In fact, as observed in [14], it suffices
to consider the m-disk-span of the set of axis-aligned bounding squares of the input disks,
since the charging scheme charges the perimeters of the regions, which are, within a constant
factor, the same whether we deal with circular disks or square (L∞) disks.

As in [5] we define a line (cut) ` to be an m-good cut with respect to W if σm(`) ⊆ E

and σm,R ⊆ E. Finally, we say that E satisfies the m-guillotine property with respect to W if
either (1) W does not fully contain any disk; or (2) there exists an m-good cut ` that splits
W into W1, and W2 and, recursively, E satisfies the m-guillotine property with respect to
W1, and W2. The following is shown in [5], using a variant of the charging scheme of [12]:

I Theorem 10 ([5]). Let G be an embedded connected planar graph with edge set E of total
length L, and let R be a given set of pairwise-disjoint equal-radius disks (of radius δ) each
of which intersects E. Assume that E and R are contained in the square B. Then for any
positive integer m there exists a connected planar graph G′ that satisfies the m-guillotine
property with respect to B and has edge set E′ ⊇ E of length L′ ≤ (1 +O(1/m))L+O(δ/m).

In the constructive proof of Theorem 10, m-spans are added to E, whose lengths are
charged off to a small fraction (O(1/m)) of the length L of E. Consider the edges of E that
cross an m-span, ab that is added: By Theorem 9 we know that the associated fat edges (of
width 1) have constant depth. This implies that the number of edges of E that cross an
m-span, ab, that arises in the constructive proof of Theorem 10 is O(|ab|).

I Theorem 11. In the graph G′ that is obtained from G according to Theorem 10, the
segments of E′ that arise as m-span edges for the input edges E are such that the number of
edges of E intersecting an m-span edge ab is at most O(|ab|).

Provided that the input R is nontrivial (n ≥ 2), the length L∗ of an optimal solution
OPT (path or cycle) to ATSP is at least 2; thus, Theorem 10 shows that there exists an
m-guillotine supergraph of OPT of length L′ ≤ (1 + O(1/m))L∗. Further, as shown in
[5, 12, 14], one can make the m-guillotine conversion using cuts whose coordinates are from
among a discrete set of O(n) candidate x- and y-coordinates, for fixed m. We will show how
to use this fact, along with the structure of an optimal adversarial solution, to construct via
dynamic programming an m-guillotine structure from which we can extract an approximation
to OPT , with approximation factor (1 + ε), for any ε > 0. (Here, m = O(1/ε).)
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4.3 The Dynamic Program
A subproblem of our dynamic program (DP) is responsible for computing a shortest total
length connected network that spans the input set R of disks (at their sample points) while
satisfying a constant-size, O(m), set of boundary conditions. The boundary conditions specify
O(m) disks that the subproblem is responsible for interconnecting, as well as conditions on
how the computed network within this subproblem should interact with optimal solutions
computed within abutting subproblems. As we cannot afford to keep track of all (potentially
Ω(n)) interconnections of the optimal ATSP solution, OPT , between two rectangles that
bound subproblems, the m-guillotine structure theorem, together with our additional struc-
tural results, allow us to compactly summarize the interconnection information well enough
to ensure approximation within factor (1 + ε) of optimal.

Unlike the PTAS for TSPN, where the DP can choose any point within each region of R,
in computing a minimum-weight connected, Eulerian, m-guillotine spanning subgraph over G,
in the ATSP we have no control over the point being spanned within each region: Once we
produce an ordering σR, the adversary gets to solve an offline longest path problem to choose
the (“worst possible”) point pi ∈ di within each region di ∈ R our tour must visit. Thus,
we need to create a minimum weight connected spanning Eulerian subgraph over G that
satisfies the m-guillotine property and satisfies a certain adversarial subpath property, which
allows us to show that in the resulting network computed by DP, we can extract a polygonal
tour of R that satisfies the adversarial property. In essence, we need the DP subproblems to
be able to estimate (approximately) what the cost of an adversarial solution will be, if we
extract from the optimized m-guillotine network a tour through R.

In particular, each DP subproblem is specified by a window W ⊆ B, along with the
following additional information:
1. An m-span (possibly empty) on each of the 4 sides of W , each with a parity bit indicating

whether the number of edges incident to the m-span from outside of W is even or odd;
2. O(m) specified edges, which are the network edges crossing the boundary of W that are

not crossing one of the (up to 4) m-spans;
3. An m-disk span (possibly empty) on each of the 4 sides of W , with a specified sample

point given for the first and for the last disk along the m-disk span;
4. O(m) specified input disks (i.e., disks of R not intersecting an m-disk span) intersecting

the boundary of W ;
5. A specified sample point of G on the boundary of each of the O(m) specified input

disks, where the network is required to visit the associated disks (these are the “guessed”
positions of the adversarial visitation points for the specified disks);

6. For each of the O(m) specified input disks, we indicate whether the specified sample
point of the disk is visited by the network being computed for the subproblem, and, if so,
whether its degree in that network is 1 or 2. (The total degree of the sample point, using
edges associated with subproblems on both sides of the cut, will be 2.)

7. An interconnection pattern specifying the subsets of the O(m) boundary elements (spe-
cified input disks, specified edges, m-spans, and m-disk spans) that form connected
components within W .

There are only O(n4) choices for W , nO(m) choices for the specified edges/disks, and
a constant (O(g(m)), for some function g) number of choices of the O(m) bits and the
interconnection patterns. Thus, there are a polynomial number of subproblems for the DP.

A subproblem in the dynamic program requires one to compute a minimum-length
m-guillotine network satisfying the following constraints:
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(i) The network is comprised of edges of the following types: (a). edges from the set EG of
edges linking a sample point of G on one disk to a sample point of G on another disk;
(b). edges of type (a), EG , truncated at a (Steiner) attachment point on an m-span
where the edge crosses the m-span or passes through an endpoint of the m-span; and (c)
m-spans and m-disk spans that lie along cuts in the decomposition (recall that cuts lie
along O(n) discrete horizontal/vertical lines). The attachment points and the endpoints
of m-spans and m-disk spans constitute a set, H, of Steiner points, distinct from the
sample points G on the boundaries of the disks.

(ii) Each sample point of G within W that is visited by the network has degree 2.
(iii) The number of edges of type (b) (i.e., edges of EG truncated at an m-span) incident on

an m-span segment ab is even or odd, according to whether the parity bit of the m-span
is even or odd, so that the total sum of the degrees of the Steiner points H along an
m-span is even. Further, the number of edges of type (b) incident on an m-span segment
ab is bounded by c0 · |ab|, where c0 is a constant arising from the structure Theorem 9.

(iv) The network must be m-guillotine with respect to W , and, for each cut in the recursive
partitioning of W , in the total length of the network we count each m-span twice; these
doubled m-spans allow us to augment the resulting network to be Eulerian [12], and
thereby to extract a tour (see below). Further, we count the length of each m-disk span
a constant (O(1)) times as well; this will allow the m-disk spans to be converted into
adversarial subpaths visiting the set of disks that are spanned.

(v) The network must utilize the specified edges (which straddle the boundary of W ).
(vi) The network must visit, at a sample point, each of the input disks interior to W .
(vii) The network must visit each specified disk whose bit indicates it should be visited by the

subproblem, at the specified sample point for that disk. Further, the network must visit
the specified sample points for the first and last disk associated with each nonempty
m-disk span.

(viii) The network must obey the interconnection pattern of the subproblem.
(ix) The network obeys the adversarial subpath property: Any maximal path, endpoints

non-inclusive, within the network that goes through only sample points G is a longest
path through the sequence of disks on which the sample points lie (one per disk).

I Lemma 12. When an optimal tour OPT is rounded to the grid G and then converted to
become m-guillotine in the process that proves Theorem 10, the network that results from the
augmentation of OPT satisfies conditions (i)-(viii) at every level of the recursive process, for
appropriate choices of the specified edges, disks, and interconnection patterns.

Proof. During the process that converts OPT to be m-guillotine, according to the construct-
ive proof of Theorem 10, most of the conditions hold automatically, by construction. Edges
of OPT that cross an m-span, ab, do so at a point of H that has degree 4 (since the crossing
edge is partitioned at the crossing point, becoming two truncated type-(b) edges, and the
m-span is partitioned at the crossing point as well). An m-span edge ab, by construction,
extends between two points (a and b, each a Steiner point) on edges of OPT (each of which
is thereby partitioned into two truncated type-(b) edges). Theorem 11 implies that the
fat edges associated with the edges of OPT have bounded depth, implying condition (iii)
holds. Condition (viii) holds for the choice of interconnection pattern that is implied by
OPT . The adversarial subpath property holds because of the adversarial path property of
OPT itself. J

We now discuss the enforcement of condition (ix), the adversarial subpath property, which
is key to our being able to account for the adversary’s choices during our optimization of the
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network length, assuring that, in the end, we can extract from the computed network a tour
that is adversarial and not much longer than the overall network.

Let (W,Σ) denote a subproblem associated with window W , where Σ is a specification of
the boundary constraints information (1)-(7). The dynamic programming recursion optimizes
the partition of the subproblem (W,Σ) into two subproblems, (W1,Σ1) and (W2,Σ2), by a
horizontal or vertical cut line ` (intersecting W and passing through one of the O(n) discrete
values of x, y-coordinates that define windows). Crucial to the correctness of the algorithm
is that this recursion preserves the properties specified by the conditions (i)-(ix).

The objective function, f(W,Σ), measures the total length of the network restricted to
the window W ; in particular, edges of EG that are specified in the boundary constraints Σ
have their length partitioned and assigned to subproblems through which they pass.

The DP recursion optimizes over the choice of the cut line ` that partitions W into W1
and W2, as well as the boundary conditions, Σ`, along the cut, which will be part of the
specifications Σ1 and Σ2. The conditions Σ1 and Σ2 must be compatible with each other and
with the choice of boundary conditions, Σ`, across the cut `. In particular, in order for Σ1
and Σ2 to be compatible with each other and with Σ, the specified edges of EG across ` must
match, as well as the m-span and m-disk span along the cut `. Further, the interconnection
pattern of Σ must specify subsets of boundary elements for W that are yielded by taking the
union of interconnection patterns for (W1,Σ1) and (W2,Σ2).

We let Σ(R)
` denote the partial specification of the boundary conditions Σ`, in which

we specify which pairs of disks from R constitute the specified edges crossing `, but do not
specify the actual sample points on the boundaries of these disks that define the endpoints of
the edges from EG being specified. (In other words, Σ(R)

` specifies only the equivalence classes
of the full set of conditions, Σ`; the refinement of these equivalence classes will be specified
in the optimization within the “max” term of the recursion below.) The DP recursion is

f(W,Σ) = min
`,Σ(R)

`

{ max
Σ`∈X(Σ(R)

`
)
(f(W1(`),Σ1(Σ`)) + f(W2(`),Σ2(Σ`)))}

where the outer minimization is over choices of the cut ` and the cross-cut boundary conditions
Σ(R)
` , and the inner maximization is over choices of Σ` that are in the set X(Σ(R)

` ) of all
boundary conditions across the cut ` that are refinements of the choice Σ(R)

` , specifying
precisely which sample points are utilized for each of the disks of R that are involved in the
specification Σ(R)

` (and not already specified by the “parent” choice, Σ, in cases in which
edges crossing ` also extend outside of W and have their sample points specified within Σ).
In the expression above, W1(`) and W2(`) are the subwindows of W on either side of the cut
`, and Σ1(Σ`) and Σ2(Σ`) are the corresponding boundary conditions on either side of ` that
are inherited from Σ and consistent with the conditions Σ`. The fact that we maximize over
the choices that the adversary can make, in all choices that cross the cut `, implies that we
preserve the adversarial subpath property:

I Lemma 13. The DP yields a network satisfying (ix), the adversarial subpath property.

4.4 Extracting an Approximating ATSP Tour
The output of the DP algorithm is an m-guillotine network G of minimum cost, where cost
is total length, taking into account that m-spans are counted twice, and m-disk spans are
counted O(1) times (and are each of length at least 1). From the structure Theorem 10, we
know that the total length of edges of G is at most |OPT |(1 +O(1/m)).

The fact that we accounted for the doubling of the m-spans in the optimization implies
that we can afford to augment the edges along each m-span, in order that every Steiner
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Figure 5 Bounding the adversarial increase over extracted approximate tour T ′.

point along an m-span has degree 4: Initially, the points H along an m-span have degree
3, being either endpoints of the m-span (having a T-junction with an edge between two
sample points of G), or being a T-junction where an edge between two sample points of G
is truncated, terminating on the m-span. By the parity condition at the m-span, we know
that there are an even number of T-junctions along the m-span, implying that we can add
a perfect matching of segments along the m-span, joining consecutive pairs of T-junctions.
The total length of this matching is less than the length of the m-span, and is “paid for” by
the doubling of the m-span lengths in the DP optimization.

The fact that we accounted for O(1) copies of the m-disk spans in the optimization
implies that we can afford to augment the edges of G with an adversarial path through the
sequence of disks stabbed by the m-disk span; such a path has length proportional to the
length of the m-disk span, assuming the m-disk span is nontrivial in length.

By the above discussion, the result of our algorithm is, then, a connected Eulerian network
of length at most |OPT |(1 +O(1/m)). From this network, we extract a tour T . The tour T
is a cycle consisting of straight line segments joining points that are either sample points, G,
or Steiner points, H. Let π1, π2, . . . , πk be the maximal subpaths along T whose vertices are
all sample points G; i.e., each path πi has only vertices of G (no Steiner points H), and every
sample point of G that is a vertex of T lies in exactly one path π.

Now, the number, k, of subpaths is at most the number of Steiner points H along the
tour T , and this number is upper bounded by the number of Steiner points along m-spans in
the entire network. But, the total length of all m-spans is at most O(1/m) · |OPT |, by the
proof of Theorem 10. This implies that k ≤ O(1/m) · |OPT |.

The adversarial subpath property that was enforced in the dynamic programming al-
gorithm implies that the subpaths πi are each adversarial – their lengths are longest possible,
for the given sequence of disks through which it passes (given that the path πi begins at
sample point pi and ends at sample point qi as chosen by our dynamic program). We obtain
a new tour, T ′, by chaining together the subpaths πi, omitting any Steiner points that were
along T . The resulting tour T ′ is not necessarily adversarial, but the following lemma shows
that it is close to being so.

I Lemma 14. Let σ′R be the order in which the disks R are visited by the tour T ′. Then,
the adversarial tour, APX, associated with σ′R has length at most |T ′|+O(1/m) · |OPT |.

Proof. For each subpath πi in our approximate tour T ′ let APX(πi) be the adversarial
path computed over the sequence of disks associated with πi in the final adversarial tour
associated with σ′R. Similarly let p∗i (resp., q∗i ) be the point chosen in the first (resp., last)
disk along πi in APX. Assume that we have chosen the points pi (resp., qi) in the first
(resp., last) disk along πi in our extracted tour T ′; see Figure 5 for an illustration.
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From the adversarial property of our computed solution we know that the length of the
path |πi| computed from pi to qi is as long as possible over choices in intermediate disks.
Therefore we can over estimate the length of APX by walking around T ′ adding at most two
unit diameter detours to the first and last disk in each sub-path πi. That is we can begin at
pi detour to p∗i and back, follow πi until we reach qi an then detour from qi to q∗i and back
and follow T ′ to pi+1 and so on. By triangle inequality and the fact that πi is a longest path
for fixed choices of pi, and qi this over estimates the length of APX.

We have |APX| ≤ |T ′|+ 4k, and therefore |APX| ≤ |T ′|+O(1/m)|OPT |, because, as
previously stated k ≤ O(1/m)|OPT |. J

Since we know that the computed T , and thus T ′, has length at most |OPT |(1+O(1/m)),
Lemma 14 implies that the overall solution extracted from our computed tour yields a PTAS.
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